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Abstract— The purpose of this paper is to describe Avionic-X, 
which is a high level integration bench for the next generation 
launcher avionics. First we will introduce the project and its 
context, second we will present the work logic, starting by studies 
on avionics architecture and technological enablers, and finally 
we will give an overview of the Avionic-X platform itself. 
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I. INTRODUCTION 

Avionic-X is a project of demonstrator for the Next 
Generation Launcher avionics, funded by the French PIA 1 
(with CNES as operator, and ASTRIUM-ST as architect) and 
European partners. It aims at maturing technologies and 
integrating them in order to demonstrate all avionics functions 
of a launcher, thus reaching TRL6 and IRL3 in 2015-2016. 
Afterwards, Avionic-X will enter into its second life, and will 
become a functional integration bench (Iron Bird) used for 
testing new equipments, benchmarking different concepts, 
while benefiting from the platform features: 

• Test cases for benchmarking. It will be possible to play 
and replay a specific part of a launcher mission, or to 
run entire missions; 

• Modularity and connectivity (the demonstrator will be 
compatible with several communication buses, 
protocols and field buses); 

• Electrical Ground Support Equipment (EGSE), power 
distribution and control, exploitation means; 

• Real-time flight simulator for closed loop tests; 

• A “virtual platform” (Virtual Iron Bird), which is an 
important by-product of the model-based development, 
and could be used to perform virtual tests before 
actually plugging the new hardware onto the platform. 

                                                           
1
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This concept for Avionic-X is derived from the “Iron Bird” 
or the “Aircraft Zero” in aeronautics. During the first years, 
Avionic-X would be more analogous to the Aircraft System 
Validation Rig combined with the Virtual Iron Bird, when 
using terms from the “Power Optimized Aircraft” (POA) 
European framework program. 

Avionic-X will build upon previous Research & 
Technology (R&T) activities, and on spin-in from other 
innovative sectors such as aeronautics, automotive, satellites, to 
prepare for the future development of a new European launcher 
(maiden flight in 2025). Indeed, the practical target for this 
integration bench is not Ariane 5 avionics evolutions but the 
Next Generation Launcher (NGL), also known as Ariane 6 in 
France. 

II. CONTEXT 

We won’t change our methods unless forced to. But today, 
the established western rocketry industry is being challenged 
(by new business models, by emerging space nations…). 
Access to space shall be rendered affordable for European 
states, in a “cut cost or die” logic. Therefore, in order to 
prepare a future development program we have to go back to 
the drawing board, and question our previous historical 
choices, whilst keeping both eyes open for new technologies 
and new architectures. 

The main drivers for the Next Generation Launcher 
avionics are: 

• Reduction of the Total Cost of Ownership (with an 
emphasis on recurring costs) of the Launch System, 
including obsolescence treatment costs; 

• Avionics mass reduction and miniaturization; 

• Avionics performance improvement, keeping at least 
the same reliability. 

Today, several initiatives coexist in a complementary way 
in Europe to prepare the Next Generation Launcher Avionics, 
from ESA, national agencies and industry. The figure 1 below 
outlines how Avionic-X project is integrated with the Future 
Launchers Preparatory Program (FLPP). 
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Figure 1.  Context of the Avionic-X project 

Actually there are several other ESA technology programs 
besides FLPP which include avionics aspects, for instance: 

• Basic Technology Research Programs (TRP) for TRL 
from 1 to 3. In particular ESA’s Deep Sub-Micron 
initiative is working with industry to design a new 
generation of space-worthy microchips; 

• General Support Technology Programs (GSTP) for 
TRL from 2 to 8. 

Besides, the Launch Vehicle (LV) avionics sector is too 
small a market to allow for self-standardization and to fund 
specific technologies development. The “Not Invented Here” 
syndrome is not an option. Therefore we have to seek ideas and 
technologies in other innovative sectors, and establish a spin-
in, rather than recreate everything from scratch. 

Several trends from outside the Launch Vehicle (LV) sector 
seem promising: 

• The “More Electric Aircraft”  trend in aeronautics. On 
a launcher, this could translate into electromechanical 
actuators (EMA) for Thrust Vector Control, and 
electrical valves in cryotechnic engines, thus giving 
birth of a “More Electric Launcher”. 

• Standardization is a trend in the satellite industry with 
the Space Plug-and-Play Architecture (SPA), the 
SAVOIR 2 initiative, and more generally for embedded 
systems with the DDASCA3 consortium. This could 
also encompass the IMA concepts (Integrated Modular 
Avionics), and the ARINC 653 Time and Space 
partitioning (TSP) standard [3]. Several projects are 
currently trying to spin-in from the aeronautical 
domain the TSP/IMA technology for space 
applications. 

