
HAL Id: hal-02189912
https://hal.science/hal-02189912v1

Submitted on 20 Jul 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

DO-178C Compliance of Verisoft Formal Methods
Blasum Holger, Frank Dordowsky, Bruno Langenstein, Andreas Nonnengart

To cite this version:
Blasum Holger, Frank Dordowsky, Bruno Langenstein, Andreas Nonnengart. DO-178C Compliance
of Verisoft Formal Methods. Embedded Real Time Software and Systems (ERTS2012), Feb 2012,
Toulouse, France. �hal-02189912�

https://hal.science/hal-02189912v1
https://hal.archives-ouvertes.fr


DO-178C Compliance of Verisoft Formal Methods∗

Holger Blasum† Frank Dordowsky‡ Bruno Langenstein§

Andreas Nonnengart§

December 3, 2011

Verisoft XT was a three-year research project
funded by the German Federal Ministry of Educa-
tion and Research (BMBF). The main goal of the
project was the pervasive formal verification of com-
puter systems. One of its sub-projects examined the
application of formal methods in the avionics domain.
Today’s avionics software should be developed in ac-
cordance with the RTCA/EUROCAE standard DO-
178B/ED-12B to achieve formal acceptance by certi-
fication authorities. This standard lists formal meth-
ods merely as alternative means but does not pro-
vide guidance on the use and acceptance of formal
methods. Its successor DO-178C/ED-12C will pro-
vide this guidance in its Formal Methods Supplement.
Although DO-178C was not published during project
runtime, the available material nevertheless allowed
us to examine the compliance of two of the formal
methods and tools – VSE and VCC – that have been
used in Verisoft XT. This paper summarises the re-
sults of this evaluation and thus may serve as a first
step in the certification planning of a real avionics
project that would use either one or both methods.

Keywords:
Avionics Software, DO-178C, Formal Methods, VCC,
VSE

1 Introduction

Safety critical avionics systems are a natural candi-
date for the application of formal methods. Hence
avionics software was one of the application scenar-
ios within the Verisoft XT project [22], a three-year
research project on the pervasive formal verification
of computer systems funded by the German Federal
Ministry of Education and Research (BMBF).

Avionics software must be formally accepted by a
certification authority such as the FAA in the U.S. or
EASA in Europe. Certification authorities and indus-
try have agreed on the DO-178B set of guidelines [20]
as a basis for software assurance in civil aviation, but
this standard is also gradually adopted by military

∗Work partially funded by the German Federal Ministry of
Education and Research (BMBF), grant 01 IS 07 008.

†SYSGO AG
‡ESG Elektroniksystem- und Logistik GmbH
§German Research Centre for Artificial Intelligence (DFKI)

certification authorities. In DO-178B, the main ver-
ification method is testing, and formal methods are
only mentioned as alternative means. DO-178B pro-
vides only little guidance on the application of for-
mal methods and suggests to apply formal methods
in areas that are difficult to test exhaustively, such
as concurrency, distributed processing, redundancy
management, or synchronisation.

In 2005, a joint RTCA and EUROCAE working
group was charged to update the standard to con-
sider the software engineering techniques that have
evolved since the publication of DO-178B in 1992.
The new issue of the standard, DO-178C/ED-12C,
will contain a Formal Methods Supplement (FMS)
that defines how formal methods can be used within
a certification project.

One of the work packages of the Verisoft XT avion-
ics subproject was to establish DO-178B conformant
development and verification processes that are sup-
ported by formal methods. Instead of devising a pro-
cess on its own, the Verisoft project team decided to
examine the available material of the emerging DO-
178C FMS. This was done for two of the Verisoft XT
formal methods dominant in the avionics subproject:
the Verification Support Environment (VSE, [1]) and
the Verifying C Compiler (VCC, [8]).

In section 2 we provide a short summary of the
FMS as available during run-time of the Verisoft XT
project [5, 6]. Sections 3 and 4 introduce VSE and
VCC and show how they could be used within an
avionics project. For each method we identify the
life cycle artefacts expressible by the method’s nota-
tion itself. This determines the scope of the formal
method, i.e. the development and verification pro-
cesses where it can be applied. For our analysis, we
consider the maximum scope of the methods. The
processes that are outside of the scope of the exam-
ined formal method will not be considered. We also
map the abstract concepts of the standard to concrete
elements of both methods which constitutes our in-
terpretation of the standard and determines the ob-
jectives that are within the scope of VSE and VCC.

In section 5, we summarise our discussion to which
extent each objective is fulfilled. Finally, we discuss
the issue of tool qualification because the achievement
of some objectives depends on it, and conclude with
a summary of our results and experience made with

1



the adoption of the DO-178C.

