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ON THE EXTENDED GREEN-NAGHDI SYSTEM FOR AN UNEVEN BOTTOM
WITH SURFACE TENSION

BASHAR KHORBATLY*! AND SAMER, ISRWAT*

ABSTRACT. In this paper, a derivation of the two-dimensional asymptotic nonlinear highly dispersive shallow-
water extended Green-Naghdi system for an uneven bottom is represented. Then we consider the one-
dimensional case of this model taking into consideration the effect of a small surface tension. We show
that the construction of solution with a standard Picard iterative scheme can be accomplished in which the

well-posedness in X* = H*T2(R) x H5t2(R) for some s > %7 of the modified extended one-dimensional
1

evp

system for a finite large time existence t = O( ) is proved.

1. Introduction

The water-wave problem in its simplest form concerns two-dimensional motion of an irrotational and

incompressible inviscid liquid with a free surface, acted on only by gravity and surface tension. Assume that
the fluid is of constant density p and denote by Q; = {(X,2) € R? x R, —hg + b(X) < z < ((t,X)} the
domain of the fluid for each time variable ¢ where the surface of the fluid is a graph parametrized by ¢ and
its bottom is parametrized by —hg + b(X) independent of time with hy the depth. Knowing that d = 1,2
the spatial dimension of the surface of the fluid where X € R? the spatial variable is written as X = (z,v)
when d = 2 and X = x when d = 1, while the vertical variable is denoted by z.
The motion of an ideal moving fluid is described by the free surface Euler equations for steady flow along a
streamline (their well-posedness were recognized after the work of Nalimov [15], Yosihara [3], Craig [16], Wu
[10, 11] and Lannes [2]) which is a connection between the velocity V', the pressure P, and the density p of
the fluid that is based on the Newton’s second law of motion and can be written under the form

1
(1) OV + (V- -Vx )V=—g¢,— ;vX,ZP in (X,2)€Q;,t>0.

The incompressibility of the fluid is expressed by

(2) Vx. V=0 in (X,2) e, t>0,
knowing that the irrotationality of the fluid means that

(3) Vx.xV=0 in (X,2)eQ,t>0,

where V : Ry x Q; — R? x R is the fluid velocity, P : R, x ©; — R is the fluid pressure term at point
(X,z) € Q and instant ¢ > 0, —g¢, is the gravitational field which is acting vertically downward with g
greater than zero and ¢, is a unit vector in vertical direction. These equations are complemented with the
dynamic condition and is given by

(4) P*Patm:O—K/(C) atZ:C(t7X)7t207

that expresses a balance of forces across the free surface and denoting by P, the (constant) atmospheric
pressure. In addition, to the kinematic condition that is a boundary condition at the surface and states that
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the free surface moves with the fluid is given by

(5) 0 — 14+ |VxC?PV -ngy =0 at 2 =C((t,X),t >0,
with the boundary condition on the velocity at the bottom and announces that the fluid particles do not
cross the bottom is given by

(6) V.n_=0 at z=—ho+b(X),t >0,

where the outward unit normal vector to the free surface and the outward unit normal to the lower boundary
of €2, are respectively denoted by

1 T 1 T
ny = ————-—(Vx¢', 1), and n_=-————(Vxb',-1)",
e e ) NiEapu )
while o > 0 is the surface tension coefficient, and x(¢) = =V - ( ve ) is the mean curvature of the

V14|V

surface denoting by V = Vx . The last assumption (7) states that the fluid is at rest at infinity and is given
by
(7) lim [((X,2)|+|V(,X,2)|=0 in (X,2)e€Q,t>0.

[(X,2)]| =00
In this paper, we consider the Eulerian specification of the fluid motion that focuses on specific locations in
the space through which the fluid flows as time passes rather than working in the Lagrangian approach, since
it is most simple to deal with. In particular, when approximate features are investigated. More precisely,
concerning asymptotic properties generates the occurrence of Green-Naghdi equations (see [19, 18, 22]) that
takes into consideration neglected rotational effects (i.e. 0 = Vx . x V'), which are significant for wind driven
waves, waves riding upon a sheared current, waves near a ship, or tsunami waves approaching a shore and
ensures the existence of ¢: Ry x ; — R the velocity potential flow of the fluid such that Vx .o =V in
Q. This plays a great role in writing the Euler system under Bernoulli’s formulation

AX,zSOZO at —h()+b(X)<Z<C(t,X),
0,0 —Vxb-Vxp=0 at z=—ho+b(X),
(8) M +Vxp-Vx(—0d,0=0 at z=((t,X),

1 o
3t90 + §|vxyz@‘2 +gC = 7;K(<) at z= C(t7X)>

where the Laplacian equation is obtained by taking the divergence of the potential velocity after using the
incompressibility condition.The second and third equations can be written using the boundary condition
at the bottom (6) and the kinematic condition (5) respectively. While The last equation is established by
commuting V = Vx ¢ in (1).

Presently, in order to solve the Laplacian equation we need information from the boundary that moves with
time and its location is determined by two coupled nonlinear partial differential equations which is a basic
difficulty. This difficulty leads us to derive some ( much simpler ) asymptotic models to this system which
requires the identification of small parameters that it is often possible to deduce from their values some
insight on the behavior of the flow. More precisely, let us introduce the following dimensionless parameters

a h3 0 PgN?
_ = — = — B =
ho ) /J' A2 ) 5 9 o )

b

ho g
where the parameter 0 < ¢ < 1 is often called nonlinearity parameter, while 0 < p < 1 is the shallowness
parameter, 0 < 8 < 1 is the typical amplitude of the bottom deformations (topography parameter) and Bo
is the classical Bond number which measures the ratio of gravity forces over capillary forces, knowing that
a is the of amplitude of the wave, A the wave-length of the wave, by the order of amplitude of the variations
of the bottom topography, hy the reference depth, p the density of the fluid and o is the surface tension
coefficient. We now execute the classical shallow water (4 < 1) non-dimensionalization using the following
relations:

X =)\X/, z=ho?, ¢=adl,
© = —A/gho' b = bob’ t= A t
ho ’ ’ Vgho
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Remarking that the wave dispersion in water waves refers to the property that longer waves (large wave-
length) have lower frequencies and travel faster than short waves and their maximum speed of propagation
is v/gho. Thus, those long waves have common speed \/ghg called the linear phase velocity .

Therefore, the equations of motion (1) — (7) then become (after eliminating the primes for sake of clarity)
under the dimensionless Bernoulli’s formulation

o + pdyp + 020 = 0 at —14pb(X) < z < eC(t, X),
0,0 —uBVxb-Vxo=0 at z=—1+4 Bb(X),
1
(9) 8tc_;(_U5VXC'VX§0+az<P):O at 2z =¢e((t, X),
1 2, €52 4o L EEVEQ _
0o + 5 (el Vxpl +M(8z</>) )+¢=—50 Vi at 2z =¢e((t, X),

Now, in order to reduce the dimensionless free surface Bernoulli’s equations (9) into a system where all
functions are evaluated at the free surface (in R, x R?) and it is known as the dimensionless version of
Zakharov/Criag-Sulem [14] formulation of the water-waves equations with surface tension. The demon-
stration is commenced by introducing ¥: Ry x R? — R the trace of the velocity potential at the free
surface

(10) ¢(t,X) = gO(t,X,EC(t,X)) = Plocecs
and the Dirichlet-Neumann operator G, [e¢, £b]- is defined by

(11) GuleC, BOY = —p(eVC) - (Vo) + (0:0),_ = /14 1| VC[ (Onp) .

with ¢ solving ( see [1] for accurate analysis) the boundary value problem

[z + ndyp + 029 =0 in —1+ Bb(X) < z < e((t,X),
(12) On®)_ g =0,
Pl._.c = U(t, X),
where 0,0 = n_ - Vx .o refers to the upward normal derivative at the bottom. A set of two equations on

the free surface parametrization ¢ and the trace of the velocity potential at the surface ¢ = ¢ __ . involving
the Dirichlet-Neumann operator is introduced as

01 = - GuleC. BBl = 0
(5:GuleC, BUIY + V(eQ) - VY)* 1 k(e y/aC)

2(1 + &2u|V(¢|?) ~ Bo eyn
In the event that no presumption is made on the nonlinearity parameter defined above, a shallow water
asymptotic regime (u < 1) is identified. Formally, this regime leads at second order O(u?) to a large
amplitude model (u < 1,e « 1) called the Green-Naghdi system. A rigorous justification on the well-
posedness of the standard Green-Naghdi equations was given by several works such as [17, 4, 5] in 1D and
2D with flat and non-flat bottoms (8 = 0, 5 # 0) respectively where a solution was constructed with a
standard Picard iterative scheme so that there is no loss of regularity of the solution with respect to the
initial condition, unlike a Nash-Moser scheme made in [21] for 2D case. The aim of this paper is to derive
the 2D extended Green-Naghdi system for non-flat bottom of order three with respect to the shallowness
parameter p (dispersive term) (see [8, 9, 27] for the extended flat bottom system) applying the general
method used in [22] for O(u?) approximation for uneven bottom topography represented by