Three of the ongoing initiatives leading towards more 
standardization in avionics, with reference architectures and 
building blocks, are presented hereafter: 
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• SPA (Space Plug-and-Play Avionics), 

• SAVOIR, 

• DDASCA. 

SPA was developed in United States by the Air Force 
Research Laboratory (AFRL) 4. The draft SPA standard has 
already been released through the American Institute of 
Aeronautics and Astronautics (AIAA). The SPA effort is a 
response to the need for reduced design, fabrication, 
integration, and test schedules (and therefore related 
engineering costs) for small spacecraft, thanks to self-
configuration and self-organization. 

SAVOIR stands for Space Avionics Open Interface 
Architecture. The space industry and Agencies have recognized 
this already for quite some time: The level of standardization in 
the spacecraft avionics systems should be raised in order to 
increase efficiency and reduce development cost and schedule. 

It has been proposed to federate several ongoing initiatives 
under the common “Space Avionics Open Interface 
Architecture” initiative. Within this initiative, the approach 
based on reference architectures and building blocks plays a 
key role. The SAVOIR Advisory Group (SAG) members 
regroups space agencies, large and small system integrators and 
equipment/software suppliers.  

Lastly, DDASCA is a newly born consortium dedicated to 
Distributed Dependable Architectures for Safety-Critical 
Applications. It regroups universities and research centers, 
system integrators and equipment/software suppliers, with 
standardization organisms. 

It aims at engineering and standardizing reference 
architectures with generic building blocks, that will be 
modular, provable, reusable and safe, to build hardware and 
software platforms for safety-critical applications (DAL A – 
SIL 4). 

Within the Avionic-X project frame, we will strive to take 
in a wide range of promising concepts, emerging standards and 
innovations (with a TRL above 2), and perform trade-off 
analysis w.r.t. their interest in a launcher system context, and 
finally prototype and test the most interesting candidates on the 
platform. 

III.  AVIONIC-X WORK LOGIC 

A. Work Logic presentation 

Avionic-X project is more than a platform or a list of 
technologies. Its work logic is built on three axes: 

• #1 - Demonstrator activities (target IRL-3), 

• #2 - Technological activities (target TRL-6), 

• #3 - Launcher avionics engineering. 

As shown on the figure hereafter, these three branches of 
Avionic-X interact all along the project in order to reach our 
targets in terms of TRL and IRL. 
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The needs for demonstrations arise equally from theoretical 
studies on various launcher avionics architectures (“SEL-X” 
activities) in a top-down approach, and from technological 
enablers studies in a bottom-up approach. The “technological 
branch” also focuses on innovative methods with the same goal 
in mind: reducing the Total Cost of Ownership (TCO) of the 
launcher system. 

The project Avionic-X is currently in phase A (system 
concepts feasibility). It is due to pursue its phase B 
(specification and preliminary design) from the beginning of 
2012, with an incremental development cycle, similar to the 
“spiral model” common in software engineering. This will 
offer several windows of opportunity to introduce new 
technologies and new partners in the project. 

 

 

Figure 2.  Work Logic of the Avionic-X project 

 

B. Launcher avionics engineering (“SEL-X”) 

This activity branch of the project aims at identifying the 
key drivers and requirements for a launcher avionics system, 
and following a top-down approach, taking into account the 
technological candidates, in order to propose several possible 
avionics architectures (named “SEL-X”), and assess their 
performances and cost. 

But first, to prepare the future, we have to look back at 
the past. So let’s take a look at the Ariane 5 launcher family. 
Ariane 5 avionics (see figure 3) follows three main drivers: It 
is a duplex system, it is organized in several sub-systems 
(Flight Control, Telemetry, Electrical Power and Flight 
Safety Sub-Systems), and it is also strongly constrained by 
the rule of “geographical return” (which may have led to a 
practical but non-optimal architecture). 

Ariane 5 avionics has evolved since the beginning of 
Ariane 5 program, in order to solve obsolescence problems 
or to accommodate the various versions of the launcher, but 
its duplex architecture stays essentially the same. The duplex 
choice was not derived from system requirements but was 
seen as a way to increase robustness and ensure reliability. 

 

Figure 3.  Overview of Ariane 5 upper composite avionics architecture 

Ariane 5 avionics system breakdown in sub-systems will 
not necessarily be retained, and for the moment, 
geographical return constraints should be put aside, in order 
to look for “more” optimal solutions. 

The trade-offs performed on the SEL-X architectures led 
us to consider several potential improvements: First, a 
stronger integration (in order to reduce the number of 
equipments, and the recurring costs), with standard modules 



in a rack-based architecture (following the IMA trend) and 
use of Time and Space Partitioning; second, a hot 
redundancy concept, and a communication based on a time-
triggered protocol (see § III.C.1)). 

