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ABSTRACT 

The paper describes a new methodology for simulation and 

evaluating human-machine interaction in aircraft cockpits 

with the objective to assess the impact of a new system 

design on overall flight crew performance. The 

methodology shall allow to assess multiple performance 

criteria and to derive needed design improvements more 

accurately and earlier (in the development process) and with 

reduced effort compared to existing approaches. The main 

technical enabler is a cognitive model of pilot behaviour. 

The focus of the paper is on the application of the new 

methodology for simulating and evaluating the interaction 

with a 4D Advanced Flight Management System. 
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INTRODUCTION 

Many systems that incorporate Embedded Systems interact 

with human operators. This holds for aircraft, cars and ships 

and even for autonomous aerial vehicles. In systems like 

these the human-machine interaction plays a major role for 

guaranteeing transparency of the systems’ internal 

processing. It is a prerequisite for the users’ trust in the 

functionality and services. 

In the European project HUMAN1 we developed a new 

methodology for evaluating human-machine interaction in 

aircraft cockpits with the objective to assess the impact of a 

new system design (the target system) on overall flight crew 

performance. We considered temporal behaviour (e.g. 

reaction time), attention allocation and potential human 

errors as valuable evaluation parameters. The new 

methodology shall allow to assess these multiple criteria and 

to derive needed design improvements (incl. safety nets to 

recognize, prevent and recover from human errors) more 

accurately and earlier (in the development process) and with 

reduced effort compared to existing approaches. The main 

technical enabler is a cognitive model of crew behaviour, 

called CASCaS (Cognitive Architecture for Safety Critical 

Task Simulation). Cognitive models are a means to make 

knowledge about characteristic human capabilities and 

limitations readily available to system designers in an 

executable form. They have the potential to automate parts 

of the analysis of human factors because they offer the 

                                                           
1 Model-based Analysis of Human Errors during Aircraft Cockpit 

System Design; www.human.aero 

opportunity to simulate the interaction with cockpit systems 

under various conditions and to predict cognitive processes 

like the assessment of situations and the resulting choice of 

actions including erroneous actions. In this way they can be 

used as a partial “substitute” for human pilots in early 

development stages when design changes are still feasible 

and affordable. 

Model- and simulation-based approaches are already 

well-established for many aspects of the study, design and 

manufacture of a modern airliner (e.g., aerodynamics, 

aircraft systems, engines). Our work extends the modelling 

approach to the interaction of flight crews with cockpit 

systems. 

In HUMAN the cognitive pilot model has been developed 

and validated based on experimental data which has been 

recorded in flight simulator experiments with 16 human 

pilots. 

For the development of the new methodology we started 

with a careful analysis of the process defined in the ARP 

5056 documents. Then we assigned the tools developed in 

HUMAN to steps in this process. This paper describes the 

new methodology focusing on three new software tools: the 

cognitive architecture CASCaS, a procedure modelling tool 

called PED and a data analysis suite. We show how the new 

methodology has been applied to simulate and evaluate 

human-machine interaction with an Advanced 4D Flight 

Management System (AFMS) developed by the German 

Aerospace Center (DLR), Braunschweig. 

RELATED WORK 

The idea to use cognitive models to predict pilot 

performance including pilot errors is not new. The recently 

finished Human Performance Modelling (HPM) element 

within the System-Wide Accident Prevention project of the 

NASA Aviation Safety Program performed a comparison of 

error prediction capabilities of five models [2]: ACT-R, 

Air-MIDAS, D-OMAR, IMPRINT/ ACT-R and A-SA. It 

has been demonstrated that each of these models is able to 

predict some phenomena of pilot performance, but none of 

them covers a sufficiently complete set of predictions. With 

CASCaS we strive to consider exactly those cognitive 

processes that are relevant for design of safety critical 

systems in the aircraft domain. The innovative aspect of 

CASCaS is the prediction of human errors resulting from an 

interaction of (1) learned mental models (Routine 

Learning/Learned Carelessness), (2) actual limited cognitive 

performance and (3) safety nets in aircraft cockpit design 

(e.g. flashing indication, alerts and crew interaction). 



TARGET SYSTEM 

Within HUMAN we applied the cognitive-model based  

methodology for the analysis of the interaction between the 

Pilot Flying and an Advanced 4D Flight Management 

System (AFMS) developed by DLR, Braunschweig, 

Germany. It supports onboard management of flight 

trajectories and the negotiation of trajectory changes with 

Air Traffic Control (ATC) via Data Link. The AFMS is 

complemented with an Airborne Human-Machine Interface 

(AHMI) which represents flight trajectories on a moving 

map with their status being graphically augmented by 

different colours and shapes. It provides a horizontal view 

and a vertical view. The horizontal view shows the lateral 

trajectory along its waypoints. The vertical view shows the 

altitude and timing profile of the active trajectory including 

constraints. The pilots also get information on the violation 

of altitude and timing constraints in case a modified flight 

plan uplinked by the ATC cannot be fulfilled by the aircraft.  

This system reflects a recent trend of introducing new 

interaction technologies like graphical manipulation into the 

aircraft cockpit. In order to leverage the corresponding new 

air traffic management concept, efficient and robust flight 

procedures are needed. Safe operation of aircraft is based on 

normative flight procedures (standard operating procedures) 

called “Normative Activities”.  

