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This paper introduces a fully discrete framework for a new straight line detector in gray-level images, where line segments are enriched with a thickness parameter intended to provide a quality criterion on the extracted feature. This study is based on a previous work on interactive line detection in gray-level images. At rst, a better estimation of the segment thickness and orientation is achieved through two main improvements: adaptive directional scans and control of assigned thickness. Then, these advances are exploited for a complete unsupervised detection of all the line segments in an image. The new thick line detector is left available in an online demonstration.

Introduction

Straight lines are commonly used as visual features for many image analysis processes. In particular in man-made environments, they are a suitable alternative to points for camera orientation [START_REF] Denis | Ecient edge-based methods for estimating Manhattan frames in urban imagery[END_REF][START_REF] Xu | Pose estimation from line correspondences: a complete analysis and a series of solutions[END_REF], 3D reconstruction [START_REF] Park | Line-based single view 3D reconstruction in Manhattan world for augmented reality[END_REF] or also simultaneous localization and mapping [START_REF] Hirose | Fast line description for line-based SLAM[END_REF][START_REF] Ruifang | Line-based monocular graph SLAM[END_REF]. Therefore, straight line detection is always an active research topic centered on the quest of still faster, more accurate or more robust-to-noise methods [START_REF] Akinlar | EDPF: a real-time parameter-free edge segment detector with a false detection control[END_REF][START_REF] Almazàn | MCMLSD: a dynamic programming approach to line segment detection[END_REF][START_REF] Gioi | LSD: A fast line segment detector with a false detection control[END_REF][START_REF] Lu | CannyLines: a parameter-free line segment detector[END_REF][START_REF] Matas | Robust detection of lines using the progressive probabilistic Hough transform[END_REF]. Most of the times, they rely on the extraction of an edge map based on gradient magnitude. Gradient orientation is often used to discriminate candidates and thus provide better eciency. However, they seldom provide an exploitable measure of the output line quality, based on intrinsic properties such as sharpness, connectivity or scattering. This information could be useful to get some condence level and help to classify these features for further exploitation. It could also be a base for uncertainty propagation within 3D interpretation tools, in order to dispose of complementary measures to reprojection errors for local accuracy evaluation.

In digital geometry, new mathematical denitions of classical geometric objects, such as lines or circles, have been developed to better t to the discrete nature of most of today's data to process. In particular, the notion of blurred segment [START_REF] Buzer | A simple algorithm for digital line recognition in the general case[END_REF][START_REF] Debled-Rennesson | Blurred segments decomposition in linear time[END_REF] was introduced to cope with the image noise or other sources of imperfections from the real world using a thickness parameter. Ecient algorithms have already been designed to recognize these digital objects in binary images [START_REF] Debled-Rennesson | Optimal blurred segments decomposition of noisy shapes in linear times[END_REF]. Blurred segments seem well suited to reect the required line quality information.

The present work aims at designing a exible tool to detect blurred segments with optimal thickness and orientation in gray-level images for as well supervised as unsupervised contexts. User-friendly solutions are sought, with ideally no parameter to set, or at least quite few values with intuitive meaning. An interactive tool was already designed for live line extractions in gray-level images [START_REF] Kerautret | Blurred segments in gray level images for interactive line extraction[END_REF]. But the segment thickness was initially xed by the user and not estimated, leading to erroneous orientations of the detected lines. Here, the limitations of this rst detector are solved by the introduction of two new concepts: (i) adaptive directional scans designed to better track the detected line; (ii) control of assigned thickness to bound its scattering. As a side eect, these two major evolutions also led to a noticeable improvement of the time performance of the detector. They are also put forward within a global line extraction algorithm which can be evaluated through an online demonstration at: http://ipol-geometry.loria.fr/~kerautre/ipol_demo/FBSD_IPOLDemo

In the next section, the main theoretical notions used in this work are introduced. The new detector workow, the adaptive directional scan, the control of assigned thickness and their integration into both supervised and unsupervised contexts are then presented in section 3. Experiments led to assess the achieved performance of this new detector are decribed in section 4. Finally, section 5 gives a short conclusion followed by some open perspectives for future works.