 

1) Toward a more integrated architecture (IMA) 

A “centralized” architecture is an architecture where the 
main tasks are executed on the same processing unit. In a 
“distributed” architecture, the tasks are distributed through 
several equipments. 

The current Ariane 5 avionic architecture is mainly 
centralized, as there is an On-Board Computer (OBC) 
centralizing all the sensor data to compute the GNC and the 
sequential algorithms for commanding the launcher. 
However it is also partially distributed as other equipments 
also have “intelligent” functions to perform, before or after 
the OBC computations. The architecture is organized on a 
“master-slave” mode, meaning that the centralized OBC 
takes all the decisions, based on the sensor inputs and 
measurements. This was a way to ensure the determinism 
required for a high level of reliability and availability. 

The choice of Ariane 5 was the result of a top-down 
allocation of the main avionics functions to different 
equipments, with clear industrial perimeters and 
responsibilities, accepting the fact that each industrial would 
probably have to develop or to implement computing means 
in an heterogeneous way and without any harmonization. 

In general this was not a problem as most of the 
equipments only needed very simple functions, easy to 
implement within simple components such as DSP, ASIC or 
FPGA. But for complex equipments like the SRI (Inertial 
Measurement Unit), the computing unit could have been 
harmonized or merged with the OBC itself. 

Today, the evolution of CPU capacity allows us to 
envision a stronger centralization (or integration) of the 
architecture, for example by merging the SRI and OBC 
numerical calculations on the same computing node, in order 
to reduce the number of equipments and the associated 
weight. 

We reach here the concept of Integrated Modular 
Avionics, which comes from Aircraft development. The 
main idea is to reduce the amount of embedded avionic 
hardware by sharing the same hardware and software 
resources between various sub-systems. In this concept, a 
standardized CPU modules would allow to reuse the same 
module for all the launchers functions requiring computing 
capabilities. 

This standard Processing Module would be physically 
regrouped with other standardized or specific modules in 
racks, as it has been done in the satellite industry (for 
example the Spacebus 4000 avionics concept described in 
[5]). Within Avionic-X we call this standard Processing 
Module “MDHB-X”, which stands for “Modular Data 
Handling Block” and is presented in § C.2). 
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Figure 4.  Example of a rack-based architecture 

 

2) Redundancy concept 

The current Ariane 5 system is based on a duplex 
architecture composed of two onboard computers in hot 
redundancy. The nominal one is in charge of all operations 
on both avionics chains and the redundant one only spies a 
subset of the 1553 messages to maintain its own flight 
context. In case of auto-detected errors on the nominal OBC, 
an error signal is sent and a hand-over is done to the 
redundant OBC which takes the control of the 1553 buses 
and continues the mission. The redundant OBC becomes 
“the last survivor” and the nominal OBC cannot recover the 
flight control. 

The first redundancy concept which we aim at testing on 
Avionic-X is not dissimilar to Ariane 5’s one, but improves 
the transition phase and simplifies the design of the flight 
software. As a matter of fact, in this concept both OBCs 
execute the same software in parallel, and the selection of the 
command which shall be executed is performed by the 
actuator. The failure of one OBC is then almost transparent, 
hence a true “hot redundancy”. The reinsertion of the faulty 
OBC could also be envisioned, in case of a transient failure 
followed by a reset and successful auto-tests. 

This concept of “selection by the actuator” could 
eventually be scalable to a triplex concept, for specific 
missions where the exposition to natural radiative 
environment could otherwise lead to unacceptable 
unreliability figures. 

C. Technological enablers 

The second activity branch of the project aims at 
identifying innovative technological candidates (hardware, 
software, methods), performing trade-offs and feasibility 
studies w.r.t. a launcher system, and elaborating roadmaps to 
mature the relevant technological enablers up to TRL 6. 

The technologies we are looking at in the frame of the 
Avionic-X shall cover the biggest part of a launcher avionics 



functional needs. At this stage of the project, all trade-offs 
are not completed yet, so we will detail only a few of them 
hereafter, focusing on ERTS² targets: 

 

1) Communication System 

The Communication system, which is the “backbone” of 
the digital system, comes naturally first, as it will support the 
integration of every other building blocks on the 
demonstrator in the next increments. 

This work package has included several trade-offs, w.r.t. 
bus technology (optical, cable, wireless…), bus topology 
(star, ring…), communication protocols, field buses. 

Moreover, it appears interesting to follow the evolution in 
communication systems from a message-centric model to a 
data-centric design. In a message-centric architecture, the 
communication system does not recognize the data 
embedded in the messages it carries. In opposition, a data-
centric design could be represented as a global virtual 
database, with applications accessing it without worrying 
about the distributed aspect of the system. The “smart 
Telemetry” concepts follow this data-centric design too. For 
example, a sensor may acquire data at 100Hz, but only 
updating the virtualized data when the change is bigger than 
a predefined limit, thus avoiding bottleneck points in the 
communication system. 

