
HAL Id: hal-02189909
https://hal.science/hal-02189909

Submitted on 20 Jul 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Interactive Cockpits Applications: Specification,
Prototyping and Validation using a Petri-nets based

Formalism
Arnaud Hamon, Célia Martinie, Philippe Palanque, Eric Barboni, David

Navarre, Adrienne Tankeu Choitat

To cite this version:
Arnaud Hamon, Célia Martinie, Philippe Palanque, Eric Barboni, David Navarre, et al.. Interactive
Cockpits Applications: Specification, Prototyping and Validation using a Petri-nets based Formalism.
European Congress on Embedded Real Time Software and Systems (ERTS 2012), 3AF Midi-Pyrénées:
the French Society of Aeronautic and Aerospace; SEE: the French Society for Electricity, Electronics,
and Information & Communication Technologies, Feb 2012, Toulouse, France. �hal-02189909�

https://hal.science/hal-02189909
https://hal.archives-ouvertes.fr


Interactive Cockpits Applications: Specification, Prototyping 

and Validation using a Petri-nets based Formalism 

Arnaud Hamon, Célia Martinie, Philippe Palanque, Eric Barboni, David Navarre, Adrienne Tankeu-

Choitat 
ICS-IRIT 

University Paul Sabatier (Toulouse 3), 
118, route de Narbonne, 31062 Toulouse Cedex 4, France 

{lastame}@irit.fr 
 

ABSTRACT 

The purpose of ARINC 661 specification is to define 
interfaces to a Cockpit Display System (CDS) which is used in 
many types of aircrafts cockpits such as A380 from Airbus, 
B787 from Boeing or Falcon 2000D from Dassault Aviation. 
ARINC 661 provides precise information for communication 
protocol between application (called User Applications) and 
user interface elementary components (called widgets). It also 
provides a detailed description of the widgets themselves 
(attributes, events …). However, in ARINC 661, very little 
information is given about the behaviour of these widgets and 
about the behaviour of an application made up of a set of such 
widgets. This paper presents a quick overview of the formal 
description technique called Interactive Cooperative Objects 
(ICOs) and its application for modelling the various elements 
of ARINC 661 specification. This formal description 
technique defines (in a precise and non-ambiguous way) all the 
elements of an interactive application compliant with ARINC 
661 specification and especially their behavioural aspects 
which is definitively overlooked in the standard. The 
application of the formal description technique is shown on an 
interactive application to be used in an interactive cockpit. 
This application supports pilots’ activities while cooperating 
with Air Traffic Controllers (ATC) using a Data-Link (DL) 
communication technology. Such communication must follow 
a predefined protocol called CPDLC (Control-Pilot Data Link 
Communication). Using this application as a case study, we 
present how ICOs are used for modelling Interactive Widgets, 
User Applications and User Interface servers (in the ARINC 
661 specification context). Lastly, we present briefly how such 
models can be exploited for verification and validation 
purposes of interactive cockpits applications. 

Keywords 

ARINC 661, Formal methods, Interactive Systems 

INTRODUCTION 

Interactive applications embedded in cockpits, is the current 
trend of evolution promoted by several aircraft manufacturer 
both in the field of civil and military systems (Faerber et al. 
2000, Marrenbach & Kraiss 2000). With respect to technology 
currently deployed this evolution might be seen as a small step 
forward. Reality is very different. Embedding interactive 
application in civil and military cockpit is expected to provide 
significant benefits to the pilots by providing them with easier 
to use and more efficient applications increasing the 
communication bandwidth between pilots and systems. 
However, this technological enhancement comes along with 

several problems that have to be taken into account with 
appropriate precautions. Questions such as: what kind of 
interactive components should be used in a cockpit? How to 
design such embedded interactive applications? What is the 
impact of such interaction techniques on the reliability of the 
application? What is the impact on the certification process? 