METHODOLOGY 

Our methodology is similar to the process steps defined in 

the ARP (Aerospace Recommended Practice) 5056 design 

process for cockpit systems [10] and includes: 1. 

Requirements Capturing, 2. Flight Crew Concept of 

Operations, 3. Solutions Defined, 4. Detailed Design & 

Implementation, 5.Integrated Test & Evaluation.  

The order of phases can vary. Each phase consists of several 

design sub-steps as shown in Figure 1. HUMAN provides 

support for human factor analyses in the steps highlighted in 

dark grey in Figure 1. These tasks can be grouped into three 

categories: Task Analysis (for the sub-steps “Perform 

preliminary task analysis” & “Update task analysis”), 

Simulation (for the task “Simulate prototypes” and 

“Evaluate configurations and prepare tests reports”) and 

Evaluation (for the tasks “Evaluate configurations and 

prepare tests reports” and “Evaluate results and produce 

reports”).  

Within HUMAN, tools have been developed for each of 

these categories: PED (Procedure EDitor) for Task Analysis, 

CASCaS for Simulation of human behaviour and an 

Analysis Suite for Evaluation. These tools can be applied to 

simulate answers to the questions “How long does it take to 

perform a flight task with the target system?”, “How long 

does it take to react to target system outputs or 

information?”, “Are visual events recognized?”, “How does 

the introduction of the target system change visual attention 

allocation?” and “Is the target system prone to routine 

errors?”.  

In the following we show the details of the developed tools 

for Task Analysis, Simulation and Evaluation. 

Requirement

s 

Flight Crew 

Concept 
Solutions 

Detailed design & 

implementation 

Integrated test & 

evaluation 

Capture the 

requirements 

Define System 

Configurations 

Develop alternative 

configurations 

Model and analyze 

solution (step 3) 

Prepare test plan for 

cockpit system 

Process the 

requirements 

Perform 

preliminary task 

analysis 

Create and analyze 

models 

Prototype solution 

(step 3) 
Test solution on A/C 

 

Define 

Preliminary 

post-development 

verification 

requirements 

Create prototype Define test plan 
Evaluate A/C results and 

produce reports 

 

Prepare test plans 
Implement test 

activities 

Define guidelines for the 

flight manual 

Simulate prototypes 
Evaluate results and 

produce reports 

Define Guidelines for 

flight crew training 

Evaluate configurations 

and prepare tests reports 

Perform critical 

design review and 

produce CDR report 

 

Identify solution, and 

detailed requirement for 

development 

Implement and 

integrate final 

solution 

Perform preliminary 

design review and 

produce PDR report 

Update final 

requirement 

Update intermediate 

requirements 

Update final 

post-development 

verification 

requirements 

Update 

post-development 

verification requirements 
 

Update task analysis 

Figure 1: Task View for Design Process for Cockpits Systems 

Task Analysis 

During Task Analysis the Normative Activities for 

interaction with the target system are modelled (and 

analysed subsequently) in form of a rule-based task model 

using a graphical editor. The rule based language is based on 

the well-known GOMS notation [12] and allows to 

formalize a mental representation of flight procedures. All 

rules consist of a left-hand side (IF) and a right-hand side 

(THEN) (Figure 2). 

 

Figure 2: Rules for modelling flight tasks 

The left-hand side consists of a goal and Boolean conditions 

on the current (memorized) state of the environment. The 

right-hand side consists of motor and percept operators 

(writing values and reading values in the simulated 

environment), memory-store operators as well as a set of 

partial ordered sub-goals.  

Rules are connected via goal and sub-goals: the sub-goal of 

one rule is the top goal of another. In this way rules are used 

to build up a task tree as shown in Figure 3. It describes a 

task as a temporally ordered hierarchy of goals (e.g. 

handle_atc_uplink), sub goals (e.g. check_flight_plan_-

horizontally, check_flight_plan_vertically) and actions (e.g. 

perceive a/c position, press VERT button). The task tree 

shows for each sub goal the involved mental and 

behavioural steps. 

The model foresees a special rule type called reactive rules 

that are used for immediate behaviour (as opposed to 

goal-based behaviour) in order to instantly react to events in 



the environment – these rules contain no goal on their 

left-hand side. 

 

Figure 3: Format of CASCaS task tree 

On a sub-symbolic level annotations are added to the task 

tree to capture priorities for (sub-)goals, duration for actions 

as well as workload values for actions. 

In HUMAN we developed the editor PED for modelling and 

analysing task trees. PED allows to compute temporal and 

workload performance criteria. Temporal analysis allows 

the user to assess the time required to accomplish a task by 

following whatever path including the possibility to identify 

the shortest path (best case) and the longest path (worst 

case). A mean duration to accomplish the task is also 

calculated (average case). Workload analysis allows the user 

to visualise the different types of workload associated to a 

procedure. The PED workload analysis is based on 

McCraken & Aldrich’s [9] workload category system. It 

includes visual, auditory, cognitive and psychomotor 

workload categories. Every element of the task has to be 

assigned to one of these categories by the modeller. Within 

the categories elements have to be rated on a scale from 1 

(low) to 7 (high). McCracken & Aldrich defined the 

semantics of these values by giving examples in form of 

associated action types. For example, 1.0 for visual 

workload means: something (e.g. the onset of a message) 

has to be “visually detected”; 5.9 means: a symbol has to be 

read. 