2 Theoretical background

Blurred segment

This work relies on the notion of digital straight line as classically dened in the digital geometry literature [START_REF] Klette | Digital geometry Geometric methods for digital picture analysis[END_REF]. Only the 2D case is considered here. Denition 1. A digital straight line L(a, b, c, ν), with (a, b, c, ν) ∈ Z 4 , is the set of points P (x, y) of Z 2 that satisfy : 0 ≤ ax + by -c < ν.

In the following, we note V (L) = (a, b) the director vector of digital line L, w(L) = ν its arithmetical width, h(L) = c its shift to origin, and p(L) = max(|a|, |b|) its period (i.e. the length of its periodic pattern). When ν = p(L), then L is the narrowest 8-connected line and is called a naive line.

The thickness µ = Denition 2. A blurred segment B of assigned thickness ε is a set of points in Z 2 that all belong to a covering digital straight line L of thickness µ = ε. The optimal line of the blurred segment is the covering line with minimal thickness. The thickness of the blurred segment is the thickness of its optimal line.

A linear-time algorithm to recognize a blurred segment of assigned thickness ε [START_REF] Debled-Rennesson | Blurred segments decomposition in linear time[END_REF] is used in this work. It is based on an incremental growth of the convex hull of the blurred segment when adding each point P i successively. As depicted on Fig. 1, the extension of the blurred segment B i-1 of assigned thickness ε and thickness µ i-1 at step i -1 with a new input point P i is thus controlled by the recognition test µ i < ε. Fig. 1. A growing blurred segment Bi : when adding the new point Pi, the blurred segment minimal thickness augments from µi-1 to µi; if the new thickness µi exceeds the assigned thickness ε, then the new input point is rejected and Bi = Bi-1.

Associated to this primitive, the following denition of a directional scan is an important point in the proposed method. 

DS = S i = D ∩ N i ∩ I V (N i ) • V (D) = 0 ∧ h(N i ) = h(N i-1 ) + p(D) (1) 
In this denition, the clause V (N i ) • V (D) = 0 expresses the orthogonality constraint between the scan lines N i and the scan strip D. Then the shift of the period p(D) between successive scans guarantees that all points of the scan strip are traversed one and only one time.

The scans S i are developed on each side of a start scan S 0 , and ordered by their distance to the start line N 0 with a positive (resp. negative) sign if they are on the left (resp. right) side of N 0 (Fig. 2). The directional scan is iteratively parsed from the start scan to both ends. At each iteration i, the scans S i and S -i are successively processed.

A directional scan can be dened by its start scan S 0 . If A(x A , y A ) and B(x B , y B ) are the end points of S 0 , and if we note

δ x = x B -x A , δ y = y B -y A , c 1 = δ x • x A + δ y • y A , c 2 = δ x • x B + δ y • y B and p AB = max(|δ x |, |δ y |), it
is then dened by the following scan strip D A,B and scan lines N A,B i : A directional scan can also be dened by a central point

D A,B = L(δ x , δ y , min(c1, c2), 1 + |c 1 -c 2 |) N A,B i = L(δ y , -δ x , δ y • x A -δ x • y A + i • p AB , p AB ) (2) 
C(x C , y C ), a direc- tion D(X D , Y D ) and a minimal thickness w. If we note p D = max(|X D |, |Y D |), ν D = w • p D , c 3 = x C • Y D -y C • X D -ν D 2 , and c 4 = x C • X D + y C • Y D -p D 2
, it is then dened by the following scan strip D C,D,w and scan lines N C,D,w i :

D C,D,w = L(Y D , -X D , c 3 , ν D ) N C,D,w i = L(X D , Y D , c 4 + i • p D , p D ) (3) 