This paper does not attempt to compare VSE with
VCC nor both methods with other existing formal
methods. Instead, it summarises the arguments that
must be provided to the certification authority when
proposing the application of either method in a real
project. Moreover, the paper also identifies the short-
comings of both methods with respect to the DO-
178C objectives – these non-compliances must be re-
solved by other means.

2 DO-178C and the Formal
Methods Supplement

2.1 DO-178B

DO-178B lists a total of 20 life cycle data items –
artefacts created during the software life cycle. Of
these 20, only the following are relevant to our discus-
sion: (1) High-Level Requirements (HLR), created in
the software requirements process, (2) Low-Level Re-
quirements (LLR) and (3) Software Architecture, cre-
ated in the software design process, (4) Source Code,
developed in the software coding process, and finally
(5) Executable Object Code that is the output of the
software integration process.

These life cycle data are shown as hexagons in
Fig. 1. It also shows system requirements as an input
into the software development process.

DO-178B lists a set of objectives that must be
achieved by an avionics software project where the
number of objectives that are applicable to the
project depends on the criticality level of the appli-
cation. The objectives are related to existence and
properties of the life cycle data (e.g. accuracy, con-
sistency, verifiability) or to the relation between life
cycle data (compliance, traceability). These objec-
tives have been taken over from DO-178B into the
core section of DO-178C and will therefore be referred
to as core objectives in the following.

Moreover, Fig. 1 shows all activities that are rel-
evant to the examination of the formal methods as
arrows and objectives as labels to those arrows. Ac-
cording to the introduction of the DO-178C core doc-
ument, activities provide a means for satisfying ob-
jectives.

2.2 DO-178C and FMS

The DO-178C Formal Methods Supplement (FMS)
augments the objectives established in the core docu-
ment. It introduces general concepts to accommodate
a wide variety of different formal methods. A formal
method is a formal analysis carried out on a formal
model. A method is accepted as formal if it has an
unambiguous, mathematically defined, syntax and se-
mantics [5]. The formal model formulates properties
consisting of certain software life cycle data, such as
requirements.

A formal analysis case is the analogon to a test case
and is a combination of the property to be analysed
or proved along with all assumptions relied upon for
the formal analysis. Sometimes assumptions must be
made on the software or its environment in order to
successfully complete the formal analysis.

A formal analysis procedure is the process of exe-
cuting a formal analysis case to determine the results
of the formal analysis and to compare these results
against the expected results. The formal analysis re-
sult is the result of an execution of a formal analysis
procedure.

The FMS provides guidelines on how formal meth-
ods can be used for the verification of the objectives
shown in Fig. 1. In addition to the core document,
it defines objectives that concern the usage of formal
methods:

• Correctness of Formal Analysis Cases and Proce-
dures: The formal analysis covers the objectives
shown in Fig. 1. Moreover, any assumptions that
were included in the formal analysis should be
justified and any false assumptions (which would
invalidate the analysis) should be identified and
removed.

• Correctness of Formal Analysis Results: The for-
mal analysis results are correct and discrepan-
cies between actual and expected results are ex-
plained.

• Correctness of Requirement Formalisation: In
case a natural language requirement is translated
into a formal notation it must be demonstrated
that the formalisation is a conservative represen-
tation of the informal requirement.

• Formal Method Soundness: A sound method
never asserts that a property is true when it may
not be true. All notations used for formal anal-
ysis shall have a precise, unambiguous, mathe-
matically defined syntax and semantics.

DO-178B also introduces a set of objectives that
consider the verification of the outputs of the ver-
ification process. These objectives include the test
coverage of the requirements (requirements coverage)
as well as the test coverage of the software structure
(structural coverage). The FMS attempts to transfer
these criteria to formal methods [5]:

• Requirements Coverage: Assurance that there is
at least one formal analysis case for every re-
quirement, and that all assumptions about the
software and its environment have been justified
and verified.

• Complete Coverage of Each Requirement:
Demonstration that all possible paths through
the code with all possible data values have been
considered, and that all assumptions have been
made explicit and have been verified.

2



Figure 1: Development Artefacts, Verification Activities and Objectives, taken from [5]

• Completeness of the Set of Requirements: As-
surance that the set of requirements is complete
with respect to the intended functions, i.e. that
the output is specified for all possible input con-
ditions and that required input conditions are
specified for all possible outputs.

• Unintended Dataflow Detection: Demonstration
that all dependencies between inputs and out-
puts in the source code comply with the require-
ments.

• Dead Code and Deactivated Code Detection:
Dead code is executable object code which can-
not be executed in an operational configuration
of the target computer and which is not traceable
to a system or software requirement [20]. Dead
code should be identified by review or analysis
and removed.