0,C+V - (hw) = 0,
(14) (h+ uT[h] + p*T[R])Opv + hVE +eh(v - Vv + epQ: [Ulv
+eufB1 U + epf3 Bo[Ulo + ep® Qo[Ulv + ep® BB3[Uv + ep® 52 Ba[Ulv = O (1),
where v = (vi,v2)T, U = (¢,v)T and h(t, X) = 1 + ((t, X) — Bb(X), denoting by

TTh, Bblw = —%V(h?)v cw) + g[V(hQVb cw) — h*V - wVb] + BZh(Vb - w) Vb,

3
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Ou + ¢ + S|V —ep



—_Ly(v. wvv. L (WA(Vb - L WV - (b
Tlh, Bblw = —=V (V- (BPV(V - w)) ) + 526V (V- (19 (Vb w)) ) + 526V (V - w¥ - (b VD))
1 1 1
= 528V (WV(V-w))Vb+ S BV (WY - w(VBVD))) + 582V (RPVEV (Vb w))
+ %BQV - (h*V - wVb) Vb + %ﬁzv - (R*V(Vb-w)) Vb,
where the non-topographical terms represented by Q1[U], Q2[U] as follows

QU0 = —%v(;ﬁ((v V)V -0) = (V-0)?)),

Qo[U] = —4—15V[V~ {h5(v2(v -v))v —5h5(V - 0)V(V - v) + VA® x (v x V(V - u))H
+f—5V(h5(V(V-v))2>+4—15V-(h‘r’V(VU))V(V-v)—k%hE’V{(V(V-v))Q},
while the purely-topographical terms are introduced by By [U], Ba[U], Bs[U], B4[U] as follows
Bi[Uy = %V(h2(v -V)?b) — %hg((v V)V -v) = (V-0)*)Vb, Bs[Ulv = h((v-V)?b) Vb,
and
Bs[UJv = +iv{v : <h4V2(Vb 0)v + WAV - 0V - Vb)u — 4h4(V - v)2Vb
— 4R vV (Vb-v) + V- 0VAL x (v x Vb) + VA* x (v x V(Vb~v)))}
+ %Vb x (Vh* x V(V - 0)?) — %h‘*v VbV (V -v)? — iv (WY (Vb)) V(V - v)
— ih‘*VQ(V ~0)V(Vb-v) + 2—14V(V -v) x (V(Vb-v) x Vh') — %V(h‘lV(V 0)V(Vb-v))
+ iv((wﬁ ) (VOV(V - v))) - iv : {h4(v2(v )v — 2V(V - 0)2) + VA x (v x V(V - u))}vz),
with
Ba[UJv = %v{h?’v : (Vb x (v x V(Vb- u))) +h3V - (V- uVb x (v x Vb)) + h3(Vb-v)V2(Vb - v)
+h3(Vb-0)V - (V- 0Vb) + 213 (V (Vb - v))” — 203(V - U)QVbe}
+ %v - (h*V - vVb)V(Vb-v) + 1—12v - (h*V(Vb-v))V(Vb-v) + 1—12h3v -0V (VbV(Vb-v))
+ %hi”(v )2V (VbVD) + ifﬁv{(ww) : u))z}
+ %v : { —31h3(V - 0)2Vb + V - uVA3 x (v x Vb) + K30V - (V- Wb)}w

1
+ 5V {HVEVb - vy = 3KPV - 0T(Vb - v) + VR x (v x V(Vb-v)) }Vb.

To our knowledge, the existence of terms of order p? which makes the analysis more difficult, has not been
yet derived or analyzed especially in the case when the bottom is not flat. The construction of solution (1D
case) with a standard Picard iterative scheme as in [17, 4, 5, 27] can not be achieved without considering
the effect of a small surface tension that smooth the way in controlling the energy estimates. Our objective
here is to demonstrate that it is additionally conceivable to utilize such an iterative scheme to study the

well-posedness of the extended 1D Green-Naghdi equations with surface tension, O(u?), and 3 # 0.

1.1. Organization of the paper. The aim of this paper is to derive and study the extended approximation

of the full water waves problem in the case of an uneven bottom topography with an error of order p?. First

of all, in Section 2, we derive the extended 2D Green-Naghdi system for non-flat bottom. Then in Section
3.1 some preliminary results are given. The well-posedness of the modified system is stated in Section 3.2

then proved in Section 3.3 .
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1.2. Notation. We denote by C(A1, g, ...) a constant depending on the parameters A1, A2, ... and whose
dependence on the A; is always assumed to be nondecreasing.

The notation ¢ < b means that a < Cb, for some non-negative constant C' whose exact expression is of
no importance (in particular, it is independent of the small parameters involved). Also, the notation a V b
stands for the maximum between a and b.

Let p be any constant with 1 < p < oo and denote LP = LP(R?) the space of all Lebesgue-measurable

functions f with the standard norm |f|rr = (/ |f(X)|de)1/p < 00.
R4
When p = 2, we denote the norm |- |2 simply by |- |2. The inner product of any functions f; and f3 in the

Hilbert space L2(R?) is denoted by (f1, f2) = / f1(X) fo(X)dX.
R4

The space L™= = L°>°(R?) consists of all essentially bounded, Lebesgue-measurable functions f with the norm
[Flie = esssup | £(X)] < oo,

We denote by Wt = Who(RY) = {f € L>°,Vf € (L>°)?} endowed with its canonical norm.

For any real constant s, H* = H*(R%) denotes the Sobolev space of all tempered distributions f with the
norm |f|gs = |A®f|a < 0o, where A is the pseudo-differential operator A® = (1 — 92)%/2.

For any functions u = u(X,t) and v(X,t) defined on R? x [0,T) with T' > 0, we denote the inner product,
the LP-norm and especially the L2-norm, as well as the Sobolev norm, with respect to the spatial variable
X, by (u,v) = (u(-,t),v(-,1)), |ulre = [u(-, )|, |ulr2 = |u(-,t)|r2 , and |u|gs = |u(-,t)|g=, respectively.
Let C*(R4) denote the space of k-times continuously differentiable functions and C§°(R?) denote the space
of infinitely differentiable functions, with compact support in RZ.

We also denote by Cg°(R?) the space of infinitely differentiable functions that are bounded together with all
their derivatives.

Let f(X,t) be a vector field defined on R? x [0, 00) of the independent variable X = (21,22, ...,174) € RY;
its partial derivative with respect to xy is denoted by 0., f = fu, for 1 < k < d. This allows us to
define the gradient of f, and we denote it Vf = (0z, f1, 00, f2, - On, fa) € RL Also we call divergence
of f the scalar denoted V - f = Zle Oy, fi and when d = 3, we call the curl of f the vector denoted
V X f = (Ouyf3 = Ony f2, 005 1 — O, [3,00, f2 — Oy )T

For any closed operator T' defined on a Banach space Y of functions, the commutator [T, f] is defined by
[T, fla=T(fg) — fT(g) with f, g and fg belonging to the domain of T

2. Derivation of the uneven Extended 2D Green-Naghdi system
To derive the Green-Naghdi equations (2D case), we introduce the depth averaged horizontal velocity

e¢(t,X)
(15) v(t,X) = #/ Vo(t, X, z) dz, with h(t,X)=1+¢((t,X)— pb(X) .
h(t, X) J-14800x)

The first equation of the Green-Naghdi system (14) 9;( + V - (hv) = 0 which exactly coincides with the
first equation of (13) stems from a clear outcome of Green’s identity or by a straightforward calculation and
rearranging terms using (9). Now as in [22], in order to derive the evolution equation on v, the key point is
to obtain an asymptotic expansion Vi) with respect to p and in terms of v and (. Since p < 1, we look for
an asymptotic expansion of ¢ under the form

N
(16) Papp(t, X, 2) = Qo + o1 + o2 + o+ pNon =D ;.
=0

Plugging expression (16) into the boundary value problem (12) and after dropping all terms of order O(uN+1)
one gets

(17) V] = Oa 17 aN 63@] = - g(pjfl - 83@]71 )

with the convention ¢_; = 0 by definition and the boundary condition
{ —ﬁVngOj_l + 62% =0 at z=-1+ (b,

(©)].ecc = 00,59,
5
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where g ; = 1 if j = 0 and zero otherwise. Solving the ODE (17) with (18) yields to the following possible
choices

(19) @O(thv Z) = ¢(t7X)
(20)  ¢1(t, X, 2) = (z—eQ)(— 5(2 +¢e¢) — 1+ Bb)V
(21) 902(t7X7 Z) = (z - SC)BVb : (v¢1)|z=—1+ﬁb +
- 2[%((2 +1— Bb)% = h2)h(eVC) + 1(%
1
2

_ [%((Z +1— Bb)2 — h2)hV - V() +

(V) + B(z = Q) Vb- Vi,
((z 41— 8b)> = h?)(eV()( — V¢ + 2(8VD)) Av
(2 = £0)* = (= = £)h2) (BVY) | V(&)

(2 = £0)* = (= = W)V - (BVB) | AY

(
* [214('24‘<5<> ) - (15(—1+5b)3(z—a§)— %((w

\/
N N |

Wl =

1—pb)* — h?)