Such questions have been raised since the mid 90s and there is 
already an ongoing standardization process. ARINC 
specification 661 (see next section), aims at providing a 
common ground for building interactive applications in the 
field of aeronautical industry. However, this standard only 
deals with part of the issues raised. The aim of this paper is to 
propose a formal description technique to be used as a 
complement to ARINC 661 for the specification, design, 
implementation and validation of interactive application.  

The paper is structured as follows. Next section introduces 
ARINC 661 specification to define interfaces for a Cockpit 
Display System. It presents the content of the specification but 
also the parts that are left underspecified and that be dealt with 
precisely in order to build ARINC-661-compliant interactive 
applications. Section 3 presents the ICO formalism, a formal 
description technique for the design of safety critical 
interactive applications. This description technique has already 
been applied in the field of Air Traffic Control application. Its 
applicability to cockpit display system and its compatibility 
with ARINC specification 661 is presented in section 4 by 
means of a case study. This case study is used in the context of 
a ground-air data-link communication application embedded in 
the MCDU (Multifunction Control and Display Unit) 
equipment. Last section of the paper deals with conclusions 
and perspectives to this work.  

ARINC 661 

Purpose and Scope 

The purpose of ARINC 661 specification (ARINC 661, 2002) 
is to define interfaces to a Cockpit Display System (CDS) used 
in all types of aircraft installations. Among the objectives of 
this standard we find: 

• The minimization of the cost of adding new display function 
to the cockpit during the life of an aircraft. 

• The introduction of interactivity in the cockpit, providing a 
basis to standardize the Human Machine Interface (HMI) in 
the cockpit. 

ARINC 661 defines two interfaces between the CDS and the 
aircraft systems to provide a clear separation between them. 
The first interface is between the avionics equipment and the 



display system graphics generators, and the second is a way to 
define the symbology and its related behavior. The CDS 
provides graphical and interactive services to user applications 
(UA) within the flight deck environment. A user application is 
then defined as a system that has a two way communication 
with the CDS: 

• Transmission of data to the CDS, which can be displayed to 
the flight deck crew. 

• Reception of input (as events) from interactive items 
managed by the CDS. 

In the field of interactive systems engineering, interactive 
software architectures such as Seeheim (Pfaff 83) or Arch 
(Gram & Cockton 96) promote a separation of the interactive 
system in at least three components: presentation part (in 
charge of presenting information to and receiving input from 
the users), dialogue part (in charge of the behaviour of the 
system i.e. describing the available interface elements 
according to the current state of the application) and functional 
core (in charge of the non interactive functions of the system).  

The CDS part may be seen as the presentation part of the 
whole system, provided to crew members, and the set of UAs 
may be seen as the merge of both the dialogue and the 
functional core of this system. ARINC 661 dissociates, on one 
side, input and output devices (provided by avionics 
equipment manufacturers) and on the other side the user 
applications (designed by aircraft manufacturers). Consistency 
between these two parts is maintained through the 
communication protocol defined by ARINC specification 661. 

What may be found in ARINC specification 661 is: 

• The definition of the software interface between the CDS and 
the UAs. 

• The expression of airline desires in the form of guidance 
material. Designers should interpret this standard in terms of 
the “need” for specific design practices rather than practices 
that “must” be met under all circumstances. 

What may not be found in ARINC 661 is: 

• The specification the “look and feel” of any graphical 
information. 

• The description of what must be done to design a CDS. 

User Interface Components in ARINC 661 

The communication between the CDS and UAs is based on the 
identification of user interface components hereafter called 
widgets. ARINC 661 defines a set of 42 widgets that belong to 
6 categories. Widgets may be any combination of “container”, 
“graphical representation” of one or more data, “text string” 
representations, “interactive”, dedicated to “map management” 
or may “dynamically move”. 

In ARINC 661, widgets are defined by: 

• one identifier, 

• states classified in four levels (visibility, inner state, ability, 
visual representation), 

• a description in six parts (definition section, parameters 
table, creation structure table, event structure table, run-time 
modifiable parameter table, specific sections). 