The detection method

In this line detection method, only the gradient information is processed as it provides a good information on the image dynamics, and hence the presence of edges. Trials to use the intensity signal were also made through costly correlation techniques, but they were mostly successful for detecting shapes with a stable appearance such as metallic tubular objects [START_REF] Aubry | Photometric intensity proles analysis for thick segment recognition and geometric measures[END_REF]. Contrarily to most detectors, no edge map is built here, but gradient magnitude and orientation are examined in privileged directions to track edge traces. In particular, we use a Sobel operator with a 5x5 pixels mask to get high quality gradient information [START_REF] Kekre | Image segmentation using extended edge operator for mammographic images[END_REF].

Previous work

In a former paper [START_REF] Kerautret | Blurred segments in gray level images for interactive line extraction[END_REF], an ecient tool to detect blurred segments of xed thickness in gray-level images was already introduced. It was based on a rst rough detection in a local image area dened by the user. At that stage, the goal was to disclose the presence of a straight edge. Therefore as simple a test as the gradient maximal value was performed. In case of success, renement steps were then run through an exploration of the image in the direction of the detected edge. In order to prevent local disturbances such as the presence of a sharper edge nearby, all the local gradient maxima were successively tested until a correct candidate with an acceptable gradient orientation was found.

Despite of a good behavior reported, several drawbacks remained. First, the blurred segment thickness was not measured but initially set by the user according to application requirements. The produced information on edge quality was rather poor, and especially when the edge is thin, the risk to incorporate outlier points was quite high, thus producing a biased estimation of the edge orientation. Then, two renement steps were systematically performed. On the one hand, this is useless when the rst detection is successfull. On the other hand, there is no guarantee that this approach is able to process larger images. The search direction relies on the support vector of the blurred segment detected at former step. Because the numerization rounding xes a limit on this estimated orientation accuracy, more steps are inevitably required to process larger images. In the following, we present the improvements in the new detector to overcome these limitations.

Workow of the new detection process

The workow of the detection process is summerized in the following gure. The initial detection consists in building and extending a blurred segment B of assigned thickness ε 0 , based on points with highest gradient magnitude found in each scan of a static directional scan dened by an input segment AB. The extension is stopped after ve point addition failures on each side. Notice that the gradient direction is not used in this step.

Validity tests are then applied to decide of the detection pursuit. They aim at rejecting too small segments (less than 4 points) or too sparse ones (more than 50% of point addition failures) or also those with a close orientation to AB (less than π/6).

In the ne tracking step, another blurred segment B is built and extended with points that correspond to local maxima of the image gradient, ranked by magnitude order, and with gradient direction close to start point gradient direction (less than π/6). At this renement step, a control of assigned thickness is applied and an adaptive directional scan based on found position C and direction D is used in order to extend the segment in appropriate direction. These two notions are described in following sections 3.3 and 3.4.

Output segment B is nally accepted based on application criteria. Final length and sparsity thresholds can be set accordingly. They are the only parameters of this local detector, together with the input assigned thickness ε 0 .

Adaptive directional scan

The blurred segment is searched within a directional scan with position and orientation approximately drawn by the user, or blindly dened in unsupervised mode. In most cases, the detection stops where the segment escapes sideways from the scan strip (Fig. 4 a). A second search is then run using another directional scan aligned on the detected segment (Fig. 4 b). In the given example, an outlier added to the initial segment leads to a wrong orientation value. But even in case of a correct detection, this estimated orientation is subject to the numerization rounding, and the longer the real segment is, the higher the probability gets to fail again on an escape from the scan strip. To overcome this issue, in the former work, an additional renement step was run in the direction estimated from this longer segment. It was enough to completely detect most of the tested edges, but certainly not all, especially if big size images with much longer edges were processed. As a solution, this operation could be iterated as long as the blurred segment escapes from the directional scan using as any ne detection steps as necessary. But at each iteration, already tested points are processed again, thus producing a useless computational cost.