3G =0 12— ) (14 55)] V- (V(av))
+ ((z+1—Bb)? — h?)(eV{)V(BVb- Vi) + L ((z +1—pb)*> = h*)V - (eV()BVH - Vi
; (;(2 —£0)® = (z—eQ)h*)V - (V(BVb- V¥)).

So the horizontal component of the velocity in the fluid domain is given by
(22) V(t, X,2) = Vpap = Vo (t, X, 2) + Vi (t, X, 2) + 12 Vs (t, X, 2) + O(1?).
The averaged velocity is thus given by

L eC(t,X) ¢(t,X)
(23) v(t, X)=Vip+ = / Vpirdz + —/ Vipadz + O(1®).
hJ—148e(x) 148b(X)
As in [22], we have
eC(,X) 8
(24) / Vi dz = Tlh, Bb]V = —fV(h?’Az/J) 5V (R*Vb - Vb)) — h2VbAY] + B2hVIVb - Vip.
—148b(X)
e¢(t,X)
In order to compute J3[h, Sbjlw = / Vo dz , denote by w = V¢ (noting that w is independent of
—1+68b(X)

z). We first commute Vs, then using the expression of Vi, we may write
V[(z=eQ)BVb- (Ve1)|._,_,] = —BhV -w(Vb- Vh)Vh B2hV - w(VhVb)Vb + B(z — e()V (hV - w(VhVD))

- %BhQVh(VbV(V ‘w)) — %52112 (VOV(V - w)) Vb + = (z - 5()5V(h2 (VbV(V w))) + B2Vh((VRVDb)(Vb - w))

+ B2 ((VRVD)(V - w)) Vb — (2 — e¢) BV ((VAVD) (Vb - w)) BEVR((VOV) (V- w)) + B*((VOVB) (Vb - w)) Vb

— (2 —eQ)B*V((VbVD)(Vb - w)) + BZRVA(VOV(V - w)) + B2h(VbV (Vb - w)) Vb — (2 — £¢) B>V (hV(VbV(Vb . w))).

Now, we evaluate the following integrals needed for the rest of this section

C(t,X) 1 ¢(t,X) 1
/ (z — () dz = —=h?, / [(z+1—Bb)BVb+ hVh] dz = h*Vh + ~h*Vb,
—148b(X) 2 —148b(X) 2
«€(tX) 4 5 e¢(t,X) 2
/ [=(z—e0)® = (2 — eQ)h?] dz = —h", / [(z+1—Bb)* — h?*] dz = —=h*Vh,
—148b(X) 12 —146b(X) 3

e¢(t,X) 5 )
/ [(z — £0)?eV( — eh®V( + 2(z — ()hVh] dz = —=h*Vh — Zh*Vb,
—~1+8b(X) 3 3

/EC(t,X) 5 £¢(t,X) 2 s 5.,
fi(2) dz = 21, / falz) dz = 290 + 2n3v,
—148b(X) 15 —148b(X) 15 24
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where

F12) = (2t = (20" = 214 e —20) = C (1= b2 — 1) = (R 0~ 12— 0) (-1 + ),

24
Fa2) = g (£0PEVC — 5 (-1 + B0 (2 — Q)BTD + (14 feg — &)

(e¢)*

eV(((z+1— Bb)* — h?)

+ ((z4+1—Bb)BVb+ hVh) + %((z —e0)? = h?) (=1 + Bb)eV( + (2 — e{)hVh(—1 + Bb)

2
( z—e()® — (2 — e¢)h?) BVb.

l\.')\»—l

e¢(t,X)

The non-topographical expressions (i.e. setting 8 = 0) of Ja[h, Sbjw = / Vo dz are equal to the
—148b(X)

following two factorized terms

%v(v C(BV( w)) + %v(hi”v - (hVR)V - w).

The purely-topographical expression (i.e. setting 8 # 0) of Jy[h, BbJw are separated into four categories
where each one of them is multiplied by 3, 82, 53, 8% respectively.
The ([-contributions are

- %V(hffv ~w(VhVY)) + %v(h‘*v ~wV - (Vb)) — %v(hSV(Vb -w)Vh) — %v(h?’v ~(Vh)(Vb-w))
- %V(h‘lv- (V(Vb-w))) + %h‘*v- (V(V-w)Vo+ 3 Lov wv - (vm) v+ %hQV-w(Vth)Vb
+ W} (VAV(V - w))Vb =T, + T + ... + Ts.
The B2%-contributions are
V(h*(VAVD) (Vb - w)) — %v(%ﬁvw(% ‘w)) — év(%ﬁv - w(VbVb)) — %V(hg(Vb w)V - (Vb))
— h?V - w(VhVb)Vb — éh3 (VbV(V - w)) Vb + éh?’ (V- wV - (Vb))Vb— h*(VRV (Vb - w)) Vb
- %h2((Vb w)V - (Vh)) Vb — év (V(Vb-w))Vb =P, + Py + ... + Pi.
The B3-contributions are
h((VAV)(Vb-w))Vb+ h((VbVH)(Vb - w))Vh — %hQV ~w(VbVb)Vb + %hZV((Vbe)(Vb -w))
- %hQ((Vb -w)V - (Vb)) Vb.

Lastly, the only term of order 8% is h(Vb - w)(VbVbH)Vb .
1
In the same sense, the expressions of T [h, ﬂb]( Th, Bblw ) will be divided into topographical ( i.e set 5 = 0)

and non-topographical terms .
The only non-topographical terms are the following

%V(h3V~ (L

SV (V- w))) - %v(v- (RV(V - w))) + %v(h‘“’v (hVh)V - w).

1
The purely-topographical expression of T[h, ﬁb](ET[h, ﬂb]w) will be separated into four categories where

each one of them is multiplied by 8, 52, 83, 5* respectively.
The [-contributions are

- év(thV(h?’V ‘w)) — %V(h?’(Vb -w)V - (Vh)) — %V(h?’VhV(Vb w)) — %v(h‘*v. (V(Vb- w)))

+ %v(iﬁv - (hV - wVb)) — é(VhV(if’V -w)) Vb + %hv (V(RPY -w))Vb=T{ + T} + ... + Ty

7



The B2%-contributions are
1 ) 1_, 4 1/ 4
+ ZV(va(h (Vb - w))) — TV (hV - w(VbVE)) - gv(h V- ((Vb-w)Vb))
1 1 1 1
— g(VbV(h?’V w)) Vb — §h2v ((Vb-w)Vh)Vb— Zh?v. (hV(Vb-w))Vb+ Zth - (hV - wVb)Vb
=P +Py+..+ P;.
The 33-contributions are
1 1 1 1
3 (va(h2(Vb . w)))Vb - 5h“’v ~w(VbVb)Vb + 5v(iﬂ(vwb)(w ‘w)) — 5h2v - ((Vb- w)Vb)Vb.
Lastly, the only term of order 5% is h(Vb - w)(VbVb)Vb .

1
Now, we will find the non-topographical and the topographical expressions of the term T [h, 5b) (ET[h’ ﬁb]w) —

Ja[h, Bblw using the previous results .
The non-topographical expression can be factorized in the following term

1 5
—Ev(v. (h V(v-u))).
The purely-topographical expression of T [h, 5b] (%T[iy Bb]w) — Jo[h, BbJw will be separated into four cate-

gories where each one of them is multiplied by 3, 52, 82, 3* respectively.
The S-contributions are

1 1
T+ +Te =Ty — ... —Ts = fv<v - (h*V(Vb- w))) + =V (V- -wV - (h'Vb)),
24 24
1
To+Tp—To—...—To = fﬂv (W*V(V - w))Vb.
The B2%-contributions are
1 1
P/ +Py+P,—P —..—P = Ev(iﬁv -w(VbVb))) + EV(if’vw(w ‘w)),
1 1
Pit .t Pp= Py — .= Pio= 5V (WY - wVb)Vb+ 5V - (RPV(Vh-w)) Vb,
The 33 and 3* terms will eliminate each other. Thus, we have
2
(25) v =V — BT, 8]V + £ Dalh, BV + O(?),
but
0 p 1
(26) Vo = v+ T T, Bl + S [ TTh, 86 (- TTh, B8J0) = Jalh, o]
Therefore, we obtain
2
(27) Vi = v+ STk, Bblo + %‘Z[h, Bbju + O(1%),
where
1
(28) TTh, Bblw = —§V(h3V cw) + g[V(hQVb -w) — h®V - wVb] + B2h(Vb - w) Vb,
and

(29) [k, Bbw = —%V(V (RV(w)) + 21—4,8V (V- (09 (Vb-w)) + iﬁv(v -wV - (h4VD))
— %Bv A(RV(V - w)) Vb + %ﬂzv(h?’v -w(VbVb))) + 1—1252V(h3VbV(Vb ‘w)) + %BQV - (R*V - wVb) Vb

+ %zﬂv. (W3V (Vb - w))Vb.