In order to compute duration and workload values PED 

includes an animation function which allows the user to step 

through a procedure. At decision points either the user has to 

make a choice or PED choses non-deterministically. During 

this step-by step execution the tool computes the associated 

duration and workload for the executed path of the task tree. 

Additionally, PED offers the functionality to compute every 

possible execution path of the task tree automatically using 

model checking technologies. 

Task analysis results (in terms of the above parameters) 

allow the user to assess and compare procedures with regard 

to duration and induced workload. 

Simulation 

After the task model has been edited and analysed it is 

possible to simulate the task in dynamic scenarios. 

Simulation of the task is performed by means of the 

cognitive architecture CASCaS. CASCaS can be understood 

as an “interpreter” that executes task models in a 

psychological plausible way. Within CASCaS we 

implemented capabilities like sophisticated perception 

(visual focus and peripheral view) [7], attention mechanisms 

(bottom-up and top-down attention resulting in simulated 

eye-movements) [8], rule-based knowledge processing 

(including multi-tasking), learning and crew interaction (e.g. 

[8], [6]). Figure 4 gives an overview on the modular 

structure of CASCaS.  

 

Figure 4: CASCaS Architecture Overview 

CASCaS includes three layers of cognitive processing: 

autonomous layer, associative layer and cognitive layer. 

This layered architecture is derived from Fitts’ theory of 

learning stages [13, 14]. Fitts differentiates the degree of 

conscious control and the type of knowledge that is involved 

in cognitive processing. On the autonomous layer, humans 

act highly un-consciously with sensor-motor patterns (e.g. 

flying an aircraft manually). In familiar situations, humans 

consciously act based on previously learned rules on the 

associative layer, and in cases where no rules can be applied, 

new plans have to be derived on the cognitive layer, which is 

highly conscious behaviour. These levels are implemented 

in the Knowledge Processing component of CASCaS. In this 

paper, we will focus on the associative layer where 

rule-based task trees are executed.  

The percept and motor component interact with a simulated 

environment by reading and manipulating external 

variables. Perceived variables are stored in memory where 

they can be retrieved by the knowledge processing 

component. The Simulation Environment Wrapper provides 

data for the percept and motor component by connecting 

CASCaS to different simulation back-ends. In HUMAN we 

connected CASCaS to the flight simulator software used by 

the DLR for experiments with human pilots. 

On the associative layer of CASCaS tasks are executed 

within a cognitive cycle: the next goal to be processed is 

selected from a goal agenda (the set of goals that have not 

yet been fulfilled) taking into account a goal priority, then all 

rules containing the selected goal in their IF-part are 

collected, from this set one rule is selected, finally the 

selected rule is fired, which means that the THEN-part is 

executed: sub-goals are added to the goal agenda, percept 

actions are send to and performed by the percept component 

and motor actions are send to and per-formed by the motor 



component. This cycle models goal-driven behaviour. It can 

be interrupted by percept-driven reactive behaviour. The 

models check at the beginning of every cycle if conditions of 

reactive rules are true. If this is the case, reactive rules are 

always preferred to regular rules. 

For the percept component we modelled a visual peripheral 

view of 170 degree horizontal and 110 degree vertical 

around an optical axis (defined by the gaze direction of the 

eye) and a visual focus of 2 degrees (Figure 5). This field is 

projected on a virtual scene in order to compute which 

objects can be perceived by the model and which objects are 

out of view. Objects in focus can be read (e.g. the altitude 

can be read if the altitude bar on the PFD is in focus).  

 

Figure 5: Model of visual focus and peripheral view 

For objects in the peripheral view the model can only 

perceive discontinuity in space or time, e.g. the onset of a 

warning indication. A discontinuity in space represents a 

difference in a static property, like colour, brightness, form 

or orientation, e.g. a green dot in a set of red dots, or a circle 

in a set of quadrates. In contrast to this, a discontinuity in 

time (or dynamic discontinuity) denotes a dynamic change, 

like abrupt onset, flashing or moving of an object. For 

recognition of these discontinuities we implemented a 

process based on theories of Selective Attention. This 

process determines a detection probability based on the 

saliency of a stimulus, i.e. based on how much a stimulus 

differs from its surroundings. A flashing indication is best 

recognized on a solid black background. The detection 

probability decreases if the stimulus occurs in a colourful 

and dynamic context. More details can be found in [7]. 

A routine learning process is modelled in the memory 

component based on the psychological theory of Learned 

Carelessness by Frey and Schulz-Hardt [3]. We assume that 

pilots have mental models of how to interact with cockpit 

systems, like the AFMS. The mental model of flight 

procedures is initially formed based on Normative Activities 

acquired through handbooks and in simulator training 

sessions. Then during repetitive performance the mental 

model is modified by routine learning processes like 

Learned Carelessness. The theory states that humans have a 

tendency to neglect safety precautions if this has immediate 

advantages, e.g. it saves time because less physical or 

cognitive resources are necessary. Careless behaviour 

emerges if safety precautions have been followed several 

times but would not have been necessary, because no 

hazards occurred. Then, people tend to omit the safety 

precautions and the absence of hazardous consequences acts 

as a negative reinforcer of careless behaviour.  