For deactivated code, i.e. code that is only exe-
cuted in certain configurations of the target com-
puter environment, the operational configuration
needed for normal execution of this code should
be established and additional verification cases
and procedures must be developed to show that
this code cannot be inadvertently executed.

3 DO-178C Scope of VSE

The V erification Support Environment (VSE) is a
tool that supports the formal development of com-
plex large scale software systems from abstract high

level specifications down to the code level. It provides
both an administration system to manage structured
formal specifications and a deductive component to
maintain correctness on the various abstraction lev-
els (see Fig. 2). Taken together these components
guarantee the overall correctness of the complete de-
velopment. VSE has been developed on behalf of the
German Federal Office of Information Security (BSI)
to satisfy the needs in software developments accord-
ing to the standards ITSEC and Common Criteria.
Deployments of VSE span several industrial and re-
search projects, among others the control system of
a heavy robot facility, the control system of a storm
surge barrier, a formal security policy model conform-
ing to the German signature law and protocols for
chip card based biometric identification [1, 7, 14, 16].

Method. VSE supports development of a struc-
tured formal specification, which is organised around
a development graph consisting of development ob-
jects (elementary specifications like theories, modules
etc.) and links between them. Specifications are ei-
ther in the style of Abstract Data Types (ADT) using
predicate logic or State Based Systems using Tempo-
ral Logic of Actions (TLA).

User Interaction. Large specifications are broken
down into smaller parts. The means of structuring
specifications (visualised by links in the graph) are
the following: For sequential systems ADTs can be
parametrised, instantiated and enriched. State based
specifications can be combined to describe concurrent

3



Specification Component Deductive Component

refinement

refinement

satisfies

VSE-GUI Prover-GUI

Proof Obligations

API

Theorem Prover

Axioms

Proof State

Development Graph

Figure 2: Architecture of VSE

systems consisting of components described as sepa-
rate specifications.

Furthermore, development objects can be added
to introduce further properties (requirements) of an-
other development object block. A satisfies link be-
tween both objects indicates the relationship and is
associated with a deduction unit. Logically the re-
quirements have to be derivable from the system
model. A deduction unit hosts the proof obligations
that are sufficient to show the claim made by the link,
and a context with the theories containing the axioms
and lemmas that can be used in the proof.

A typical development process starts with a (struc-
tured) formal description of the system model on a
high abstraction level. In a refinement process the
abstract system model can be related to more con-
crete models. This is in correspondence with a soft-
ware development that starts from a high level design
and then descends to the lower software layers such
that in a sense higher layers are implemented based
on lower layers. Each such step can be reflected by a
refinement step in VSE. These steps involve program-
ming notions in the form of abstract implementations,
that can later be exploited to generate source code.
Each refinement step gives rise to proof obligations
showing the correctness of the implementations. VSE
maintains a deduction unit for each refinement step.
Refinements also can be used to prove consistency of
specifications, because they describe a way how to
construct a model.

VSE includes a code generator that can produce
C code from the abstract programs in a refinement
or state based specification. This component of VSE
can be seen as a translation process similar to what
is done in conventional programming language tools.
Therefore, application of this component within a
DO-178C project should also follow the guidance
offered by the “Model Based Design Supplement”.
However, for simplicity, we have not considered that
supplement – where source code generation is used
this will be stated clearly.

VSE in FMS Terms. Fig. 3 shows the life cycle data
that can be expressed with VSE notation in grey
coloured hexagons. VSE can be used to even cap-
ture system requirements (for an example see [14]).
System Requirements, High-Level and Low-Level Re-
quirements as well as the Software Architecture can
be described as ADT or TLA specifications. From
the abstract programs VSE can produce source code.

• A property can be any statement that can be
expressed in first order logic or temporal logic.
The properties of a system can be collected in
a development object and connected to the sys-
tem specification with a satisfies link. A cor-
rect refinement of the system specification would
then automatically be a correct refinement of the
properties, if the proof obligations of the satisfies
link can be proved.

• The formal analysis cases are the proof obliga-
tions generated by VSE on refinement and satis-
fies links. Deduction units encapsulate data rel-
evant for the proofs – they form a representation
of the formal analysis cases within VSE.

• A formal analysis procedure is represented in
VSE by an interactive proof of the generated
proof obligations. VSE attempts to automati-
cally prove the theorems but may require support
by the user. VSE presents the current proof state
to the user, and the user can choose the next rule
to be applied or change the heuristics so that the
system can complete the proof. Deduction units
store partial and completed proofs.

• Formal analysis results are partial or completed
proofs stored in deduction units.

• All assumptions that are used in a VSE proof
need to be specified in the VSE system. Assump-
tions are therefore part of the VSE development
graph. In order to distinguish assumptions from
requirements for review they can be separated
into specific deduction units reserved for assump-
tions.