Here the proposed solution is to dynamically align the scan direction on the blurred segment all along the expansion stage. At each iteration i of the expansion, the scan strip is aligned on the direction of the blurred segment B i-1 computed at previous iteration i -1. More formally, an adaptive directional scan ADS is dened by:

ADS =    S i = D i ∩ N i ∩ I V (N i ) • V (D 0 ) = 0 ∧ h(N i ) = h(N i-1 ) + p(D 0 ) ∧ D i = D Ci-1,Di-1,µi-1 , i > λ    (4)
where C i , D i and µ i are respectively a position, a director vector and a thickness observed at iteration i, used to update the scan strip and lines in accordance to Eq. 3. The last clause expresses the update of the scan bounds at iteration i: C i-1 , D i-1 and µ i-1 are respectively the intersection of the input selection and the central line of B i-1 , the director vector of the optimal line of B i-1 , and the thickness of B i-1 . λ is a delay which is set to 20 iterations to avoid direction instabilities when too few points are inserted. Compared to static directional scans where the scan strip remains xed to the initial line D 0 , here the scan strip moves while scan lines remain xed. This behavior ensures a complete detection of the blurred segment even when the orientation of D 0 is wrongly estimated (Fig. 4 c).

Control of assigned thickness

The assigned thickess ε to the blurred segment recognition algorithm is initially set to a large value ε 0 in order to allow the detection of thick blurred segments. Then, when no more augmentation of the blurred segment thickness is observed after τ iterations (µ i+τ = µ i ), it is set to the observed thickness augmented by a half pixel tolerance factor, in order to take into account all the possible discrete lines which digitization ts to the selected points:

ε = µ i+τ + 1 2 (5) 
This strategy aims at preventing the incorporation of spurious outliers in further parts of the segment. Setting the observation distance to a constant value τ = 20 seems appropriate in most experimented situations.

Supervised blurred segments detection

In supervised context, the user draws an input stroke across the specic edge that he wants to extract from the image. The detection method previously described is continuously run during mouse dragging and the output blurred segment is displayed on-the-y. Details about the supervised mode are discussed in [START_REF] Kerautret | Blurred segments in gray level images for interactive line extraction[END_REF].

An option, called multi-detection (Algorithm 1), allows the detection of all the segments crossed by the input stroke AB. In order to avoid multiple detections of the same edge, an occupancy mask, initially empty, collects the dilated points of all the blurred segments, so that these points can not be used any more.

First the positions M j of the prominent local maxima of the gradient magnitude found under the stroke are sorted from the highest to the lowest. For each of them the main detection process is run with three modications:

1. the initial detection takes M j and the orthogonal direction AB ⊥ to the stroke as input to build a static scan of xed thickness 2 • ε 0 , and M j is used as start point of the blurred segment; 2. the occupancy mask is lled in with the points of the dilated blurred segments B j at the end of each successful detection (a 5 × 5 octogonal neighborhood region of 21 pixels is used); 3. points marked as occupied are rejected when selecting candidates for the blurred segment extension in the ne tracking step.

Algorithm 1: MultiDetect: nds all segments crossing the selection stroke.

input : Stroke points A, B, occupancy mask M, initial thickness ε0 output: ListOfBS → list of detected blurred segments ListOfBS ← ∅; LocMax ← ComputeAndSortGradientLocalMax (A, B);

for i ← 0 to Size ( LocMax) do BlurredSegment ← detect (LocMax [i], AB ⊥ , 2 ε0, M); UpdateOccupancyMask (M, BlurredSegment); ListOfBS ← ListOfBS + BlurredSegment; end 3.