The main drawback of this description is the lack of 
description of the behaviour itself. Even if states are partially 
described, dynamic aspects such as state changes are 
informally described.  

As stated in ARINC 661, the main paradigm is here based on 
this observation: 

“A UA should not have any direct access to the visual 
representations. Therefore, visual presentations do not 
have to be defined within the ARINC 661 interface 
protocol. Only the ARINC 661 parameter effects on 
graphical representation should be described in the 
ARINC 661 interface. The style guide defined by the 
OEM should describe the “look and feel” and thus, 
provide necessary information to UAs for their HMI 
interface design.” 

That implies to clearly define the communication between 
objects (widgets and UAs), and clearly define the impact of 
state changes on the presentation of these objects. 

As ARINC 661 is devoted to be used in aircraft cockpit, the 
certification problems are raised. Therefore our main 
contribution is to use an already existing formal description 
technique (ICO) to precisely raise ambiguities in ARINC 661.  

ICO FORMALISM 

Informal Presentation 

The aim of this section is to recalls the main features of the 
ICO (Interactive Cooperative Objects) formalism that we have 
proposed for the formal description of interactive system. The 
formalism will be used for the case studies and performance 
evaluation in the next sections. We encourage the interested 
reader to look at (Bastide et al., 95), (Bastide et al., 99) and 
(Navarre et al., 09) for a complete presentation of this formal 
description technique. 

The Interactive Cooperative Objects (ICOs) formalism is a 
formal description technique dedicated to the specification of 
interactive systems (Bastide et al., 98). It uses concepts 
borrowed from the object-oriented approach (dynamic 
instantiation, classification, encapsulation, inheritance, 
client/server relationship) to describe the structural or static 
aspects of systems, and uses high-level Petri nets (Genrich, 91) 
to describe their dynamic or behavioural aspects. 

ICOs are dedicated to the modeling and the implementation of 
event-driven interfaces, using several communicating objects 
to model the system, where both behaviour of objects and 
communication protocol between objects are described by 
Petri nets. The formalism made up with both the description 
technique for the communicating objects and the 
communication protocol is called the Cooperative Objects 
formalism (CO and its extension to CORBA COCE (Bastide et 
al., 2000)). 

In the ICO formalism, an object is an entity featuring four 
components: a cooperative object with user services, a 
presentation part, and two functions (the activation function 
and the rendering function) that make the link between the 
cooperative object and the presentation part. 

Cooperative Object (CO) part: a cooperative object models the 
behaviour of an ICO. It states how the object reacts to external 
stimuli according to its inner state. This behaviour, called the 



Object Control Structure (ObCS) is described by means of 
high-level Petri net. A CO offers two kinds of services to its 
environment. The first one, described with CORBA-IDL 
(OMG, 98), concerns the services (in the programming 
language terminology) offered to other objects in the 
environment. The second one, called user services, provides a 
description of the elementary actions offered to a user, but for 
which availability depends on the internal state of the 
cooperative object. 

Presentation part: the Presentation of an object states its 
external appearance. This Presentation is a structured set of 
widgets organized in a set of windows. Each widget may be a 
way to interact with the interactive system (user  system 
interaction) and/or a way to display information from this 
interactive system (system  user interaction). 

Activation function: the user  system interaction (inputs) 
only takes place through widgets. Each user action on a widget 
may trigger one of the ICO's user services. The relation 
between user services and widgets is fully stated by the 
activation function that associates to each couple (widget, user 
action) the user service to be triggered. 

Rendering function: the system  user interaction (outputs) 
aims at presenting to the user the state changes that occurs in 
the system. The rendering function maintains the consistency 
between the internal state of the system and its external 
appearance by reflecting system states changes. 

ICOs are used to provide a formal description of the dynamic 
behaviour of an interactive application. An ICO specification 
fully describes the potential interactions that users may have 
with the application. The specification encompasses both the 
"input" aspects of the interaction (i.e. how user actions impact 
on the inner state of the application, and which actions are 
enabled at any given time) and its "output" aspects (i.e. when 
and how the application displays information to the user). 