4 DO-178C Scope of VCC

Microsoft Research’s VCC [18] is a tool that can be
used to verify that existing code conforms to require-
ments. The workflow starting with “code” it sug-
gests conceptually therefore is “opposite” to VSE of
the previous section 3. The largest piece of software
verified by VCC has been Microsoft’s Hyper-V [17].

Method. VCC belongs to a class of code verifi-
cation tools (other examples are Caveat, Frama-C,
KeY, SPARKAda, VeriFast) that apply backward-
reasoning to calculate program properties: for each
statement of a program, given a logical proposition
that holds after the statement (“postcondition”) and
a certain rule set, it is possible to calculate the least

4



Figure 3: Scope of VSE

powerful proposition that has to hold before the state-
ment as a first-order formula (“weakest precondi-
tion”, WP [12]). It is checked whether the speci-
fication implies the WP (“verification condition”). If
so, the implementation satisfies the specification.

User Interaction. The user interface is much sim-
pler than VSE’s. The engineer writes code annota-
tions corresponding to LLRs to the code’s functions
(in first-order logic) and pushes the button “verify”.
After a tool run there are three possible outcomes:
(a) verification is successful, (b) the tool can find a
counter-example, (c) time-out: the tool cannot show
compliance in reasonable time.

In case of (a) the result can be double-checked to
detect contradictions in a precondition of a function.
This feature called “smoke check” is very useful in
practice, but at most a heuristic. In case of (b) the
verification engineer can inspect the counter-example
via the tool’s model viewer. Counter-examples indi-
cate that either the annotations are wrong (this is the
typical case) or that they are too weak for the auto-
mated proof search. In case of (b) or (c) the task is to
refine the auxiliary annotation in a subsequent itera-
tion. However, to test whether a first-order logic for-
mula holds in general is only semi-decidable. In prac-
tice this means that only for very simple functions
it suffices to formulate just the pre- and postcondi-
tions. In all other cases, the engineer has to provide
further auxiliary annotations to assert that certain
properties hold at certain intermediate points so that
the automatic inference engine is guided along the
way. Annotations also can define specification state

(“ghost state”) useful for modelling low-level hard-
ware or high-level properties of the system.

VCC in FMS Terms. When used to verify low-level
requirements expressed as annotations co-located
with functions of the source code (typical usage,
Fig. 4), VCC has a smaller scope than VSE.

• The properties typically verified with VCC are
low-level requirements.

• A formal analysis case is implementation code,
its VCC annotations, and the parameters VCC
is invoked with.

• A formal analysis procedure in VCC is the au-
tomatic generation of verification conditions and
the subsequent invocation of the theorem prover
to prove these conditions.

• The formal analysis result is the result reported
by VCC after testing whether the proof attempt
is accepted, as described above.

• Assumptions, if possible to be formalised by first
order logic, can be expressed with the requires

annotation.

5 DO-178C Compliance of VSE
and VCC

The goal of this analysis is to examine how far the
means of both methods and their tools can contribute
to the demonstration of compliance to the objectives.

5



Figure 4: Scope of VCC

In a certification project, this analysis is documented,
objective by objective, in the planning documents and
then agreed with the certification authority. Simi-
larly, for each method we collected answers to guid-
ance questions derived from each objective, but due
to lack of space, we only can summarise this discus-
sion in the following subsections.

5.1 Coverage of the Core Objectives

Figures 3 and 4 display the results of our analysis
on the core objectives for VSE and VCC respectively
where the objectives have been tagged with the degree
to which the method can support the demonstration
of compliance: fully covered (f), partially covered (p),
or not covered (n). We rate an objective as fully cov-
ered by the method if it can be assured by means of
the method alone.

The objective is partially covered, if additional ver-
ification methods are necessary to show compliance
with the objective, for example, by providing addi-
tional paper-and-pencil meta-arguments that cannot
be formulated within the methods formalism.

An objective is considered as being not covered by
the method if it cannot be assured by the means of
that method at all; alternative verification methods
such as testing must be applied instead.

For the specifications, there is full coverage of the
objectives compliance, accuracy, consistency, verifi-
ability, standards conformance, algorithm accuracy,
and software architecture compatibility (VSE only),
since this is the genuine strength of formal methods.

There is a fundamental difference between VSE and
VCC with respect to source code: VSE generates it,
whereas VCC operates on manually written source
code. VCC complains if it is not able to verify the
code and therefore ensures source code verifiability.

On the other hand, the current code generator of VSE
produces code that includes elements that are consid-
ered hard to verify, such as recursion for example.