Automatic blurred segment detection

An unsupervised mode is also proposed to automatically detect all the straight lines in the image. A stroke that crosses the whole image, is swept in both directions, vertical then horizontal, from the center to the borders. At each position, the multi-detection algorithm is run to collect all the segments found under the stroke. Then small blurred segments are rejected in order to avoid the formation of misaligned segments when the sweeping stroke crosses an image edge near one of its ends. In such situation, any nearby disturbing gradient is likely to deviate the blurred segment direction, and its expansion is quickly stopped. The stroke sweeping step is an additional parameter for automatic detections, that could be set in relation to the nal length threshold parameter. The automatic detection is available for testing from the online demonstration and from a GitHub source code repository: https://github.com/evenp/FBSD.

Experimental validation

In the experimental stage, the proposed approach is validated through comparisons with other recent line detectors: LSD [START_REF] Gioi | LSD: A fast line segment detector with a false detection control[END_REF], ED-Lines [START_REF] Akinlar | EDPF: a real-time parameter-free edge segment detector with a false detection control[END_REF] and CannyLines [START_REF] Lu | CannyLines: a parameter-free line segment detector[END_REF], written in C or C++ language and without any parameter settings. Only LSD provides a thickness value based on the width of regions with same gradient direction. This information does not match the line sharpness or scattering quality addressed in this work, so that it can not be actually compared to the thickness value output by the new detector. Moreover, we did not nd any data base with ground truth including line thickness. Therefore, we proceed in two steps: (i) evaluation on synthetic images of the new concepts enhancement on line orientation and thickness estimation; (ii) evaluation of more global performance of the proposed approach compared to other detectors. For all these experiments in unsupervised mode, the stroke sweeping step is set to 15 pixels.

At rst, the performance of both versions of the detector (with and without the concepts) is tested on a set of 1000 synthesized images containing 10 randomly placed input segments with random thickness between 2 and 5 pixels. The initial assigned thickness ε 0 is set to 7 pixels to detect all the lines in the dened Thick Line Segment Detection with Fast Directional Tracking IX thickness range in unsupervised mode. The absolute value of the dierence of each found segment to its matched input segment is measured. Results in Tab. 1 show that the new concepts aord improved thickness and angle measurements, better precision with a smaller amount of false detections, and that they help to nd most of input segments. More results can be found in a public report: Next experiments aim at comparing the new approach with recent line detectors. Tests are run on the York Urban database [START_REF] Denis | Ecient edge-based methods for estimating Manhattan frames in urban imagery[END_REF] composed of 102 images with their ground truth lines. As it was set in the scope of Manhattan-world environments, only lines in the three main directions are provided. For these experiments, initial assigned thickness ε 0 is set to 3 pixels, considering that the other detectors are designed to nd thin lines, and nal length threshold to 10 points to suit the stroke sweeping step value. Output lines smaller than 10 pixels are discarded for all the detectors. Compared measures are execution time T , covering ratio C, detected lines amount N , cumulated length of detected lines L and mean length ratio L/N . On each image of the database and for each line detector, the execution time of 100 repetitions of a complete detection, gradient extraction included, was measured using Intel Core i5 processor; T is the mean value found per image. Then, assuming that a pixel of a ground truth line is identied if there is a detected line in its 8-neighborhood, measure C is the mean ratio of the length of ground truth line pixels identied on the total amount of ground truth line pixels. Results are given in Tab. 2.

The example of Fig. 5 indicates that the new detector produces many small segments which could be considered as visually non-meaningful. The other detectors eliminates them by a validation test based on Helmholtz principle [START_REF] Desolneux | From Gestalt Theory to Image Analysis: A Probabilistic Approach[END_REF]. Such test is not yet integrated into the new detector. But even so, the mean length of output lines is greater. Except for execution time where ED-Lines performs best, global performance of the new detector is pretty similar and competitive to the other ones. Furthermore, it provides additional information on the detected line quality through the estimated thickness. Table 2. Measured performance of recent line detectors (LSD [START_REF] Gioi | LSD: A fast line segment detector with a false detection control[END_REF], ED-Lines [START_REF] Akinlar | EDPF: a real-time parameter-free edge segment detector with a false detection control[END_REF] and CannyLines [START_REF] Lu | CannyLines: a parameter-free line segment detector[END_REF]) and of our detector on the York Urban Database [START_REF] Denis | Ecient edge-based methods for estimating Manhattan frames in urban imagery[END_REF].