An ICO specification is fully executable, which gives the 
possibility to prototype and test an application before it is fully 
implemented (Navarre et al. 2000). The specification can also 
be validated using analysis and proof tools developed within 
the Petri nets community and extended in order to take into 
account the specificities of the Petri net dialect used in the ICO 
formal description technique. This formal specification 
technique has already been applied in the field of Air Traffic 
Control interactive applications. A case study on this field can 
be found in (Navarre et al. 2002). 

Using ICO in ARINC 661 

As written in the description of ARINC 661, the need for 
precise specification occurs both at widget and UA levels. As 
shown in the case study (next section) ICO formal description 
technique can provide support for both levels. 

At widget level, ICO must be used to describe the inner 
behaviour of the widgets and to describe the impact of state 
changes on their external presentation. 

At user application level, ICO must be used to describe the 
behaviour of the application itself and the impact of state 
changes in term of widget parameters modification. 
Next section shows the application of the formal description 
technique to a simple application compliant with ARINC 661. 

CASE STUDY 

In this section we focus on an application based on CPDLC 
(Controller-Pilot Data Link Communications) (ICAO, 91). 

“Voice radio messages between pilots and air traffic 
controllers are exchanged continuously. The CPDLC 
system reduces the number of voice messages by using a 
special electronic link for routine messages. These 
messages are digitally displayed on a computer screen in 
the cockpit. Shifting routine transmissions from voice to 
data link communications frees up voice frequencies, 
reduces delays and potential misunderstandings”. 

The application we propose to model allows the pilot to reply 
to clearances sent by the air traffic controller (ATC). The pilot 
may select a clearance and then provide an answer to that 
particular clearance. ICAO CPDLC provides precise syntax 
for communication between pilots and ATC. Indeed, 
depending on the type of the clearance sent, the possible 
answers are predefined. For instance: 

• For a clearance of the type “CLIMB AND MAINTAIN 
FL330”, that means the pilot is requested to reach flight 
level 330, the possible answers are “WILCO”, if the pilot 
accepts the request or “UNABLE”, if he does not. 

• For a clearance of the type “AT FL330 REPORT”, the pilot 
answers “ROGER” when the requested flight level is 
reached. 

For space reasons we only present in this paper an application 
featuring few widgets and supporting few tasks. However, the 
specification covers the entire application both at the widgets 
and the User Application levels.  As the User Application 
exploits information from the widgets, next section deals with 
the widget level.  

Specification of widgets 

In this section we first start by recalling the definition of 
widgets in ARINC 661 and then show how ICO can be 
fruitfully used to formally represent their detailed behaviour. 

As written in the section “Widgets in ARINC 661”, a widget is 
defined with an identifier (widget type, widget identifier and 
widget parent), states (informal description of the relationship 
between these states) and a six other description parts, detailed 
hereafter.  

1. Definition section. This section provides general 
information on the widget such as the categories it belongs to, 
a functional description of its behaviour and restrictions (if 
any) with respect to ARINC 661 principles. For instance, the 
definition section of the ARINC 661 PushButton is: 

Categories: 
Graphical representation, Interactive, Text string. 

Description: 
A PushButton widget is a momentary switched button, 
which enables a crew member to launch an action. A 
PushButton has only one inner state, so there is no need 
for an inner state parameter. 

Restriction: 
None. 

2. Parameters table. This table (not presented here for space 
reasons) provides the list of the widget parameters divided into 



two categories (commonly used parameters and specific 
parameters). 

Example of such parameters are: The X position of the widget 
reference position, Ability of the widget to be activated, …). 

3. Creation structure table. This table (not presented here for 
space reasons) presents the parameters required for the 
instantiation of the widget crossed with their type, size and 
restrictions on value (if any). 

4. Event structure table. This table presents the event 
notification structure (see Table 1 for the PushButton one). It 
describes the parameters that may be hold by the events. 