In order to demonstrate accuracy and consistency
for source code, DO-178C requires to consider prop-
erties such as stack and memory usage, worst case
execution times, fixed point arithmetic overflow, etc.
It may be possible to express some of these with for-
mal notations of VSE and VCC, but other properties
are just out of scope of the method, so that accuracy
and consistency of source code can only partially be
fulfilled by both methods.

VSE fully ensures the conformance to standards of
the source code because it generates the code. For
VCC, conformance to standards of the manually writ-
ten source code must be checked with code reviews,
but the tool assists with checking for some common
programming errors.

Target computer compatibility is covered only par-
tially as far as it is possible to express properties of
the target environment with the formal notations of
the methods. An example of modelling hardware in
VCC (interrupt vector modelled by ghost state) is [2].

Traceability is only partially covered by both meth-
ods: Neither method provides any means to capture
references to the informal requirements from which
the formal requirements have been developed. It
would be useful to enhance the tools in that respect.
On the other hand, traceability between specifications
and source code is fully covered – for VCC because the
low-level requirements are co-located with the source
code as annotations, and for VSE because the source
code is generated. However, the code generator must
be formally verified or qualified to support this argu-
ment, see section 6. The traceability between speci-
fications that represent requirements or the software
architecture is an interesting issue: natural language

6



requirements are often represented as a set of individ-
ual ‘shall’ statements which allows contemporary re-
quirement management tools to manage traceability
as a relation between these ‘shall’ statements. This is
different for VSE, because currently the user cannot
get a comprehensive output showing which axioms
from a certain theory are necessary to establish the
validity of a certain formula. With a coarser gran-
ularity, the development graph that displays refine-
ment links between deduction units could be used as
a means of showing traceability. It is also possible to
display, for a proved lemma (that includes the proof
obligations), the list of all lemmas and axioms that
are used in the proof. Certification authorities and
applicants must agree on a coarser interpretation of
traceability that is suitable to formal methods such
as VSE, and it is likely that additional guidance must
be developed on this topic.

Partitioning integrity is difficult to assure by test-
ing alone, so formal methods were considered as
candidate for proper assurance early on [21]. In
the Verisoft project, both VSE and VCC have been
used to prove partitioning properties: for VSE, we
adapted the approach of [13] to describe partition-
ing in PikeOS, and VCC has been used to verify cer-
tain spatial partitioning properties of the PikeOS ker-
nel [3].

Robustness as well as compliance with high-level
and low-level requirements are verification objectives
of the executable object code in relation to high-level
and low-level requirements. An accepted way to for-
mally verify such properties is to establish property
preservation between source and object code and then
to verify the properties for the source code. How-
ever, since the executable object code is not within
the scope of VSE and VCC, there are no means pro-
vided by these methods to show property preserva-
tion. Therefore, within the context of both VSE and
VCC, robustness as well as compliance of object code
to high-level and low level requirements, can only be
verified traditionally with testing.

Completeness and correctness of the output of the
integration process is not within the scope of VSE and
VCC and must therefore be assured by other means.

5.2 Coverage of Objectives specific to
Formal Methods

Table 1 summarises the tools’ coverage of objectives
specific to formal methods.

Correctness of Formal Analysis Cases, Procedures
and Results. VSE and VCC both check the for-
mal analysis cases automatically, in VSE as proof
obligations, in VCC as verification conditions. The
correctness of the proof obligations and verification
conditions does not depend on an error prone man-
ual process but on the correct implementation of the
tools instead. The subsequent proofs and results de-
pend on the correctness of the underlying calculus
and the correctness of the implementation of the the-
orem provers. The correctness of the calculus consti-

tutes the soundness of the formal methods, see be-
low. The correctness of theorem provers is discussed
in the context of tool qualification in section 6. The
proof procedure itself is standardised and repeatable
in both tools.

Formal Method Soundness. The concept of proofs
in VSE relies on a very small set of basic rules that
in turn are based on well known calculi. They have
been shown to be sound, and the proof obligations
generated by VSE have shown to be sufficient [19].

VCC’s specification language is quite rich to cover
most of the semantics of the C language. The full
justification of its soundness is still work-in-progress,
so at the time of writing we have rated its sound-
ness as “partial”. The fact that soundness of core
language parts [8, 9] and the memory model [10] has
been demonstrated as well as our experience with the
tool gives us optimism that these efforts will be com-
pleted.

Correctness of Requirement Formalisation. This
objective is concerned with the transition from infor-
mal statements to formal requirements. It can only be
assured by review, independent of the formal method.

5.3 Coverage of Verification of
Verification Objectives

Table 2 summarises the coverage of VSE and VCC
on verification of verification objectives.