In CASCaS, routine learning has been implemented in form 

of association learning and activation spreading concepts 

similar to mechanisms in ACT-R [1]. Every memory item 

has got an activation value which is increased or decreased 

according to (1) write operations on these items and (2) 

according to the effort involved in corresponding percept 

actions. Each time a value is written to the memory by the 

percept component, an association between this memory 

chunk and the active goal is created, or if already created, the 

strength of this association is increased. The effort is 

computed as the average time that is needed to acquire the 

value via corresponding percept actions. Like the number of 

write operations also effort acts as an exhibiting factor: the 

higher the effort the more the association is increased.  

Imagine that a memory item represents the information that 

the altitude of the last waypoint of a flight plan can either be 

correct or incorrect. Each time the model performs the goal 

to check the altitude of the last waypoint and perceives (by 

checking the vertical view of the AHMI) that it is correct, the 

corresponding activation is increased (taking into account 

also the effort of the corresponding percept actions on the 

vertical view). As said above, the resulting higher activation 

is dependent on the goal context. If the same value has been 

perceived several times and a defined activation threshold is 

exceeded then next time when the model performs the goal 

to check the altitude of the last waypoint the value will be 

retrieved from memory instead from the environment: the 

model exploits a learned regularity within the environment. 

More details can be found in [6].  

The motor component can perform actions, like mouse 

movements, mouse clicks, hand movements or adjustment 

of physical instruments, e.g. thrust lever, or autopilot 

altitude knob. For each of these actions, timing is calculated 

based on a 3D version of Fitts’ Law [4]. 

CASCaS allows predictions of (1) execution and reaction 

time, (2) attention allocation and (3) human error. The 

predictions result from specific interactions of the modelled 

cognitive processes as described in the following. 

Execution Time: This predictive capability allows 

answering the question “How long does it take to perform a 

flight task with the target system?” While the model 

performs a flight task it selects and fires rules from the task 

tree (cf. Figure 3). By performing the cognitive cycle, one 

specific path in the tree is executed. The computed execution 

time is a combination of time to perform the percept actions, 

memory actions, rules and motor action on the path. In 

contrast to the execution time computation performed in 

PED, CASCaS allows to compute execution time in 

dynamic scenarios. Thus, the time can be computed taking 

into account specific environmental conditions. This 

includes task interruptions and thus, task interleaving.  

Figure 6 shows sequential as well as parallel processing 

steps involved in flight task execution.  



 

Figure 6: Composition of execution times (dotted arrows denote 

causal dependencies within the model) 

The knowledge processing step “select goal/rule” needs 

information from the memory in order to check conditions 

on the left-hand side of rules. This dependency forces 

sequential processing of the corresponding memory 

retrieval. After a rule has been selected it is fired and the 

actions on the right-hand side are executed in parallel: 

information is stored in memory, percept actions and motor 

actions are performed. Consequently, the duration of the 

knowledge processing cycle is computed by: 50 ms for 

select goal & rule and fire rule + time for memory retrieval 

(for rule conditions). The next cycle, i.e. the selection of the 

next goal and rule can be done in parallel to the execution of 

the right-hand side actions (of the preceding rule). Delays 

may occur when the percept or motor component receive 

new actions from the new cycle while they are still busy 

performing actions from the preceding cycle.  

The time for percept action is computed by: 170ms + 2ms 

per degree of the saccade + fixation time of 200±50. Time 

for motor action is computed based on Fitts’ Law [4]. 

Attention Allocation (Effectiveness of Safety Nets): This 

predictive capability allows answering the questions “Are 

visual events recognized?” and “How does the introduction 

of a new system change Visual Attention Allocation?” 

Processing of Normative Activities requires information 

from the environment. The rules contain percept actions on 

their right-hand sides in order trigger necessary percept 

actions. The percept component moves the visual focus to 

the corresponding instruments in order to read the needed 

data. This results in gaze transitions that are dependent on 

the data requests from the Normative Activities. This is how 

we modelled top-down attention allocation. The routine 

learning mechanism has an essential influence on top-down 

attention allocation, too, because it replaces percept actions 

with memory retrieval and thus leads to reduced gaze 

transitions.  

Bottom-up attention is modelled via the Selective Attention 

mechanism. The gaze transitions determine at every point in 

time which cockpit instruments or which visual events are 

within the visual field. The probability of event recognition 

is computed by the Selective Attention mechanism based on 

saliency attributes. Event recognition triggers a gaze 

transition to the source of the event. Consequently, attention 

allocation is influenced by the Normative Activities for 

target systems (top-down attention) and by the graphical 

layout of the user interface (bottom-up attention). Thus, the 

two questions mentioned above are answered taking into 

account both types of attention allocation.  