Event structure Size (bits) Value/Description 

EventId 16 A661_EVT_SELECTION 

Table 1 –PushButton event structure  

5. Run-time modifiable parameter table. This table presents 
the sets of parameters that may be changed at run-time. Table 2 
presents the runtime modifiable parameters table of the 
PushButton. 

Parameter Type Size Parameter Ident Type of 
structure 

Enable Uchar 8 A661_ENABLE … 

Visible Uchar 8 A661_VISIBLE … 

LabelString String {32}+ A661_STRING … 

StyleSet Ushort 16 A661_STYLE_SET … 

Table 2 –PushButton Runtime Modifiable Parameters 

6. Specific sections. This section presents additional 

information to complete the widget definition if necessary. 
This information may be additional type definition or 
dedicated data structures. 

7. Additions to ARINC 661 description. The main drawback 
of this description is the lack of specification of state changes 
and their impact on the presentation of the widget. In order to 
be able to build reliable and certifiable interactive software a 
precise and unambiguous specification is required. We exploit 
here the ICO formal description technique presented above. As 
stated earlier, the behaviour of a widget is made up with a 
CORBA-IDL software interface, as shown by Figure 2, and a 
high-level Petri net, as shown in Figure 1.  

 interface A661_PUSH_BUTTON { 

  void setEnable(in char A661_ENABLE); 

  void setVisible(in char A661_VISIBLE); 

  void setStyleSet(in short A661_STYLE_SET); 

  void setLabelString(in string A661_STRING); 

 }; 

Figure 2 - Corba-IDL software interface for ARINC 661 

PushButton 

The Corba-IDL software interface defines what services the 
concerned object provides. For the description of ARINC 661 
widgets, this software interface defines the run-time modifiable 
parameters: one definition of a “set” method for one run-time 
modifiable parameter. For instance, the ARINC 661 
PushButton provides a run-time modifiable parameter, called 
Enable of the type “char”, as shown by Table 2. In its Corba-

  

Figure 1 – Excerpt of the Behaviour of the ARINC 661 PushButton 



IDL definition, this parameter is represented by the method 
“void setEnable(in char A661_ENABLE)”.  

In the High-level Petri net model in Figure 1 the complete and 
unambiguous description of the widget is given. Places 
(depicted as ellipses) represent the state variables and the 
distribution of tokens (small grayed-out circles) in the places 
represent the current state of the model. State changes occur 
through the "firing" of transitions (depicted as rectangles) that 

remove tokens from the input places and deposit tokens in the 
output. At firing time the values of tokens may be changed 
(according to the code of the transition). Widget parameters 
are held by tokens in places. Depending of the repartition and 
value of these tokens, special transitions (called synchronized 
transitions) may be fired, and when fired, these transitions 
raise an event (those described in the corresponding ARINC 
specification). Therefore, by specifying the widget behaviour, 
we clearly define the conditions under which a widget raises an 
event. 

The second element of the ICO description is the definition of 
the activation and rendering functions in order to model the 
impact of state changes on the external presentation of the 
widget. Compliantly with ARINC 661, we do not describe here 
the “look and feel” of the widget, but show what must be 
represented. Indeed, the important element is what information 
has to be presented to the pilot and when to present it.  

Table 3 shows an excerpt of the rendering method of the 
PushButton. For instance, it describes that when a token enters 
the place Enabled, the PushButton must be shown as enabled. 

ObCS Item Event Rendering method 

Place LabelString Token <x> enters Display <x> 

Place Enabled Token enters Show as enabled 

Place Enabled Token exit Show as disabled 

Table 3 – Excerpt of PushButton rendering function  

Specification of the application 

The application we focus on takes place in a MCDU 

(Multifunction Control and Display Unit) as the one proposed 
by Thales Avionics (a high resolution 6in x 8in liquid crystal 
display). It is a one page application (see Figure 4 a) for 
instance) dedicated to the handling of the ATC clearances. 