Requirements Coverage. All requirements are for-
mulated in the notation of the formal methods. The
tools generate the formal analysis cases as proof obli-
gations on the complete set of requirements. There-
fore, each tool assures completeness of requirements
coverage.

Complete Coverage of Each Requirement. Proofs
generated by VSE cover all paths through the ab-
stract code that is a refinement from the specifica-
tions. The generated source code is a one-to-one map-
ping between abstract programs and generated source
code so that there is a corresponding path through
the abstract program specification. Proofs generated
by VCC also cover all paths through the source code.
For both tools, the proofs are generated by an au-
tomated theorem prover so all assumptions must be
made explicit – this is an advantage of the automatic
prover over a human prover. However, justification of
the assumptions must be verified by manual review.

Unlike the FMS’s unit proof example where there
are simply no assumptions, in the verification of re-
active systems assumptions often are of the form of
global invariants. In VCC formal analysis cases for
example, these global invariants are expressed as “re-
quires” clauses, such as the global invariants in [3,
Fig. 3] – their justification is manual [3, Sect. 3].

Completeness of the Set of Requirements. The
weakest interpretation of this objective is a syntactic
check that all input and all output variables of the
program are indeed included in at least one formal
statement. There is no tool support by either VSE or

7



Table 1: Coverage of Objectives specific to Formal Methods

Coverage
DO-178C Objective VSE VCC
Correctness of Formal Analysis Cases and Procedures full full
Correctness of Formal Analysis Results full full
Correctness of Requirement Formalisation no no
Formal Method Soundness full partial

Table 2: Coverage of Verification of Verification Objectives

Coverage
DO-178C Objective VSE VCC
Requirements Coverage full full
Complete Coverage of Each Requirement full full
Completeness of the Set of Requirements partial partial
Unintended Dataflow Detection no no
Dead Code Detection no no
Deactivated Code Detection full full

VCC for this check so it can only be performed man-
ually. However, we do not believe that the DO-178C
FMS regards this syntactic check as evidence for this
objective.

In order to show that the output is specified for
all input conditions, one can show that the disjunc-
tion of the preconditions (expressed in the specifica-
tion language) of all operations cover all admissible
input conditions. Conditions that are not permit-
ted must be excluded via assumptions, as discussed
above. These statements must be formulated manu-
ally – in VSE as a theorem, in VCC as an annotation.
It can then be proved with assistance of the theorem
provers of the tools.

In order to check that all output is covered by an
input condition, one must create a logical statement
that expresses that for all possible output of all out-
put variables there is a combination of input variables
and admissible input values that will produce the out-
put in a way that is covered by the specification.

Again, in VSE and VCC, this statement must be
prepared manually but can then be proved with as-
sistance of the tools’ theorem provers.

In summary: It is possible to formulate the com-
pleteness of the set of requirements as properties in
the formal notations of both methods and then to
prove these properties subsequently. There is how-
ever no support of both tools to automatically create
these properties from existing specifications so that
they must be created manually and then be reviewed
for completeness and adequacy, hence our judgement
“partial”.

We want to point out, that completeness in gen-
eral does not mean, that the complete set of possible
input values as defined by the type of input param-
eters and the whole space of system states has to be
covered. The operations to be specified may make
sense only for a restricted subset of possible inputs.
Then the specification will contain (implicit or ex-
plicit) preconditions, that describe, for which inputs

the specification holds. In particular this is the case
for VCC, where pointers can be used. Where this fol-
lows from properties of the system proved elsewhere,
it is reasonable to assume that these pointers are valid
and the structures they reference are well formed.

In a VSE state based specification, it may happen,
that you can show that some states are not reachable
from the initial state. Then it would not be neces-
sary to specify the behaviour of the system in these
unreachable states.

Unintended Dataflow Detection. Both methods
and their tools do not provide a dataflow analysis
capability, so that this objective must be ensured by
other means.

Dead Code Detection. It is not possible to detect
dead code with VSE. VCC provides the smoke test
heuristic to detect code that is unreachable by logi-
cal specification. However, also VCC is not able to
detect all dead code with the rigour intended in DO-
178C and as possible with testing. Therefore, dead
code detection must still rely on structural coverage
analysis.

Deactivated Code Detection. It is usually possible
to formally model the activation conditions of the de-
activated code with the VSE or VCC notation and
then to verify that the deactivated code is only exe-
cuted in the intended configurations.

6 Tool Qualification

The coverage of some DO-178C objectives relies on
the correct operation of the tools. DO-178 classi-
fies tools as software development tool or as soft-
ware verification tool. Software development tools are
tools whose output is part of the airborne software –
they therefore can introduce errors. The VSE code
generator is an example of a software development
tool. Software verification tools do not introduce er-
rors into the airborne software but may fail to detect

8



them. The proof engines of both VSE and VCC as
well as the generators of proof obligations and verifi-
cation conditions are software verification tools.