Now, in order to derive the extended Green-Naghdi equations for non-flat bottom without surface tension
(i.e. 0 =0), we will take the gradient of the second equation of (13) then multiply it by h, and replace Vi)
by its expression (27) and ig[sc, Bbly by V - (hv) = Vh-v + hV - v in the resulting equations. Moreover,
we drop the O(u?) terms and we use the following vector triple products and the vector identities

(30) ux (VvXxw)=(u-wv—(uvw,

(31) Vx(VG)=0 and Vx(GF)=GV xF+VGxF,

where G is a differentiable scalar function and u,v,w,F are differentiable vector fields. Finally, after capturing
the information above we obtain the extended 2D Green-Naghdi system for an uneven bottom topography
(B # 0) with an error of order u® represented by

atC + V- (h’l}) = O7
(32) (h+ uTT[h] + p*T[R)) v + hVE + eh(v - Vv + epQ: [Ulv
+eufB1 U + epf3 Bao[Ulv + ep® Qo[Ulv + ep® BB3[Uv + ep® 52 Ba[Ulv = O (1),

where v = (v1,v9)T, U = (¢,v)T and h(t, X) =1+ e((t, X) — 8b(X), denoting by

TTh, Bblw = —%V(h?’v cw) + g[V(hQVb -w) — h*V - wVb] + B2h(Vb - w) Vb,

_ 1 5 1 4 1 4
<[h, Bblw = fgv(v. (RV(V - w))) + ﬂﬁv(v. (R*V (Vb w))) + 578V(V -0V - (h*VD))
1 1 1
- 518V (K*V(V - w)) Vb + LA V(RV - w(VhVh)) + S8V (RVEV(Vh - w))
1 1
+ 587V (WY wVb) Vb + 582V - (hPV (Vb w)) Vb,
where the non-topographical terms represented by Q1[U], Q2[U] as follows

Q1[U]v = —%v(iﬁ((u V)(V-v) = (V- v)z)),

Qu[U] = —%v[v : {h5(v2(v ~0))v — 5h3(V - 0)V(V - v) + VA® x (v x V(V - v))H
+435v(h5 (V(V-v))Q)+4—15V~(h5V(V~v))V(V-v)+%h5V{(V(V-v))Q},

while the purely-topographical terms are introduced by B;[U], Ba[U], Bs[U], Ba[U] as follows

Bi[Uv = %v(}ﬁ(u - V)?b) — %hQ((v V)V -v) = (V-0)?)Vb, Bs[Ulv = h((v-V)?b) Vb,
and

Bs[UJv = +iv{v : <h4V2(Vb 0)v + WAV - 0V - Vb)u — 4h4(V - v)2Vb

— 4R*V - wV(Vb-v) + V - vVA* x (0 x Vb) + Vh* x (v x V(Vb-v)))}
+ %w x (Vh* x V(V - 0)?) — %h‘lv -VbV(V -v)? — iv ~(W*V(Vb-v))V(V - v)
- ih‘*v%v ~0)V(Vb-v) + 2iﬂ(v -v) x (V(Vb-v) x Vh*) — év(h“V(V 0)V(Vb-v))

+ iv((wﬁ ) (VOV(V - v))) - iv : {h4(v2(v )v — 2V(V - 0)2) + VA x (v x V(V - u))}w,
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with
Ba[UJv = %v{hf’v : (Vb x (v x V(Vb- v))) +h3V - (V- uVb x (v x Vb)) + h3(Vb-v)V2(Vb - v)
+ (Vb 0)V - (V- 0Vb) + 203 (V(Vb - v))* — 203(V - va}
+ %v - (R*V - 0Vb)V(Vb-v) + 1—12v - (R*V(Vb-v))V(Vb-v) + 1—12h3V -0V (VbV(Vb-v))
+ ihi’)(v - 0)2V(VbVD) + ih?’v{(V(Vb : u))z}
+ %v : { —3h3(V - 0)2Vb+ V - vVh? x (v x Vb) + 3oV - (V - vvz))}vz)
+ %v : {h3v2(Vb -0)v — BW3V - vV (Vb v) + VA3 x (v x V(Vb - v))}Vb,

where the expression of @y introduces the Laplacian operator V2 =V -V = A .
In the presence of surface tension (¢ # 0), different strategies exist to deal with it in the water-wave problem

(e /)

1
such as [14, 25, 23, 24], the main contrast in our work is that the gradient of the capillary term —— ———=

Bo &/
multiplied by A must be added to the right-hand side of the second equation in (32) .
Let us define the rescaled Bond number bo instead of the classical Bond number Bo, as follows

h2
bo = uBo = 2910 +

o
where hg denotes the reference depth, p denotes the positive constant density of the fluid, g denotes the
acceleration of gravity, and o > 0 denotes the surface tension coefficient, so that Bo™! = pbo~! = O(u) and
the capillary term that should be added becomes

1 K(ey/1C) 1 1 5 5 9 4

33 — oo hV{ SV = = (V- (V) ) - e (V- ) + O,
(33) 5o VLT = eV (V- (V9)) = gtV (V- (196PVQ) ) +0(en?)

3. Well-Posedness of the Extended 1D Green-Naghdi system for an uneven bottom with
surface tension

For one dimensional (d = 1) surfaces, the Green-Naghdi system (32) with surface tension can be rearranged
after a few calculations and considering (33), one may write
(34)
0i¢ + 0z (hv) =0,
(h+ uTTh, Bb] + p*T[h, Bb]) v + hd.( + chov, + ep@q[Ulv + epBB[Ulv

1 1
+ep* Bo[Ulv + ep®Qa[Uv + ep® BB3[U + ep® B2 Ba[Ulv = o pthCo + 1% - T[U)Ce + O(11°),

where U = (¢, v)T and denoting by h = h(t,z) = 1+¢&((t, z) — Bb(z) the total non-dimensional height of the
liquid, with

1 . 1
Th, Bblv = fgam(hdarv) + g[@m(thzv) — h?byv,] + B2hb2v, TU, = —§h8§ (C2¢.),
1
Z[h, Bblv = _ﬁag (KP02v) + 2% [02 (0 (h'b3)0yv) + 92 (h* 0y (byv)) — byOy (R 020)]
2
+ % [20, (h*b20,0) + 05 (hbybyav) + 2630, (RPby040) + by 0y (RPbyev)],
where the non-topographical terms are represented by Q1[U], Q2[U] as follows
_ 1 3 2 _ 1 5 _ a5 2
@Q1[UJv = 3816 (h (vvm vz)), Q:2[Uv = 4561{81 (h (Vg 5vxvm)) 3h° (V) },
while the purely-topographical terms are introduced by B;[U], Bz[U], B3[U], B4|U] as follows
1
B[UJv = 5 [&;(thva) + 0z (R2bpvvy) — B2 (VUge — vi)bx], Bs[Ulv = h{bmv2 + bwvvw}bw7
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1 Oy (hi b, vvm)

Bs|UJv = i82{h4 (bwmy2 — by VVy + by VVLy — 8b$v§)} — %h‘lbmvzvm + 2

1
ﬂa (h4 xmvvzz) - ﬂbzaz{hél (Uva::rx + UIUEI>}7

1
By[UJw = a {1 (banbat® + 202000 + 10020000, + 206202 + 362,0%) b+ h* (brav + 2000 ) b
+ beaﬁ{h (bazat® + 20,00, — 60,02 }.
Now, setting +euT [h, 8b](vv,) and +ep?T[h, Bb](vv,) in the second equation of (34), one gets a new formu-
lation under the form

(35)
8¢ + 0y (hv) =0,

(h+ uTTh, Bb] + p*T[h, Bb]) (v + evvy) + hduC + ep@q[Ulv + epBBi[Ulv
1 1
+ep® Bo[Ul + e Qo[Ulv + es* BBs[Ulv + ep® 3 Ba[Uv = 1= phCaaa + £°1* T [U)G: + O(%),
where U = (¢,v)T and h(t,x) = 1 + ((t,z) — Bb(z), and one may write the above expressions as follows

T[h, Bblv = —%ax(h?)aw) + g[@x(hﬂblv) — h%b,v,] + B2hb2o, TU) . = —%hai. (),

Z[h, Bblv = —%ag (R502v) + 2% [0 (05 (h*by) 0y v) + 02 (R0 (byv)) — byOy (W 020)]

2
5 3 (20 (hP120,0) + 02 (h.bv) + 200, (W¥be0r0) + b (Wb,
where the non-topographical terms are represented by Q1[U], Q2[U] as follows
2 : 1 5 5
QiU = S0, (h*2), QU0 = 10 {80, (hv,v20) + 3072, },

while the purely-topographical terms are introduced by Bi[UJv = 38, (h%byev?) + h%byv2, and Ba[Ulv =
hbyibrv? with

1 1 1
B;[Ulv = ﬂdi{h‘l (bggmv2 — 2b, V0V, — 9bzvi)} — Zh4bmvxvm — ﬂ&; (hibwvi)

_ i 4 2\ _ 1 4 i 4
24830 (h bmvm) 4855 (h bmvvm) + lszdx (h vmvm),

By[Uv = 6 {1 (braabu? + 9bybao, +362,0%) | + %h?’ (baat + 2502 ) by Vs

1
+ 500 { B (braav? = biavv, — 8b,02) |-

Presently, denote by S + 24> [h, 8b] = h+ uT [h, 8b] + p*T[h, Bb] (i.e. set p?T[h, Bb](Opv + evv,) in (35)2)
and note that from (34)s (i.e. applying a trick type BBM trick Benjamin-Bona-Mahony [31]) we have the
following approximated equation

(36) O + ev0yv = —0,¢ + O().