Reaction Time: A further question that can be answered is: 

“How long does it take to react to target system outputs or 

information?” Reaction time is the time from the onset of a 

visual event (e.g. the appearance of a message box on the 

AHMI showing a new ATC message) until the visual focus 

has been moved onto the visual event. Reaction time has 

three components: (1) time until the visual event appears in 

the peripheral view, (2) time until the event is recognized in 

the peripheral view and (3) time for eye-movement onto the 

event. Figure 7 shows an example; the small black circle 

depicts the visual focus, the surrounding ellipse depicts is 

the peripheral visual field and the letters A, B, C, D represent 

cockpit instruments.  

 
Figure 7: Reaction time to visual events 

Step (1) depends on the current eye movements that are 

directed due to percept actions triggered by rules, i.e. in 

Figure 7 the attention is shifted from instruments A to B and 

then to C, as requested in the task tree on the bottom left of 

Figure 7. Only after the attention has been moved to 

instrument C, the event on instrument D appears in the 

peripheral view. Recognition of D in step (2) depends on the 

Selective Attention mechanism implemented in the percept 

component. If the model does not recognize the event e.g. 

due to the characteristics of the graphical context, steps (1) 

and (2) are repeated until the visual event is recognized or 

until the visual event has disappeared. If the event has been 

recognized, the time for step (3) is computed according to 

the formula 170ms + 2ms per degree of the saccade. The 

event may trigger a reactive rule and may thus result in a task 

switch as shown on the bottom right of the figure.  

Human Error: CASCaS allows the prediction of human 

errors that result from an interaction of routine learning, 

actual limited cognitive performance and safety nets in 

aircraft cockpit design (e.g. flashing indication, alerts and 

crew interaction). Routine learning (as described above) can 

lead to omitting percept actions, thus the mental model about 

the state of the aircraft might deviates from the actual state. 

Every time a goal is activated within the cognitive cycle, 

activation spreads from the goal to memory items via 



learned associations. If the resulting activation values for a 

memory items are above a predefined threshold then this 

item can be retrieved from memory, without percept action. 

This replacement of a percept action with a memory 

retrieval can lead to the selection of a course of action that is 

not correct with regard to the Normative Activities (Learned 

Carelessness). 

Safety nets like flashing indications on cockpit displays 

might be used by designers as a countermeasure against the 

effects of routine learning. The effectiveness of such a safety 

net depends on the cognitive performance, which is limited 

by the restricted cognitive resources. In the current state of 

implementation of the pilot model the most important 

limitation is the visual field with its Selective Attention 

mechanism for visual events in the peripheral view. Due to 

Selective Attention the model might miss a flashing 

indication which is intended as a safety net to counteract 

Learned Carelessness.  

Evaluation 

During the simulation operator performance data, as well as 

system and environment data is recorded. With regard to 

operator performance we record simulated hand and eye 

movements as well as selected goals, rules and working 

memory contents. The data format is a timestamp based 

discrete sequence of parameters allowing analysts to analyse 

the interaction between the operator and the system at every 

point in time. The simulation data is used to evaluate 

multiple criteria of the human-machine interaction. A target 

criterion could be e.g. reduced execution time for a specific 

task on a target system as an indicator of system efficiency. 

Typically, the evaluation is performed by comparing 

performance between different system setups, e.g. with and 

without a target system or between different design solutions 

of the same system. In HUMAN we analysed the interaction 

with target system only. 

In order to support target system evaluation based on 

recorded data, a specific analysis suite has been developed. 

It supports analysis of the following performance criteria: 

 Gaze behaviour, such as gaze distribution and 

duration of fixations (dwell time). 

 Temporal behaviour, such as task execution time 

and reaction time.  

 Human error analysis, such as detection of errors 

of omission and errors of commission. 

The analysis is subdivided in three steps (Figure 8). The first 

step is the pre-processing of each input simulation data set. 

Each data set refers to a certain HMI solution. The 

pre-processing includes consistency checks of the input data 

in order to guarantee the correctness of the results. In 

addition, some analyses need application of data filters, such 

as the gaze analyses. E.g., a very important pre-processing 

step during gaze analyses is the definition of fixations 

(minimum length of uninterrupted glances on an AOI). In 

the second step, the analysis of each data set is performed 

individually. In the third step, the analysis suite compares 

the individual results on different levels of aggregation, e.g. 

run vs. run or scenario vs. scenario. The results of the 

analysis are then written and plotted in result data sets and 

charts. 

 

Figure 8: Process for analysis of operator performance supported 

by Analysis Suite 

The output (text and charts) is generated full automatically 

and can be used by the analysts to evaluate the pros and cons 

of each HMI solution.  

CASE STUDY 

In this section, we will present a case study of applying the 

new methodology to investigate the effect of the AFMS on 

pilot performance during dedicated scenarios. Based on the 

methodology issues of the AFMS/AHMI with regard to 

demanding visual workload, long task execution times and 

potential human errors have been identified. 

For the investigation of the target system we performed 

experiments with human pilot in a flight simulator owned by 

the DLR and with the pilot model. For the model-based 

experiments CASCaS has been connected to the flight 

simulator software within a Virtual Simulation Platform. In 

this way it was possible to simulate the same scenarios with 

both, the human subjects and the model. 