DO-178 requires tool qualification if processes are
reduced, eliminated or automated by the use of the
tool without verifying their output with the verifi-
cation methods listed in the standard. Some com-
mercial tools such as the SCADE tool suite of Esterel
Technologies offer qualification kits for their code gen-
erators. There are also a number of commercial ver-
ification tools, mostly for static analysis, structural
test coverage analysis, and code verification.

Since the proofs are too complex to be constructed
or even reviewed manually, the assurance of the tools’
correctness is essential for the acceptance of the meth-
ods and their tools in industry. There are some ap-
proaches to demonstrate the correctness of the tools:

1. Formal verification of the tools: This may be a
valid option for the VSE code generator. The
proof engines of VSE and VCC, however, are
very likely too complex for formal verification of
themselves.

2. Standard tool qualification with testing as main
verification method: This is feasible for the VSE
code generator because it is not too different
from some commercially available qualified code
generators. The theorem provers are far more
complex and it may be difficult to qualify them.

3. Another approach that has been proposed in the
literature [11, 15] is to use a proof checker on the
completed proofs. A proof checker is a much sim-
pler tool so that its formal verification or quali-
fication in accordance with DO-178C should be
achievable with reasonable effort. However, this
can only work if VSE and VCC can export the
proof object data in a format that the proof
checker can read.

4. Using different proof engines that employ differ-
ent proof strategies, heuristics or decision pro-
cedures (cross validation). However, the proof
engines must exchange proof data for which no
standardised exchange format exist. Moreover, it
is also possible that one prover may fail to prove
a theorem that has successfully been proved by
another prover.

5. Using service history as an argument for tool ac-
ceptance. The tools have been used in many
projects and have improved over a long period of
time. However, certification authorities will only
accept service history as qualification evidence
if the tools have been developed in compliance
with DO-178B section 12.3.5. This is very likely
not the case because the tools were developed in
an academic work environment.

A combination of test-based tool qualification,
proof checker and partial formal verification is proba-
bly the most viable approach at this time of writing.

For VCC for example, work that could be used for a
tool qualification has already started [4].

7 Summary

VSE is a very comprehensive method with a broad
scope. Its major disadvantage is the need for the
developer to master logical calculi such as ADT and
TLA. Moreover, he or she must also understand the
proof system in order to support the theorem prover
effectively.

VCC, on the other hand, can be used as a stand-
alone tool but can also be considered as an extension
to the C programming language which is a familiar
concept to developers, and can be executed within the
development environment (Microsoft Visual Studio).
A drawback, as a result of the relative ease of use, is
the limited scope of established VCC use. Moreover,
the language definition of VCC is still being worked
upon at this time of writing, and syntax and seman-
tics of the language are not fixed in a standard or
manual.

The authors believe that the largest obstacle for
using VSE and VCC in a certification context is their
lack of tool qualification.

Despite FMS annex FM.B we found the verification
of verification objectives difficult to apply to VSE and
VCC, probably because they have been carried over
from the testing method [5] and the standard tries to
be as generic as possible.

In our analysis approach, the executable object
code is out of scope for both methods. As a conse-
quence it is not possible to formally verify the robust-
ness and compliance of the executable objects code
with the high-level and low-level requirements for-
mulated in the methods annotations within the tools
alone, without using meta-arguments about property
preservation. Together with the lack of tool qualifica-
tion the examined formal methods can only be used
as a supplement to traditional verification methods.
This incurs additional costs that industry will only
accept for highly critical systems where testing alone
will not provide enough confidence.

A highly critical function where the application of
formal methods is advisable is for example the contin-
gency handling of a UAV when losing the command
and control link in civil airspace. We therefore pro-
pose to use VSE or VCC in a project like this to
obtain real experience of the usage of these formal
methods in a certification context.

This paper summarises the analysis of two of the
formal methods that have been used in the Verisoft
XT project, with respect to the objectives of the up-
coming DO-178C, and identifies their strengths and
weaknesses in that respect. It provides, in short form,
the arguments to be provided to certification author-
ities when applying these methods in a real avion-
ics project. The paper does not attempt to compare
both methods with other existing methods in order
to identify the most suitable method for this purpose.

9



However, the authors believe that this type of analy-
sis as well as the arguments can be applied to other
formal methods as well.

References

[1] S. Autexier, D. Hutter, B. Langenstein, H. Man-
tel, G. Rock, A. Schairer, W. Stephan, R. Vogt,
and A. Wolpers. VSE: Formal methods meet
industrial needs. International Journal on Soft-
ware Tools for Technology Transfer, Special issue
on Mechanized Theorem Proving for Technology,
3(1), 2000.