Subsequently, substitute (36) in the acquired new term 2u>%[h, 8b](dyv + cvv,) to get —2u?T[h, Bb](,, then
after some computations (needed especially for a suitable specification of a new operator Jp, introduced in
(52)) we obtain one-dimensional extended Green-Naghdi system with surface tension rewritten into
(37)
9¢¢ + 0z (hv) = 0,
1
3 (0w + cvvg) + hdu( — M 1o Maa + o 45 P0G (W Cava) + 1T, B0l — &2 L= TIUNCe + e QU

+eupBi[Ulv, + ep? QolU ]Um + ep® Q3[Ulvy + ep? BBa[Ulvy, + ep® 82 Bs[Ulv, + Rp, eh, BBl (U) = O(1*),
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where U = (¢,v)T and h(t,x) = 1+ &((t,2) — Bb(z). Denoting by

(38)  Tlh, Bt = — 300 (h*0,0) + 5 [0 (h*bo0) — R2bys] + BB, T[U)G. = ~ 3ho?(C2C.),

B
24

2
+ T (206 (°6.050) + 0 (H¥bsbasv) + 20500 (h°b200) + b (W¥hssv)],

(39) <[h, Bblv = —%a;ﬁ (K5020) + [0, (02 (h*by)0yv) + 02 (R0 (bzv)) — byO(h*020)]

where the non-topographical terms are represented by Q1 [U], Q2[U], Q3[U] as follows

(10) QWIS = 20u(Fef), QU = R (Wvenf), QUL = 10 (WFudef),
with
() Tlh GO = e heu(A020) + oo haa02f — 1 [0 (Ou(h )00 1) + (00 f) + 20D 0 f)

2
b0 (W02 1)] — (20, (W02, ) + Ou(W¥bibie )+ 20,0 (0,02 1) + beD (e )],
while the purely-topographical terms are introduced by B [U]f = h?b, v, f and
gl s ~ Lo (e
(42) BolU]f = =570 h* (200 + 95,02) [ | = 7h*busviaf — 5200 (b0, f)
_ i 4 _ 1 4 i 4
2439,«(/1 buava f) 431(11 beav0s f) + 12bwa:v(h Vi f),

_ § 3 i 3 _ i 3
(43) BolU]f = S0u (hbabravf) + T5h® (bav + 2b,00)bref IszaI{h (bmvf—i—8bxvmf)},

1 1
44)  Rlp,eh, Bbl(U) = =epB0y(h2byev?) + euB2hbybegv® + —epu? B0 (h*byppv?
2 24 *

+ %€u2528x(h3bxbmwv2) + %5u2ﬂ28z(h3bixv2).
Remark 1. The interest of formulation (35) is that all the fifth order derivatives of v are factorized in
(h 4+ wTIh] + p*T[R]) (8pv + cvv,) which is of notable help. However, the benefit of formulation (37) is in
replacing h-+upT[h])+u>T[h] by a new operator § so that the coercivity condition of the bilinear form is satisfied
when applying a Laz-Millgram theorem for the proof of the invertibility of S (see Lemma 1). Actually, the
linear dispersion relation of the system exhibits no singularity as opposed to the original extended model. On
the other hand, one can replace the relation S + 2u*T[h, 8b] = h + pT[h, 8b] + u>%[h, Bb] which defines the
new operator S by an alternative one S + (o + 1)u?T[h, Bb] = h + uT[h, Bb] + p?T[h, Bb] with an arbitrary
real parameter o > 0. The special case a« = 1 recovers the present definition. In this general setting, also the
linear dispersion relation would not give rise to any singularity.

Remark 2. The reason of considering the effect of surface tension (see [1] for a brief physical relevance)
is due to the betterment needed on the natural associated energy norm |- |ys (z’.e. when no surface tension

(bo™! =0)) defined by
(G0 = [Clae + 12 [Caal e + 0lEe + plvalire + 102 [vas|Fro-

Because the norm | - |ys is not adequate for the proof of the energy estimate, see for instance the control of
the term Ao + As in the case when neglecting surface tension where one may write As + As as follows

Ay + Az = —(A°v, b, A°C) + %/ﬂ (B N0z, KA ) — %Mz (A*Cea, O (D' By N°0))
_ i 2(A\s 4 s _ 3 2(AS 578
45,[1, (A Crraar(ﬁ th Uz)) 45,U (A CrraﬁxA sz),

h,.. cannot be controlled by E*(U). Also, one can see terms Ay and As and
then introducing the operator J = 1+ %,Lﬂ@%(h‘lai) is not sufficient. Moreover, taking J = 1 yields to the
12
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definition of |U|%. = [C|%. +|v|%e + m|ve|Fe + 12| vae| %, for U = (¢, v)T € X* which it is also not sufficient
especially in controlling the term produced after using a BBM trick. The addition of the quantities in (39)
permits the definition of a new energy norm

I
|(CW)|?XS = |C|%Is + %Kmﬁﬁ]s + NQKMGJS + |U|%IS + N|Ur|%fs + /‘2|vm|%15~

The second term in | - |xs is absent from the natural energy | - |ys and this will be a fundamental term for
allowing a control of several unconvenient terms as we going to figure out in the next section. Moreover, the
space {¢ € H*2(R) ; |¢|3e + p?|Couls < 00} is not equivalent to the Sobolev space H*T2(R), required in
defining the energy space X*® of our problem (see Definition 1) .

3.1. Preliminary results. Under the nonzero depth-condition
(45) 3 hmin >0, inﬂth > hmin Where h(t,z) = 1+ e((t, z) — Bb(z),
S

We introduce the symmetric operator
(46) S = h+ uT[h, 85 — 1>T[h, BV,

which plays an important role in the energy estimate and the local well-posedness of the extended Green-

Naghdi system. We shall give an essential invertibility result on & and specify some properties on its inverse

37! explained in the following lemmas .

Lemma 1. Let b € Cp°(R) and assume that ((t,-) € L>(R) is a differentiable scalar function under the
condition (45). Then, the operator
S: H(R) — L*(R)

is well defined, one-to-one and onto .

Proof. The proof of the invertibility of & is a direct application on the Lax-Millgram theorem. We introduce
first the space H.(R) endowed with the norm |- |, defined as

(47) H:(R) = {ve H*R) ; |v]

|u = |U|§ + .U|'Um|§ + N2|Um|g < 00}7

where | - |, is equivalent to | - |2 but not uniformly with respect to s .
Let f € L?(R). Consider the weak problem

Find ve HZ(R) such that
a(v,u) = L(u) Vu € H2(R),

with L(u) = (f,u) and the bilinear form a(v,u) = (Sv, u) which can be written as follows

2
a(v,u) = (hv,u) +u(h(§hvz - ?Bbmv), ?hum - ?ﬂbxzo 1B (hbyv, byu) + 2(h(\/5
f V3

V5 V5 V5 V5

V5
15
V3 V3
8 24 12
It is easy to see that a and L are continous on H(R) x H:(R) and H(R) respectively. In addition, using
(45) we have

3 3 2 5 5 5
a(v,0) > hpin|v|3 + uhmm’%hvm — gﬁbzvg + %U)wv@ + M2hmm|1—\gh2vm — %ﬂhbfbvz — %5hbmv|

V3 V3

but, one has

2 45u2 NG 2
‘U|12t = |U|§ h2 |7h | X |7 2 $x|2
18 V3 V3 2 32 90 V5 NG NG 2
SM%h@nU‘*%‘Eﬁ%%+‘%ﬂ@ U S LTI S
L 1850 50 V3 2
h4 wp ’—hb Vg + 4hbmv‘2.

min
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18 90 1350
h2. "hi. " hi

min min min

H(R) x H}(R) represented by the following inequality

Therefore, after denoting 9, = max{l } we deduce the coercivity condition on

min

hmz’n
(48) a(v,v) > mfh’ﬁ-

Rmin
Hence by Lax-Millgram theorem, for every f € L?(R), there exists a unique v € Hﬁ(R) such that for all
u € HZ(R), we have a(v,u) = (Sv,u) = L(u) = (f,u). Thus the result. O
Remark 3. All through whatever is left of this paper, and for sake of simplicity, we will not attempt to show

the dependence on the bottom parametrization b € Cg°(R) in all the verifications. This should effectively be
possible easily, but is of no attention in the proof of our required results.

The following lemma gives functional properties to the operator 3~ .

Lemma 2. Let b € C{°(R), to > & and ( € H"TY(R) be such that (45) is satisfied. Then, we have the
following:
(i) Y 0<s<to+1,

flae + VIS T e+ pld2ST e < C(—
(i) VO<s<ty+1,

1
VIS0, i+ 110,870, e + /0200 f e < O

min

R B =1 geosa ) | fare-

hmzn

R |h — 1|Ht0+1)|f|Hs7
and

1
HISTIOE i + IOV L+ %02V | < (5

- —1|Ht0+1)|f|Hs.
min

(ifi) ¥ s >t + 1,
1S s ®)— o) + VIS 00l Ry 115 (®) + RIS T 02 1 ()= F2 (R) < Cs,s
with
1110237 0n || 1o vy o &) + /B O2S T Dol e ) s 1o (m) < Cs,s
and
/1|0 ST pre ()= 1= ) + 2 N102S TR f | e (r) e (R) < Cs.
where Cy is a constant depending on 1/hmin , |h — 1|gs and independent of (e, 1) € (0,1)2.