This application is made up with a ListBox that contains the 
clearances received, and 5 PushButtons (one to answer 
“WILCO” to the selected clearance, one for “UNABLE”, one 
for “ROGER”, one for “MONITOR” and one to request a 
voice contact). Figure 4 shows possible graphical 
representation of this application, depending on crew actions. 

 
Figure 3 – Complete Behaviour of the User Application 

 

 



  
(a) (b) 

Figure 4 - Possible graphical representation of the considered 

User Application: (a) no clearances are selected, (b) a clearance 

type (wilco/unable) is selected 

The main recommendation of ARINC 661 about User 
Application description is to respect the communication 
protocol between UAs and widgets. As described above, UA 
may only modify widgets through their parameters, and 
widgets impacts on UAs through the raising of events. The 
ICO behavioural description presented in Figure 3 goes beyond 
by providing a complete description of the behaviour of such 
application while remaining compliant with ARINC 661 
recommendations.  

Figure 3 presents the behaviour of the considered User 
Application, for which several synchronized transitions are 
linked to widgets. For instance, the transitions called 
WILCO_T1 and WILCO_T2 (that represents the user service 
WILCO) will be fired when the event A661_EVT_SELECTION 
from the PushButton Button_Wilco occurs. This relationship is 
described by the activation function presented in Table 4.  

Widget Event Rendering 

Method 

User service 

List_Clearances A661_EVT_ 
SEL_ENTR
Y_CHANGE 

setClearancesEnable selectMessage 

Button_Wilco A661_EVT8 
SELECTION 

setBWilcoEnable WILCO 

Button_Unable A661_EVT8 
SELECTION 

setBUnableEnable UNABLE 

Button_Roger A661_EVT8 
SELECTION 

setBRogerEnable ROGER 

Button_Monitor A661_EVT8 
SELECTION 

setBMonitorEnable MONITOR 

Button_Voice A661_EVT8 
SELECTION 

setBVoiceEnable requestVoice 
Communication 

Table 4 - Activation function of the User Application 

Figure 5 shows the information flow (compliant with ARINC 
communication protocol for cockpit display systems) starting 
from user actions on widgets and finishing with the reply to a 
received clearance. Elements taking part in this information 
flow are: 

• data link transmitter/emitter, 

• CDS,  

• activation function, rendering function and behaviour of the 
listBox, 

• activation function, rendering function and behaviour of the 
pushbutton, 

• activation function, rendering function and behaviour of the 
user application. 

On this diagram, user clicks on the listbox to select a clearance 
and then clicks the PushButton WILCO to send her answer to 
the controller. 

The activation function uses rendering method to represents 
the enabling and disabling of widgets. For instance, 
Button_Wilco and the user service WILCO are linked. When 
the user service becomes enabled or disabled, the method 
called setBWilcoEnabled is called. When called, this method 
modifies the run-time modifiable parameter Enable of the 
corresponding PushButton that implies the change of the 
aspect of this button. 

 

 

Figure 5 - Sequence diagram to describe a clearance selection 

followed by a reply WILCO to that clearance 

As explained in the ICO description part, the rendering 
function provides a link between state changes of the 
interactive system described and presentation changes. As 
states of a system modeled with Petri Nets are represented by 
the distribution of tokens, presentations changes are linked to 
tokens moves. This relationship is represented by the rendering 
function, for which Table 5 gives an example. 

ObCS Item Event Rendering 

method 

Place ReceivedMessages Token <t, m> enters Show 

Place ReceivedMessages Token <t, m> exits Show 

Place SelectedMessage Token <t, m> enters ShowSelected 

Table 5 - Rendering function of the User Application 

For instance, this rendering function shows that when a token 
enters or exits place ReceivedMessages, rendering method 
Show is called. A description of this method, in a pseudo 
coding language) may be the following one: 

void Show (Marking mark, token tok) { 

 list.setLabelString(convert mark to A661_StringArray); } 

where labelString is a run-time modifiable parameter of 
ARINC 661 listBox. 