The results of the model-based simulation, reported below, 

have been generated after the model has been improved 

based on the data from the experiments with human subjects. 

Scenario Design 

Two different experiment designs (D1, D2) have been 

developed in order to analyze specific aspects of the 

interaction between the pilot flying and the AHMI/AFMS. 

D1 represents a set of 7 full flight scenarios containing three 

flight phases: cruise, approach and final approach. Each of 

these scenarios had a duration of 20 to 30 minutes. During 

flight, different events such as uplinks of new flight plans 

have been induced. These events prompted the pilot flying to 

interact with the AHMI. The simulated aircraft was a VFW 

614 ATTAS which has been equipped with a generic cockpit 

model (including topology and functionality) derived from 

an Airbus A320. In addition to the standard devices (such as 

primary flight display and navigation display) the cockpit 

was equipped with the AHMI/AFMS.  

D2 represents only one scenario focussing on the task of 

handling a flight route uplink of the ATC on the AHMI 

(Handle_ATC_Uplink). The experimental environment 

consisted of a part-task simulator with the AHMI/AFMS as 

the main instrument. D2 allowed for many task repetitions 

and thus evolvement of routine. 



Task Modelling and Analysis 

We investigated in depth the Normative Activities for 

handling flight route changes “uplinked“ by the ATC 

(Handle_ATC_Uplink). Uplinks are indicated to the pilots 

via a message box (Figure 9a).  

 

Figure 9: AHMI with main steps of the task Handle Uplink 

The pilot flying (PF) first has to generate the trajectory for 

the modified plan by clicking on the “Generate” button in 

the message box (Figure 9b). As a result the new trajectory is 

shown as a dotted line. Afterwards s/he has to check the 

changes on the horizontal view and then on the vertical view 

in order to see if they are acceptable. In total the PF has to 

perform six checks c1-c6 (three on the horizontal view and 

three on the vertical view). The result of each check is either 

“ok” or “not ok”. Pilots may only accept the uplink if all 

checks were “ok”. As soon as a check results in “not ok” the 

PF is requested to reject the uplink by pressing the “Reject” 

button on the message box (Figure 9c). In the following the 

individual checks are described. 

Three checks on the horizontal view: 

 c1: The first waypoint of the flight plan must be located 

in front of the aircraft. If the waypoint is behind the 

aircraft, the AFMS will (later) calculate a trajectory 

containing a circle in order to make the aircraft to turn 

and fly back to the first waypoint. In order to perform the 

check the PF has to compare the position of the graphical 

symbol for the first waypoint and the position of the 

aircraft symbol. 

 c2: The PF has to check, if the flight plan ends on the 

runway, i.e. if the last waypoint has to be located exactly 

on the runway. In order to perform the check the PF has 

to scroll to the end of the flight plan, because normally 

the flight plan is shown only partially due to the screen 

size. There, at the end of the flight plan, the PF has to 

compare the position of the graphical symbol for the last 

waypoint and the position of the runway symbol. 

When c1 and c2 are “ok”, the PF has to generate the 

trajectory by pressing the “Load” button (Figure 9d). 

 c3: The PF has to check that the generated trajectory does 

not contain circles. This can for example happen, if the 

performance of c2 took too long and the aircraft passed 

the first waypoint while the PF was still busy performing 

that check. The AFMS would then (as described above) 

calculate a trajectory containing a circle. In order to 

perform the check the PF has to look at the beginning of 

the trajectory. 

The following three checks are performed on the vertical 

view. In order to access the vertical view the View-button 

has to be pressed (Figure 9e). 

 c4: The PF has to check, if the cruise flight level (CFL) is 

appropriate (in our experiments it should be over 8000 

feet and below 32000 feet). In order to perform the check 

the PF has to look at the CLF label and perceive the 

displayed value, which is located at the right edge of the 

interface. Then, the pilot has to cross-check the actual 

value with the target value provided in the flight map. 

 c5: The PF has to check that the intercept altitude is 

appropriate for the airport and runway. In order to 

perform the check the PF has to look at the intercept 

altitude label and percept the displayed value, which is 

located at the right edge of the interface. Then, the pilot 

has to cross-check the actual value with the target value 

provided in the flight map. 

 c6: The pilot has to check that the altitude of the last 

waypoint of the trajectory is equals the altitude of the 

runway. In order to perform the check the PF has to 

scroll to the end of the vertical flight plan, because 

normally the vertical flight plan is shown only partially 

due to the screen size. There, at the end of the vertical 

flight plan, the PF has to assess if he graphical altitude 

line ends at zero.  

If all checks are “ok” the PF presses the “Send to ATC” 

button (Figure 9f) to acknowledge the uplink. After 

feedback from ATC is received s/he has to press “Engage” 

(Figure 9g) to activate the new trajectory, i.e. the FMS then 

actively controls the aircraft (via the autopilot) to follow the 

trajectory. 

The procedure has been modelled in form of a hierarchical 

task tree using the PED tool. The task tree consists of rules. 

The task analyses revealed a relatively long duration for the 

visual checks. In total the longest execution time for the 

Handle Uplink task has been computed as approx. 60 sec. 

The shortest execution time has been computed as approx. 