Conclusion and perspectives

This paper introduced a new straight line detector based on a local analysis of the image gradient and on the use of blurred segments to embed an estimation of the line thickness. It relies on directional scans of the input image around maximal values of the gradient magnitude, and on the integration of two new concepts: adaptive directional scans and control of assigned thickness. Comparisons to other recent line detectors show competitive global performance in terms of execution time and mean length of output lines, while experiments on synthetic images indicate a better estimation of length and thickness measurements brought by the new concepts. A residual weakness of the approach is the sensitivity to the initial conditions. In supervised context, the user can select a favourable area where the awaited edge is dominant. But in unsupervised context, gradient perturbations in the early stage of the line expansion, mostly due to the presence of close edges, can aect the result. In future works, we intend to provide solutions by scoring the detection result on the basis of a characterization of the local context.

  ν max(|a|,|b|) of L(a, b, c, ν) is the minimum of the vertical and horizontal distances between lines ax + by = c and ax + by = c + ν.

2. 2

 2 Directional scan Denition 3. A directional scan DS is an ordered partition restricted to the image domain I of a thick digital straight line D, called the scan strip, into scans S i , each of them being a segment of a naive line N i , called a scan line, orthogonal to D.

Fig. 2 .

 2 Fig.2. A directional scan. The start scan S0 is drawn in blue, odd scans in green, even scans in red, the bounds of scan lines Ni with plain lines and the bounds of scan strip D with dotted lines.

Fig. 3 .

 3 Fig. 3. The main workow of the detection process.

Fig. 4 .

 4 Fig.4. Aborted detections on side escapes of static directional scans and successful detection using an adaptive directional scan. The last points added to the left of the blurred segment during initial detection (a) lead to a bad estimation of its orientation, and thus to an incomplete ne tracking with a classical directional scan (b). An adaptive directional scan instead of the static one allows to continue the segment expansion as far as necessary (c). Input selection is drawn in red color, scan strip bounds in blue and detected blurred segments in green.

Fig. 5 .

 5 Fig. 5. Comparison of line detectors on one of the 102 ground truth images of the York Urban database : a) input image, b) ground truth lines, c) LSD output, d) ED-Lines output, e) CannyLines output, f) thick lines of the new detector. Measure T (ms) C (%) N L (pixels)L/N LSD 63.5 ± 13.6 60.9 ± 11.2 536 ± 193 17745 ± 5337 34.6 ± 7.9 ED-Lines 55.5 ± 9.9 64.0 ± 11.2 570 ± 210 19351 ± 5669 35.8 ± 8.9 CannyLines 69.6 ± 10.5 60.5 ± 10.6 467 ± 138 17679 ± 4398 39.5 ± 10.1 Our detector 66.9 ± 15.6 67.9 ± 9.6 478 ± 110 19472 ± 3914 41.7 ± 7.5

Table 1 .

 1 P = #(D ∩ S)/#D 80.46 ± 7.22 83.87 ± 6.04 Recall (ratio of true detection, %): R = #(D ∩ S)/#S 90.23 ± 3.30 91.15 ± 2.52 F-measure (harmonic mean,%): F = 2 × P × R/(P + R) 84.87 ± 4.42 87.23 ± 3.59 Thickness dierence (pixels) to matched input segment 0.70 ± 0.24 0.59 ± 0.19 Angle dierence (degrees) to matched input segment 0.61 ± 0.66 0.57 ± 0.62 Measured performance of both versions of the detector on a set of synthesized images. Old refers to the previous version[START_REF] Kerautret | Blurred segments in gray level images for interactive line extraction[END_REF], whereas new is the proposed detector (with adaptive directional scans and control of assigned width). S is the set of all the input segments, D the set of all the detected blurred segments.
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