DataLink 
emitter / 

transmitter CDS ListBox 
User 

Application 

B RF AF B RF AF 

ButtonWilco 

B RF AF 

Clearance Sent 

User 

Select 

User 

Click 

Legend: 

 AF: Activation function 
 B  : Behaviour 
 RF: Rendering Function  

event_click 
user_select 

A661_EVT_SEL_CHANGE 

setBWilcoEnable 

setEnable(A661_TRUE) 

showEnabled 

event_click 
user_click 

A661_EVT_SELECTION 
sendClearance(“WILCO”) 

setBWilcoEnable 

setEnable(A661_FALSE) 

showDisabled 

show(marking) 

List.setStringLabel(markingToArray) 

show(A661_STRING_ARRAY) 



CONCLUSION AND PERSPECTIVES 

This paper has presented the use of a formal description 
technique for describing interactive components in ARINC 
specification 661. Beyond that, we have shown that this formal 
description technique is also adequate for interactive 
applications embedding such interactive components. One of 
the advantages of using the ICO formal description technique 
is that it provides additional benefits with respect to other 
notations such as statecharts as proposed in (Sherry et al. 
2002). Thanks to its Petri nets basis the ICO notations makes it 
possible to model behaviours featuring an infinite number of 
states (as states are modeled by a distribution of tokens in the 
places of the Petri nets). Another advantage of ICOs is that 
they allow designers to use verification techniques at design 
time as this has been presented in (Navarre et al. 2002). These 
verification techniques are of great help for certification 
purposes.  

We have recently extended ICO with fault-tolerant 
mechanisms to improve resilience of interactive when natural 
faults are occurring (Tankeu-Choitat et al. 2011). This has 
been done by exploiting the COM/MON architecture and 
coupling it with the modeling capability offered by ICOs.  

We are currently developing techniques for providing support 
to certification processes by allowing verification of 
compatibility between the behavioural description of the 
interactive application and task model describing nominal or 
unexpected pilots behavior (Barboni et al 2010). Support is 
also provided through the verification of interactive system 
safety and liveness properties such as the fact that whatever 
state the system is in there is always at least one interactive 
element available.  

ACKNOWLEDGEMENTS 

This work is partly funded by Airbus under the contract 
CIFRE PBO D08028747-788/2008 and R&T CNES (National 
Space Studies Center) Tortuga R-S08/BS-0003-029. Special 
thanks to Yannick Deleris for his support. 

REFERENCES 

ARINC, ARINC 661 specification: Cockpit Display System 
Interfaces To User Systems, Prepared by AIRLINES 
ELECTRONIC ENGINEERING COMMITTEE, Published by 
AERONAUTICAL RADIO, INC, april 22, 2002. 

Barboni Eric, Ladry Jean-François, Navarre David, Palanque 
Philippe, Winckler Marco Antonio. Beyond Modelling: An 
Integrated Environment Supporting Co-Execution of Tasks 
and Systems Models (regular paper). In : ACM SIGCHI 
conference Engineering Interactive Computing Systems (EICS 
2010), Berlin, Allemagne, 19/06/2010-23/06/2010, ACM 
SIGCHI, p. 143-152, 2010. 

Barboni Eric, Conversy Stéphane, Navarre David & Palanque 
Philippe. Model-Based Engineering of Widgets, User 
Applications and Servers Compliant with ARINC 661 
Specification. Proceedings of the 13th conference on Design 
Specification and Verification of Interactive Systems (DSVIS 
2006), Dublin, Ireland, July 2006, Lecture Notes in Computer 
Science, Springer Verlag. p25-38 

Bastide, Rémi, and Palanque, Philippe. A Petri-Net Based 
Environment for the Design of Event-Driven Interfaces . 16th 

International Conference on Applications and Theory of Petri 
Nets, ICATPN'95, Torino, Italy. Giorgio De Michelis, and 
Michel Diaz, Volume editors. Lecture Notes in Computer 
Science, no. 935. Springer (1995) 66-83. 