2,5 sec (in case the first check results in “not ok” and the 

flight plan has to be rejected). Within these durations the 

checks that consume most of the needed time are: c2 and c6. 

The workload analysis shows a high induced visual 

workload (see Figure 10). 

Simulation 

We used the cognitive architecture CASCaS to execute the 

task Handle_ATC_Uplink as well as other flight tasks (e.g. 

the task to monitor essential flight parameters like altitude, 

speed and heading) in the experimental designs D1 and D2. 

For experimental design D1 the model executed one of the 7 

full flight scenarios 37 times. The simulation of the other 

scenarios is still on-going. For the experimental design D2 

we executed the corresponding scenario 180 times.  



 

Figure 10: Workload induced by the task Handle_ATC_Uplink 

All simulation runs have been performed in a batch mode, 

i.e. the simulation runs have been performed highly 

automated without user interaction or supervision. During 

the simulation runs data has been recorded: simulated hand 

and eye movements as well as selected goals, rules and 

working memory contents. 

Evaluation 

The interaction between the pilot flying (PF) and the 

AHMI/AFMS has been analysed with regard to gaze 

behaviour, temporal behaviour and human error. In the 

following we will present the effect of the AHMI on pilot 

behaviour as it has been simulated by CASCaS. We will also 

refer to some validation results of the simulated data.  

Gaze Behaviour: We investigated the simulated data with 

regard to the gaze distribution and dwell time of the model 

on a set of Areas Of Interest (AOI). As AOIs we considered 

the HMI of the AFMS (AHMI), Primary Flight Display 

(PFD), Navigation Display (ND), Engine Display (ENG), 

Electronic Flight Control Unit (EFCU) and Window 

(WND). Gaze distribution and dwell time have been 

analysed separately with regard to the flight phases cruise, 

approach and final approach. Results of gaze distribution 

analysis (mean and standard deviation) are depicted in 

Figure 11. 

 

Figure 11: Gaze distribution simulated by the pilot model 

During cruise and approach most gazes of the model are 

directed onto the AHMI, followed by the PFD. This changes 

during final approach where gazes onto the AHMI decrease 

and gazes onto the PFD increase. The relevant influence 

factor for the simulated gaze distribution are the changing 

task priorities. 

In order to test the validity of the model data we compared 

the model data with the data of the human subjects. We 

computed the trend fitness and the local fitness. The overall 

correlation between the model and the human pilots has 

been measured with r2 = .85. In order to assess the local 

fitness of the model, we compared the distribution within the 

human population to the distribution between the model and 

the human population using the root mean square deviation. 

The results indicate a high degree of fitness. More details 

can be found in [11] 

We discussed the data with subject matter experts (pilot 

trainers) in order to interpret the data with regard to the 

AHMI design. According to the subject matter experts the 

PFD is the most important instrument during Final 

Approach, but approx. 80% of the gazes are directed to this 

instrument in current aircraft (without AHMI/AFMS). 

Today, the task to handle an ATC change request is 

distributed between pilot flying (PF) and pilot monitoring 

(PM). The PM takes over the communication with ATC, 

while the PF changes the flight parameters. This task sharing 

is much more difficult with the AHMI/AFMS and has not 

yet been designed with corresponding procedures. 

Furthermore, the AHMI uses only visual interaction while in 

aircraft today, acoustic communication with ATC is 

paramount. Consequently, the PF has to direct his gazes onto 

the AHMI relatively often.  

The analysis of the simulated dwell time (Figure 12) shows 

that the model at average focuses on the AHMI for 3.2s 

during cruise, 3.2s during approach and 1.7s during final 

approach. Dwell time of the model on other displays in 

average ranges from 0.5s to 2.4s during cruise, from 0.4s to 

3.2s and from 0.4s to 2.5s during final approach. 

 

Figure 12: Dwell times simulated by the pilot model 

We compared the dwell time of the model with the dwell 

times of the human subjects [5]. The average dwell times on 

the AHMI of the subjects are higher than those of the model 

in all three phases (5.7s during cruise, 4.9s during approach 

and 1.8s during final approach). We hold the hypothesis that 

the long dwell times for human subjects on the AHMI during 

cruise can be explained due to the fact that the AHMI 

contains redundant information which is normally located 

on the PFD. We assume the pilots retrieved necessary 

information from the AHMI instead of the PFD in order to 

reduce effort. We will extend our model by implementing 

effort-driven attention allocation to reproduce the data. 



Further empirical investigations are necessary to evaluate 

this mechanism. 

Temporal Behaviour: In order to measure the execution 

time for the task “Handle Uplink” a start event estart and an 

end event eend have been defined: estart is the pop-up of the 

message box on the AHMI (cf. Figure 9a), eend is the 

activation of the “Engage” button (cf. Figure 9g). 

The execution time of the model (Figure 13) during 

approach is slightly longer than in cruise. This can be 

explained by the fact that during approach the priority of 

other tasks, like monitoring the flight parameters, is higher 

than during cruise. Thus, the model interrupts the task 

Handle_ATC_Uplink more often. The time which the model 

spends on performing other tasks while interrupting the 

Handle Uplink task have been included in the measurement 

of the execution time. 