[2] C. Baumann, B. Beckert, H. Blasum, and
T. Bormer. Formal verification of a microker-
nel used in dependable software systems. In
B. Buth, G. Rabe, and T. Seyfarth, editors,
SAFECOMP 2009, volume 5775 of LNCS, pages
187–200, Hamburg, Germany, 2009. Springer.

[3] C. Baumann, T. Bormer, H. Blasum, and
S. Tverdyshev. Proving memory separation in
a microkernel by code level verification. In AM-
ICS / ISORC, 2011.

[4] T. Bormer and M. Wagner. Towards testing
a verifying compiler. In Bernhard Beckert and
Claude Marché, editors, FoVeOOS, volume KIT-
INFO-TR 2010-13. Karlsruhe Institute of Tech-
nology, Technical Report, 2010.

[5] D. Brown, H. Delseny, K. Hayhurst, and
V. Wiels. Guidance for using formal methods
in a certification context. In Proceedings of the
Embedded Real Time Software and Systems Con-
ference, Toulouse, pages 1/7 – 7/7, 2010.

[6] D. Brown and K. Hayhurst. SC-205/WG-71 In-
formation Paper: Formal Methods Technology
Supplement. Technical Report IP0602 Rev. I,
RTCA SC-205 / EUROCAE WG-71 Sub-Group
6, June 2009.

[7] L. Cheikhrouhou, G. Rock, W. Stephan,
M. Schwan, and G. Lassmann. Verifying a
chipcard-based biometric identification proto-
col in VSE. In Janusz Górski, editor, SAFE-
COMP 2006, volume 4166 of LNCS, pages 42–
56. Springer, 2006.

[8] E. Cohen, M. Moskal, W. Schulte, and S. To-
bies. A practical verification methodology for
concurrent programs. Technical Report MSR-
TR-2009-15, Microsoft Research, 2009. Available
at http://research.microsoft.com/vcc.

[9] E. Cohen, M. Moskal, W. Schulte, and S. Tobies.
Local verification of global invariants in concur-
rent programs. In Computer Aided Verification
(CAV), volume 6174 of LNCS, pages 480–494,
2010.

[10] E. Cohen, M. Moskal, S. Tobies, and W. Schulte.
A precise yet efficient memory model for C. Elec-
tron. Notes Theor. Comput. Sci., 254:85–103,
2009.

[11] L.M.G. de Vries. Applying formal methods in the
DO-178B certification process. Technical Report
NLR TP 95547, National Aerospace Laboratory
NLR, Amsterdam, The Netherlands, February
1996.

[12] E. W. Dijkstra. A Discipline of Programming.
Prentice-Hall, 1976.

[13] B. L. DiVito. A model of cooperative noninter-
ference for integrated modular avionics. In C. B.
Weinstock and J. Rushby, editors, Dependable
Computing for Critical Applications, volume 12,
pages 269–286, San Jose, CA, 1999. IEEE Com-
puter Society.

[14] D. Hutter, B. Langenstein, G. Rock, J. Siek-
mann, W. Stephan, and R. Vogt. Formal soft-
ware development in the verification support en-
vironment. Journal of Experimental and The-
oretical Artificial Intelligence, 12(4):383–406,
2000.

[15] J. Joyce. Use of machine-assisted theorem-
proving as a means of verifying critical software
in the context of RTCA DO 178C. In Workshop
on Theorem Proving in Certification, December
6 - 7, 2010, Cambridge, UK, December 2010.

[16] B. Langenstein, R. Vogt, and M. Ullmann. The
use of formal methods for trusted digital signa-
ture devices. In J. N. Etheredge and B. Z. Ma-
naris, editors, FLAIRS Conference, pages 336–
340. AAAI Press, 2000.

[17] D. Leinenbach and T. Santen. Verifying the
Microsoft Hyper-V hypervisor with VCC. In
A. Cavalcanti and D. Dams, editors, FM, volume
5850 of LNCS, pages 806–809. Springer, 2009.

[18] Microsoft Research. VCC homepage. http://

vcc.codeplex.com.

[19] W. Reif. Vollständigkeit einer modifizierten
Goldblattlogik und Ersetzung der Omega-Regel
durch Induktion. Master’s thesis, TU Karlsruhe,
1984.

[20] RTCA/EUROCAE. DO-178B/ED-12B Soft-
ware Considerations in Airborne Systems and
Equipment Certification, December 1992.

[21] J. Rushby. Partitioning in avionics architec-
tures: Requirements, mechanisms, and assur-
ance. Technical Report DOT/FAA/AR-99/58,
SRI International, 2000.

[22] Das Verisoft XT Projekt. http://www.

verisoftxt.de.

10