Bastide, Rémi, and Palanque, Philippe. A Visual and Formal 
Glue Between Application and Interaction. Journal of Visual 
Language and Computing 10, no. 3 (1999) 

Bastide, Rémi, Palanque, Philippe, Le, Duc-Hoa and Muñoz, 
Jaime. Integrating Rendering Specifications into a Formalism 
for the Design of Interactive Systems. in 5th Eurographics 
Workshop on Design, Specification and Verification of 
Interactive Systems, DSV-IS'98, Abingdon, U. K. Springer-
Verlag (1998) 

Bastide, Rémi, Sy, Ousmane, Palanque, Philippe and Navarre, 
David. Formal Specification of CORBA Services: Experience 
and Lessons Learned. ACM Conference on Object-Oriented 
Programming, Systems, Languages, and Applications 
(OOPSLA'2000), Minneapolis, Minnesota USA. ACM Press 
(2000) 

Faerber R. Vogl T. & Hartley D. Advanced Graphical User 
Interface for Next Generation Flight Management Systems. In 
proceedings of HCI Aero 2000, pp. 107-112. 

Gram, Christian; Cockton, Gilbert, Editors. Design principles 
for interactive software. Chapman et Hall ed.1995. 

Genrich, H. J. Predicate/Transitions Nets. High-Levels Petri 
Nets: Theory and Application . K. Jensen and G. Rozenberg 
(Eds.)Berlin: Springer Verlag (1991) pp. 3-43. 

ICAO, Guidance Material on CNS/ATM Operations in the 
Asia/Pacific Region, http://www.icao.org, International Civil 
Aviation Organization, DOC 4444 PANS/RAC, 1991. 

Marrenbach J. & Kraiss K-F. Advanced Flight Management 
System: A New Design and Evaluation Results. In proceedings 
of HCI Aero 2000, pp. 101-106.  

Navarre, David, Palanque, Philippe, Bastide, Rémi and Sy, 
Ousmane. Structuring Interactive Systems Specifications for 
Executability and Prototypability. 7th Eurographics Workshop 
on Design, Specification and Verification of Interactive 
Systems, DSV-IS'2000, Limerick, Ireland. Lecture Notes in 
Computer Science. 

Navarre, David; Palanque, Philippe & Bastide, Rémi. 
Reconciling Safety and Usability Concerns through Formal 
Specification-based Development Process HCI-Aero'02 MIT, 
USA, 23-25 October, 2002. 

Navarre David, Palanque Philippe, Ladry Jean-François, 
Barboni Eric. ICOs: a Model-Based User Interface Description 
Technique dedicated to Interactive Systems Addressing 
Usability, Reliability and Scalability. Transactions on 
Computer-Human Interaction, ACM SIGCHI, Vol. 16 N. 4, p. 
1-56, 2009 

OMG. The Common Object Request Broker: Architecture and 
Specification. In CORBA IIOP 2.2.Framingham 1998. 

User Interface Management Systems, Eurographics Seminar, 
Seeheim, 1983. Gunther Ptaff, editor. Springer Verlag, 1983. 

Sy, Ousmane, Bastide, Rémi, Palanque, Philippe, Le, Duc-Hoa 
and Navarre, David. PetShop: a CASE Tool for the Petri Net 
Based Specification and Prototyping of CORBA Systems. 20th 



International Conference on Applications and Theory of Petri 
Nets, ICATPN'99. 

Sherry L., Polson P., Feary M. & Palmer E. When Does the 
MCDU Interface Work Well? Lessons Learned for the Design 
of New Flightdeck User-Interface. In proceedings of HCI Aero 
2002, AAAI Press, pp. 180-186.  

Tankeu-Choitat Adrienne, Fabre Jean-Charles, Palanque 
Philippe, Navarre David, Deleris Yannick, Fayolas Camille. 
Self-Checking Components for Dependable Interactive 
Cockpits using Formal Description Techniques (regular 
paper). 17th Pacific Rim Dependable Computing Conference 
(PRDC 2011), Pasadena, US, IEEE, 12-15th December 2011. 

 