Proof. The proof is adapted as in [4] for 1D Green-Naghdi equations (2 order with 8 # 0). First of all,
after noticing the following relations

8z (8I(h4ba:)vw) = 82(h4b$1}$) - aa:(h4bwvma:)7 bwaw(h4va:w) = 8z(h4bzvzx) - h4bzacvxw7
b2 0p (h2bpv,) = 0p(h2b20s) — hPbybepvy, b2 00 (h2bpav) = 0 (h2bpbegv) — 302 0,

one can rewrite the expression of T[h, 8b]- under the form

(49) <X[h, Bb]- = f%ag (R°02 ) + 2% [202(h*b,027) + 02 (h*byy(+)) — 20, (h*by02-) + h*byy 02 - |

2
+ % [40, (R3620,+) + 0y (RPbpbyy () — 2h3bybys 0. (1) — B262,(4)].

Now, assume that f € H*(R) and u = 371 f, then Su = f. Apply A® to both sides, then multiplying by
A®y yields the following ( knowing that SASu = ASu — [A%, Su )

a(Au, A*u) = (f, A*u) + /1(0:9, Au) + p(92p, A*u),
where f, g, and p are written as follows
_ 12
Fm A g bt 2 -

2
wpB 1
As

14
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9 2

=~ _ %[AS;hB]U@ - @[As,h%)x]u _ %[AS, h4b ]

g o|Uzz + 3 6
~ H s 15 N’B sp4 :U’B s 14
= ——[A°, B°|uge + == [A°h* b Juy + = [A°, h*bys]u.
B= A s+ D A BT (A"
Integrating by parts and using (48), we get
hmin 1 ~
M, A%l < |fl2 + [gl2 + [Pl2-
Now, using the Kato-Pance commutator estimate (see Lemma 4.6 of [21]) we have
(50) [A°, flul, SV flaeolulge-1, if0<s<ty+1,
(51) |[As,f]u|2 ,S |Vf|H571|u|Hsf1, if s Zto—Fl.

One can deduce
[fl2 + 1312 + [Pl2 < |Flas + C(Ih = Umeors ) |A* " ul,.

Hence, the inequality (i) holds after a continuous induction on s. For the proof of (ii), one has to replace
u = \/ﬁ%_lawf and u = uS~192 f for a second time. The general strategy is the same as in (i) noticing that

A* commutes with 0, 2. The only difference is in the expression of f, g, p when setting u = \/ﬁ%_lar f
and similarly when u = uI~192f. The rest of the proof is as in [27]. O

3.2. Linear analysis. In order to rewrite the extended Green-Naghdi system for an uneven bottom with
surface tension in a condensed form, we introduce a new operator symmetric Jy, as follows

(2 U=(0)'s  Be=1-LRO+ B2 ), ) =1+ eC(te) - Bh().

The first equation in (37) can be written as
0¢C + ev0,C + hOzv — Bvd,b = 0.
For the second equation in (37) apply ™! to both sides, we get

Opv4evv,+S 7 (AboCe ) +1°S ™ (Z[h, BY]Cy) —52;3%%—1 (TIU]C ) +enS™H(Q1[U]vg) +euBS™ (B1[U]vy)
oS (QaU0,) +e?S ™ (Qs[Ulv) +242BS ) (BalU]os) +242 823 (Ba[U]va)+ 3~ (Rlps eh, BE(U)) = O(s%).
Hence the extended Green-Naghdi system (S # 0) with surface tension can be written under the form
(53) o.U + AlU0,U + B(U) =0,

where

€V h
Mm:(%*@%VHW%*@w&k%fmﬂﬁ*@Md w+w%Wkﬁﬁ%mﬂ>’

QU] =S (Qi[U]-)+S 1 (BB:[U] ) and QulU]- = S (Q2[U] - +Qs[U] - +8B:[U]- +5°B3[U] - ),

—Bbv
(54) B(U) = ( S (Rl eh, BO)(U)) >

Now, consider the linearized system around some reference state U = (¢, )"

(55) { 0,.U + A[U)0,U + B(U) = 0,

U),_o, = Up.

The proof of the energy estimate which permits the convergence of an iterative scheme to construct a solution
to the extended Green Naghdi system (37) with surface tension for the initial value problem (55) requires to
define the X* spaces, which are the energy spaces for this problem .
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Definition 1. For all s > 0 and T > 0, we denote by X* the vector space H**2(R) x H*T%(R) endowed
with the norm

%
Ule = [ClEre 5 |Gl + 1 Caal e + [0l + plvalfre + 1 vaalZre,
while X3. stands for C([0,L]; X*) endowed with its canonical norm.
First, recall that a pseudo-symmetrizer for A[U] is given by

:‘bo 0
(56) S =

2

with h = 14— Bb, S = h+ pT[h, Bb] — p>T[h, Bb] and 3, =1 — 1—52(-) + i

o p2o? (@483 -). A natural

energy for the initial value problem (55) is suggested to be
(57) E(U)? = (A*U, SA®U).
The connection between E*(U) and the X*-norm is examined using the lemma below .

Lemma 3. Let b€ C3°(R), s > 0 and ( € L>=(R). Under the depth-condition

xT
E*(U) is uniformly equivalent to the | - | xs-norm with respect to (u,e) € (0,1)?
1 1

Proof. First note that, E*(U)* = (A*U, SA*U) with SA*U = (3, A*C,SA®v). Then we get
E*(U)? = (A%¢,3,,A%C) + (A*v, SA®).

Using the expression of S, J, ', Lemma.l and integrating by parts we get

B0 = (MG M%) + 4 (G, %) +

2 2014 s s s s
- = (R*A°Cans ACan) + a(A%v, A®0),
where
V3 V3 V3 V3 pB? ol V59 V5
Q(Uau) - (h’U,U) + M(ﬁ(?hvx - 7ﬂbwv>7 ?ﬁuw - TBqu) + T(hbajvy bIU’) + H (h(ﬁh Uz — Tﬁﬁbwvx
V5 NG NG NG o2 f, V3 V3 V3 V3
— 2 Bhbrsv), Y2 s — Y Bhboy — 2 Bhbay) 4+ B2 (B(SS hbyvy 4 G hbev), S hbotty + = hbesu).

Now, knowing that b € Cp°(R), ¢ € L>(R), and the fact that the water depth is always bounded from below
by a non-negative constant (45), with the help of the Cauchy-Schwartz inequality and the results of lemmal,
we get the following two inequalities there exists m, M depending on h,,;, and |h|s greater than zero such
that m < E*(U) < M. Hence the lemma is confirmed . O

The proof of the energy estimate is given in the following proposition .
27

and satisfying condition (45) on [0, %] Then, for all Uy € X* there exists a unique solution U = (¢,v)T
€ X% to (55) and for all 0 <t < % satisfying

Proposition 1. Let b € C°(R), to > %, s > to+ 1. Let also U = (g,y)T € X5 be such that OU € X:ffl

(59) ES (U(t)) < (6(6VB))\Tt)1/2ES(UO) + (VA /t (e(evﬂ)AT(t—t/))1/2C(Es(Q)(t/))dt/7
0

for some Ap = Ar(suDo<ier/evs EX(U)), SUDg<per/evs [0e(t) | p ), where £V 3 = max{e, B} = <HHE=5L
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Proof. For any A € R, we compute
YOG (emVINEN(U)?) = —(e V BIAE(U)? + 0(B°(U)?),
with
0e(E*(U)?) = (MG, 3, AC) + (MG, 06(3,,,A°0)) + (A0, SN ) + (A0, 0 (SA"0)).
Using the fact that § and J, = are symmetric, in addition to the following identities
(60) O (SA°) = [0, SIA 0 + SN0, 94(J,,,AC) = [01, 3, JATC+ 3y A,
one gets after using (55) the following
O (E*(U)?) = —2(SA°U, [A*, A[U]]9,U) — 2(SA°U, A[UJA*0,U)
— 2(A B(U),SA? U) (ASC, [at,gbo}ASC) + (Asv, [Ot,S]ASv).

Therefore, we obtain

(61) %e(avﬁ)/\tat(ef(avﬁ)/\tES(Uf) __ \/25))\ES(U)2 — (SA[UJA®0,U,A°U)

(A%, AU 0., SA*T) — (A*B(U), SAT) + %(ASC, 00,3, JAC) + %(Asv, [0, S]A%0).