The duration of the Handle_ATC_Uplink task of approx. 1 

min. is relatively long compared to other tasks. In order to 

continue other high priority tasks (e.g. monitoring the 

essential flight parameters like altitude, speed and heading) 

the pilot model has to interrupt the task quite often 

 

Figure 13: Task execution time for Handle_ATC_Uplink 

We compared the execution time of the model with 

execution time of the human subjects [5]. Different from the 

model human subjects are faster in the approach phase. A 

possible explanation is the increased time pressure during 

this phase. This influence factor is not considered in the 

model. This finding is consistent with the interpretation of 

the model behaviour. The model has to interrupt more often 

during approach in order to continue high priority tasks. 

Since time pressure has not been modelled, the Handle 

Uplink is performed with the same accuracy. Possibly the 

human subjects try to avoid these interruptions and thus 

execute the ATC uplink faster than during the cruise phase 

to be able to go on with high priority tasks. This can lead to 

less accuracy in the performance of the Handle Uplink task. 

These interpretations are highly hypothetical and need 

further investigation and data analysis. 

Again, we discussed the data with subject matter experts. 

According to them the execution time induced by the AHMI 

seems to be too long compared with the situation in current 

aircraft. Today, ATC communicates a maximum of three 

flight parameters in one message. These changes can be 

implemented on the flight instruments in approx. 20 sec. 

With the AHMI many changes can be communicated in one 

message and pilots have to check the whole flight route to 

find these changes. Naturally this takes time. From these 

results we derived the guideline for the design of the AHMI 

and corresponding procedures to avoid long execution times 

or if this is not possible to foresee explicit break points. Such 

break points should be between unit tasks in order to 

minimize the memory load and task switching cost [10]. 

Memory load results from the need to memorize the context 

of the interrupted task (e.g. checked values). Task switching 

cost results from the need retrieve this context when the task 

is resumed. 

Additionally to the execution time we measured the reaction 

to the message box that pops up on the AHMI to indicate the 

uplink of a new flight route (cf. Figure 9a). We defined the 

reaction time (Figure 14) as the difference between the time 

when the message box pops-up and the time when the pilot 

fixates the message box. Influence factors for the simulated 

reaction time are e.g. saliency of events, saliency of the 

graphical neighbourhood and distance to events. 

The reaction times of the model during the cruise and 

approach phase are similar. The model reacts to the message 

box on average after approx. 1 sec.  

We compared the execution time of the model with 

execution time of the human subjects [5]. The reaction times 

of the subjects are similar to those of the model. 

 

Figure 14: Reaction time for Handle Uplink 

According to subject matter experts this reaction time is 

fully acceptable for the Handle Uplink task 

Human Error: The model simulates errors due to Learned 

Carelessness. The experimental setting D2 foresees a high 

number of repetitions of the Handle_ATC_Uplink task. D2 

includes two experimental conditions. In the first condition, 

the same scenario is simulated 170 times without variations. 

During these repetitions all checks constantly result in in 

“ok”. In the second condition, the same scenario is repeated 

again 170 times but with small variations. These variations 

are designed in a way that the check outcomes “ok” and “not 

ok” alternate. 

In the first condition the model predicts learned careless for 

the two checks c2 and c6. For these checks the activation of 

the corresponding memory items exceeds the pre-defined 

threshold after approx. 40 (70) repetitions. Figure 15 shows 

the evolvement of the association strength for four 



exemplary memory items. The association strength of the 

memory items involved in checks c5 (crossed line) and c6; 

triangle line) are above the pre-defined threshold (0.97). For 

these checks the models does no longer perform percept 

actions. Instead learned values, needed for the checks, are 

retrieved from memory. The experiment schedule included 

(after 170 repetitions) scenarios to test the accuracy of 

checks. These scenarios contained deviations that could only 

be identified if the checks have been performed correctly. 

The pilot model does not recognize these deviations and 

engages incorrect flight plans. In real flight this behaviour 

can for example lead to violations of altitude constraints and 

in consequence to collisions with other aircraft. The 

influence factors for the resulting Learned Carelessness are 

the high number of repetitions which always led to the same 

result (“ok”) and the high effort for performing the checks. 

Based on the simulated results we derived the design 

requirements that the effort involved in performing checks 

c2 and c6 has to be reduced. In order to perform check c2 and 

c6 (see above) pilots have to scroll up to the very end of the 

horizontal or vertical profile, respectively. The effort can be 

reduced e.g. by eliminating the need to scroll and by 

providing explicit hints on profile errors (e.g. via specific 

symbols) at places of the screen that are easier to access.  

 
Figure 15: Association strength (as) for memory elements 

In order to validate the simulated Learned Carelessness we 

compare the performance of checks of the cognitive model 

with the performance of checks of the human pilots. This 

validation is ongoing.   

SUMMARY 

In this paper we introduced a new methodology for 

analysing human-machine interaction with target system 

designs. The methodology is supported by tools for task 

analysis, model-based simulation and data analysis. A case 

study has been presented for analysing the interaction with a 

modern flight management system. In future work we will 

use the results of the study in order to improve the validity of 

the simulated data by extending and tuning the mechanisms 

implemented in the cognitive pilot model. 
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