We will focus now on bounding from above the purely-topographical components of the r.h.s of (61), knowing
that the non-topographical expressions have been controlled in [27].

e Estimation of (SA[U]A®0,U, A*U). Denoting by R[U]- = euQ1 [U]-+eu?Qa[U] - +eu?Q3[U]-, and remarking
that

< e, (V) Jp0(1) )
b3, - +1PZlh, Bb] - —&*p g T (U] eS(v) + RIU] - +epfBi[U] - +ep2BBalU] - +ep® B BalU)- )

SAU] =

then, one has

(SAIUIA LU AT) = £(3,, (0A"Co). A°C) + (3, (A 02). A°C) + (13, ACor A%) +  (Z[h, BHIAG. A"0)
— 52;;2%(T[Q]AS($,ASU) +€(§(yAsvx),Asv) + (R[Q]Asvm,Asv)

+ 2B (Bu[UIA s, A°0) + 222 B (BalUIA v, A°0) + 2122 32 (B U]Av,, A*0)
= A1 +As+ ...+ Ajp.

One can see [27], so that the non-topographical terms Ay, Ay, A3, A5, A7 were bounded from above by
‘Al + A2 + A3 + A5 + A7| < (5 \ B)C(|£|W1x, ‘Q|W17°°7 %|£$‘Hga \//j‘y;pz‘OO7 v bO)ES(U)Q
To control A4, an integration by parts yields to write
4 2 1
A4 - E/}LQ (ﬁg;a;v (Q4ASCI$LE)) Asv) + Z5M2 (ﬁ4baj;1;ASC$JXE) Asv) + EMQ/B(QQZ (ﬁ4bw)A€Cwa:7 Asvx)
1 1 1 1
= Tt B b N oy A ) = 512 B(B bp A Coay M) = 517 B (B A Gaaa, O (02 A°0)) + 2 a2 B2 (WPOTA" o, A7)
1 1 1
1B (Wbabr Aoy AT0r) + 2 i B2 (P00 A G, 00 (b *03)) + 21 B2 (B7baa A G, D (baA70r))
= Ay +Agp + ...+ A4(10).
For controlling A4; and A4a one can see [27], so we may write
|As1 + Agz| < (e V B)C([¢lwr, \/ %KJH%M|§m|HS)ES(U)2-

Again, using integration by parts one can write

|Ags| = —m\ (A*Cos D (Wb A%0)) + —Qﬁﬁ(Ascm,aw@‘*bwA%w))( < BO(IClw= ) E*(U)?.
17



Therefore, we obtain

[
|A4’ S (E Vv B)C(|§|Wl,oc, glgm‘Hs7u|£zx|Hs)Es(U)2
To control Ag one should notice that the non-topographical terms are bounded from above in [27] by

(e VAC(ISlwroe, [vg oo, v/AlLgs o) B (U)?,

while the purely-topographical terms can be written as follows
1 1 1
- fsuﬁ(ﬁ%l.y/\svw,Asvx) - iauﬁ(ﬁ%zaﬁ(gAsvx),Asv) + epf? (ﬁbiyAsvx,Asv) 2—5/1 ,B((h4 )20z (VA V), Asvw)

1 1 1
— ﬂzs;fﬂ(lfl (b vAva),Asvm) — ﬂ8u26(ﬁ48§(2Asvz)76$(bwAsv)) + EEMZBQ (ﬁgbiam(yAsvz)7Asvw)

- 55/362 (h3brbervA vy, Av,) + %s,ﬁﬂ? (hb,0, (VA ,), Oy (byA®v)) + %5/352 (A’bravA vy, Oy (b AD))
= Ag1 + Ap2 + ... + Ag10)-

Again, by integration by parts one has

| Ags| = s,u 5\ (0A*0,), B (h*byr AT0)) + (az(gAsvx),az(@‘*bmAsvm))\ < eBC(IClwroe [ulwr. ) E* (U)2.

Hence, we get
[Ag| < (e V B)C(I¢lwroe, [0l s VH[Ug|oo) EX (U).

Similarly, using the expressions of B1[U], Bz2[U], B3[U] and integrations by parts one has

|4s| < eBC(ICloos [0a]o0) B (U)?, [Ag| < eBC(|Clwroe, [ulwroe, VEilUgs o) B*(U)?, [Aro] < eBC(ICloos [ulw ) B (U)?
Therefore, we get

|(SAUIA0,U, A*T)| < (e V B)C(IChwoe s [ = IC o5 pIC, e,
e Estimation of ([A®, A[U]|0,U, SA*U). First of all, we have
([AS,A[Q]]&CU, SASU) = 5([ ,y]{x,gboASC) +5([As,ﬁ]vx,§b ASC) + ([AS,g‘l(@bo-)]@&A%)
1
+ 12 (A%, ST (T, BB )]G SA™) — 2o ([AS@‘%T{Q}-)}@@A%)
(A%, 0Jvs, SA™V) + e ([A%, S (Qu[U]) v, SA™) + 2p ([A%, S (Qu U)o, SA™0)
=D1+ Dy + ...+ Dg.
To control Dy, Dy we use the expression of J, , the commutator estimate (51), and the fact that
(62) OZ[A°, MIN = [A®, Muo]N + 2[A%, My] Ny + [A*, M] N,

then, one can deduce as in [27] that

"
1Dy 4 Dol < (Y B)C (s b= e, [ L1, e, G, e
To control D3 + Dy, remark that & is symmetric with

S[A*, 371AY, o Co = SIA®, 87 (13, )]G — (A%, 23, JCa

U|W1°° \/7|Ua::1:‘007\/7) (U>2

V| pe, Vg He, VDO) ES(U)2.

-7 [As ]S, one gets
SIA%, S (b, e = —[A%, SIS ThY, Co + [A®, B, JCa-
By using the explicit expression of & , integration by parts and the fact that
(63) [A®, 05 (MOy-)|N = 0y[A%, M| N, [A®, 02 (MOZ)IN = 92[A*, M| Ny,
one can write
D+ Dy = ([A%, Q137 (h3,,6), A0) + (A%, 13, J oy A%)
+ 2 (A%, SIS (TR, B01G), A%) + i (A% Z[h, BB]]Ca, A).

18
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Now, using the expression of J, =one has

Then, we get

71(@§b04x) + M2§71(I[E7 5b]<.a:) = 2Cz - §71<h<‘r) % (hCJZIZE) + ?C\ilaa:(ﬁ3<ww)

— 1S (00 (h?baCe) — BbuCoa + 2BRb2C,),

which implies that
DS + D4 = 2([AS’§]C:E7AS'U) - ([Asa ]% 1(h<z)7AsU) + %([AS7§]§_1az(ﬁ3Cmm)v SU) - bi
(6]
[h

+ ([A%, b3, JCa, A%0) — uB([A%, Q] (5x (h?b,Ce) — h?byCon + 2Bhb2C), M%) + p ([A®, T
= D341 + D34z + ... + D3ur.

In order to facilitate our way in controlling Ds 4+ D4, we may rewrite the expression of & using (49) under
the form

, 8], A%0)

1L
B
+02 (h* by (-

(%0

p0,(1%0,) + 2 0,02b,()) — 20%0,0, -+ + 01002 ) — o2 [z, 02

)) =20, (h*b,02- )+h4bm82 - “ ﬁ [405 (B°020+) + 05 (Bbybys () = 28°bybyn 0y - —h202, (4)].

Now, using the explicit expression of S, the commutator estimate (51), the identities (63) and the help of
Lemma 2, we get

|Dsa1| < (e vV B)C(|R e, VDo) E*(U)?, |D342 4+ D3yz + Daaa| < (e V B)C(|h — 1|g=, Cs)E*(U)?
For controlling D345, one should use the explicit expression of Jy,, and the fact that
(64) [A*, MOW (N2 P = [A*, MOW|N?P + MOV [A®, NO>P with o= {1,2},
to write D3y as follows
1

D345 = ([Asvﬁ}szAs'U) - E([ ]Ca::r:mA 'U) ([Asvﬁ5]<9:m:v7 8§(hAS’U))

45
1% ([A®, hO2)h° Cunw, A°0) = Dsaz1 + Dsasa + Daass + Daasa,

|
goo; bo |££
For controlling D354, one should notice the fact that
(65) [A%, MO?|IN = 02[A®, M|N — 20,[A°, 0, M|N + [A®, 0> M|N = [A®, M]O>N,

then, we get

45
where,

|D3as1 + Daasz + Dass| < (e V B)C(Jh— 1 m+,Vbo)E*(U)?.

Hs,

-1, Vbo) E*(U)2.

[Dsisal < £V B)C (1l = ooy [ Lol e i,

Therefore, we obtain

[Dass| < (eVAYC (I = Unre, [Shoor /2=,
For controlling D346, by integration by parts and using the explicit expression of &, the commutator estimate
(51), the identities (63) and the help of Lemma 2, we get
|Dsag| < BO(|h— 1| n=, Cs)E*(U)?.

For controlling D347, one should notice that the non-topographical terms are bounded from above we use
integration by parts and the commutator (51) with the help of (64), (65) and noticing the fact that

(66) [A*, M8,]N = 0,[A®, M]N — [A®, 0, M]N = [A®, M],N,
19
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so one can see [27] to control the non-topographical terms by (eV3)C(|h—1|g=, /& I Nrres I s Vbo)E*(U)2.
While the purely-topographical terms in D347 can be written after noticing that

(67) A0, (MIN = 0,[A MIN,  and  [A%02(M)N = 9[A", MIN

then, by integartion by parts and (51) we have

M2ﬂ‘_é ([As; h4bw}<.z$a:a Asva:az) - % ([As’ h4bww]<a:7 Asva:m) _é ([As7h4ba:]gmcz7 Asvz) _% ([As7h4ba:m]<-wzm> Asv)
2B B, A+ BN, B%babirler A%) 4 BN, B%bbis]ea, A%0) + £ B(A", BP0, ]G A%)|

< (eVB)C(|h— 1|u:)E*(U)>.

Thus, after collecting the information above, we obtain

I
o I 08I,

To control D5, we first must notice the identities (67) and
(68)
(A%, MO (NP = [A*, MOWINP+MIV [A*, N]P = [A*, M]0) (NP)+ MO [A*, NP where 1= {1,2},

|Ds + Dy| < (eV B)C(Ih — 1]ps,

me—1,Cs, VDo) E*(U)?.

so one may write as in D3 using (63) with integration by parts, Lemma 2, with the help of the Kato-Pance

commutator (51) we get
X H 2 s 2
Y e P T . C)ES(U)2.
R Ve (-l (SR R TG JE*(U)

To control Dg, one can write after checking the expression of & and using (62) with integration by parts and
the fact that 0,[A®, M|N = [A®, M |N + [A®, M]N,

D5 < (e vB)C(h—1

s

|Dg| = 6‘([1\8,9]%,&/\%) + %u([l\s,v Jv, P ASv,) + 3u([A V]vgs, KA ;) — %Mﬁ([/\s,ygg}vmﬁbmlxsv)
—%uﬂ([/\s,y]wm,fbm/\sv)vw@([AS,Q]vx,hbiAs )+ 415u ([A%, vy, ]va, h Asvm)+425u (A%, v, ]vg0, AP A0,
+ 4175 2([AS E]Ux:cacyh5ASwa) - %/J?ﬂ([ ) J,J,]’Ul'?h‘4b Asvxx) - N B([ ]v;cacarah b Asvxac)

- 7/’['26([ ) z]vxwah b Asvxw) - iMQB([AQ Umz]vxahzlbwwAs ) - 7M26([ ]szw;h bwwAg )

2/1/ ﬁ([ 9 m]vmzah bxxAS ) - 72N2ﬁ([ I}U17ﬁ4bx/\s’l}mz) - 25([1\872]1%1’7&4(7:6/\80193)

1
12"
- 2174M 5([/\572}”%@ bchSUTT) + §ﬂ252([AsaQx]v:nvbgbi/\svx) + %NzﬂQ([Asvﬂ]vmmaﬁsbiAsvm)

1 1
=+ EM262([AS v, ]’Uwaﬁsbmba:mAsv) + E/J/Qﬁz([Asay}vx17h3bzbww/\sv) + 6”252([Asvy]vzaﬁsbwbxx/\sv)

12:“’252([ ]Ui?thQxAsv)’ < (Evﬂ)c(|§‘007 |Q|HS7\/ﬁ|ymx|Hs_l7/’L|yzxm HS_I)ES(U)Q'

To control D7, one can realize D3 and integrate by parts with the help of (63) to write
D7 = —ep([A*, SIS ™' Qu[U)va, A*0) + ep([A%, Q1 [U]]vs, A*0)
— euB([A*, SIS By [Uva, A*) + epB([A%, By [U]vz, A*0).

Now, as above using the expressions of &, Q;[U], B1[U] with the help of Lemma 2, the commutator (51), in
addition to (63) and (67) one gets

|D7| < (e VB)C (b — 1]z,

Vol o1 VU0
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To control Dg, one can write by integration by parts
Dy = —p (A%, 813 QalUlv,, A™) + 24 (A%, Qu[U]Jvs, A%) — ep? (A%, ]S Qa[Uv,, A™)

+ e ([AS Q3[U]Jvg, A%v) — 5u25([/\5,§]§_132[g]v1,Asv) + EHZﬂ([AS,BQ[i]]Um,A v)

— ep?B7([A°, SIS Bs[Ulvs, A%0) + epi® 82 ([A%, B3 [U] v, A°0).

Now, as above using the expressions of S, Qa[U], Q3[U], Bz[U], B3[U] with the help of Lemma 2, the
commutator (51), in addition to (63)-(67) one gets

1Ds| < (eV B)C(|h = e, [0y o1, VEVgg o1, Cs) B*(U)?.

Eventually, as a conclusion, one gets
S Hoe 2
KHM bO|£T|H 7bo|§m|H37

Hs,

[([A*, A[U]]0.U, SA°U)| < eC(|h = 1]a-,

M'gzlesa Q‘HS, ﬂ‘ﬂm‘H*7M|ﬂzz|H*» CS) bO)ES(U)2
e Estimation of (A*B(U), SA*U). Recall that

_Bbwﬂ >
69 BU) = — )
(69) D ( S (Rlp.ch, B(U))
where

2
S = b (10, + B0, (120,)) — W00, 4B () + iR (00 ) — P (a2 (0h,0%)

+82 (h4 zm( )) —20, (ﬁ4bzaz) +h4bmca§ } Iulﬁ [48 (thQa ) + 0y (hgbzbfm(')) 72@3611)195895 ’ 7h3b3%()] )

1
Rl eh, BNU) = 3epB00(hb0uv?) + B hbsbast? + oepi? GO (Hb g0?)

1 1
+ 125u252a (B*bpbrrsv?) + Zeﬁﬁ?az(@?’bimf).

As in D3 one may write

(A*B(U), SA*T) = —B(A*(b,v), 3, A°C) + (A*Rlju, b, B6)(U), A*) — (A%, SIS Ry, ch, B6)(U), A%0).
Now, using the expressions of &, R[u,eh, 8b](U), J,
(51), in addition to (63) and (67) one gets

(A*BW), SA'V)| < (= v H)C(E*(L)) E*(U).
e Estimation of (AS(, [@,QbO]ASC). One can write after checking the expression of J, ~and doing an inte-
gration by parts, that

|(ASC7 [atﬂzbo]ASCH = |435;U'2 (ath4As<a:mv ASCI:L’)’ < (5 \ 5)C(|ath|00)Es(U)2

with the help of Lemma 2, the commutator estimate

e Estimation of (A®v, [0;, S]A%v). Remarking that we have
[0r, h)ASv = 9;hA%v [0y, 0 (B30, )| A0 = 0,(0:h3A%v,)  and [, 8*(h°02)|A%v = 8% (D,h° Asv,,),

so one gets using integration by parts

| (A0, 01, S]A"0) | = [ (9ukA™v, A%0) + £ (94N, A0,

2
+ L (DA v, A | < (2 B)C(10h oo, B (L)) E* (V)

Gathering the information provided by the above estimates and using the fact that H*(R) is continuously
embedded in W1>°(R), we get

S8V (V)N B U)) < (2 V A)(C(B ), 106hl1<) — N E*(U)? + (e V H)C(B* @) B (V).
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Taking A = Ar large enough (how large depending on SUPseo, 2 C(E*(U),|0:h|r=) to have the first term
of the right hand side negative for all ¢ € [0, %], one deduces

vie[o %e@vﬁ)”at (e~ VNS (1)) < (e v B)C(E*(U)) E*(U).

75
TV /6 )
Integrating this differential inequality with the help of Gronwall’s inequality yields therefore

T eV t eV ’
Sl BOW) <G v ) [ CEom e
€ 0

which is the desired result. The existence and uniqueness of the solution (one can see [12] for general details)
is a direct adaptation of the proof in Appendix A of [4] . |

vite o,

3.3. Main result. The following theorem proves the main result in this paper, which is the well-posedness
in X* = H*t?(R) x H*"?(R) for some s > 2 of the extended (3 # 0) system (37) with surface tension for a

finite large time existence ¢t = O(ﬁ), realizing that if some littleness supposition is made on € V 3, at that
1

point the presence time ¢ = O(evﬁ

) ends up bigger.

Theorem 1. Let ty > %, s > to+ 1. Let also Uy = (Co,v0)T € X® be such that (45) is satisfied. Then
there exists a mazimal Tpar > 0, uniformly bounded from below with respect to e, € (0,1), such that
the extended one-dimentional Green-Naghdi equations (37) with surface tension admits a unique solution
U= (¢v)T e X7 with the initial condition (Co,v0)T and preserving the nonvanishing depth condition
(45) for any t € [0, Lmaz) . In particular if Tpes < 00 one has

' eV
|U(t )| t Tnlaz
y)|xs —> 00 as —>gv5’
or T
inf h(t, ) =infl t,-) — Bb(-) — 0 t— 92
inf A(t,) = inf 1+ <C(t,-) = Bb(-) as Y

Proof. The proof is a straightforward readjustment of the proof of Theorem 7.3 in [32] or Theorem 1 in
[4, 27] using the energy estimate proved in Proposition 1, which is itself an adaptation of the proof of the
well-posedness of hyperbolic systems (see [26, 12] for general details), where no smallness assumption on the
parameters €, u, 8 is required in the theorem. O
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