The communication system has to answer to criteria 
defined by the architecture of the new launcher. The first 
SEL-X studies identified the following targets: 

• At least 50 or 100 times the Ariane 5 communication 
system throughput in order to fit the necessary 
increase of command/control data flow due to the 
“hot” redundancy flight control concept suggested in 
SEL-X (see § B.2)), and moreover, to host the 
launcher telemetry data flow which is managed until 
now on Ariane 5 by a dedicated bus. 

• A better exchanges determinism, ensured as must as 
possible at standard level, firstly to avoid a costly 
development of a “tailor-made” deterministic layer 
and also to simplify the hot redundancy management 
and synchronization between the communication 
system nodes. 

• Reduce the communication system harness weight, 

• Reduce the electric consumption, 

• Increase Communication System flexibility. 

The current state of the preliminary design includes at 
least three main communication systems on the 
demonstrator: 

• One copper bus with a time-triggered Ethernet 
communication, for example TTEthernet. With a 
throughput of 100 Mbits/s (possible 1Gbits/s) based 
on Ethernet (LAN compatible), TTEthernet manages 
determinism at standard level by offering Time 
Triggered services based on PTP IEEE 1588 

protocol, the TT messages. This standard also takes 
into account Rate-constrained (RC) messages like 
ARINC664 (AFDX) and is also compliant with basic 
Ethernet messages, called Best Effort (BE) in the 
standard. It benefits from the long Ethernet 
experience, tools and has already been chosen in 
space projects. Here is a purely theoretical view 
illustrating the three kinds of messages managed by 
the TTEthernet standard: 

 

Figure 5.  Different kinds of TTEthernet traffic 

• One optical bus, for example FibreChannel. The 
main benefits of using optical fiber at physical level 
are an increased bandwidth and an immunity to 
Electromagnetic Interference (EMI). Thus, the 
harness weight could decrease due to wires shielding 
reduction and the uselessness of EMC filters at board 
level. Moreover, FibreChannel has been crafted to 
easily map other protocols, so that existing software 
written for legacy protocols can be easily ported. 
Determinism and fault tolerance may be mapped to 
Fibre Channel. It is compatible with 1553 (but 
without the limitations of the MIL-STD-1553 
standard in terms of throughput, message size,…) 
and it offers a low latency network. 

• One MIL-STD-1553 bus, which would ease the 
connection of existing equipments on the 
demonstrator. It offers industrial partners a well-
known space bus to plug possible off-the-shelf 
demonstrations using this standard. 

 

2) Modular Data Handling Block (MDHB-X) 

In this branch of the Avionic-X project, we will define 
and demonstrate the MDHB-X solution for data processing 
and communication bus interface (such as identified in 
§ B.1)), while following several trends: 

• IMA and TSP for space applications; 

• Multi-core architectures. 

IMA changes drastically the usual industrial way of 
working: Sub-system suppliers are no longer the suppliers of 
the avionics part of their sub-system (that would be generic 
bricks), and could perhaps become only “application 
software providers”. 

As for the multi-core aspects, we have to prepare the use 
of multi-core processors in space systems. Multi-core 
architecture is a solution to introduce additional processing 
power, to improve the fault detection isolation and recovery 
(FDIR), and finally to implement more easily time and space 
partitioning. 



Taking this into account, we will define and demonstrate 
a generic processing and Input/Output module answering 
different needs for data handling in a launcher. This 
“Modular Data Handling Block for Avionic-X”, or 
MDHB-X, is presented on the figure below. 

 

Figure 6.  Modular Data Handling Block for Avionic-X (MDHB-X) 

The Modular Data Handling Block (MDHB-X) aims at 
providing a generic, versatile and configurable computing 
system solution. Each MDHB-X unit can be made of various 
predefined combinations of Processing Modules (PM) and 
I/O Modules (IOM). Through this mechanism, it is possible 
to create a wide range of MDHB-X units thanks to PM and 
IOM generic building blocks. 

Here are shown some configurations of the MDHB-X: 
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Figure 7.  Various configurations of the MDHB-X 

Several candidates are foreseen to be assessed as 
processor, like the LEON4-based NGMP platform, or some 
ARM implementation, both potentially in single or dual core 
configuration. The IOM will lie on a custom FPGA solution. 

The different I/Os to handle include for instance the 
communication system and sensors (“intelligent” or not, and 
accessed through conditioner unit or directly). 

Each Module of MDHB-X units will lie on a separate 
board, and the integration could be done thanks to a rack, 
connecting them together through a backplane bus for 
example. 

From a software point-of-view, the spaceflight field is on 
the verge of an evolution from federated avionics and data 
handling architectures to Integrated Modular Avionics (IMA) 
paradigm, as it happened a few years ago with airborne 
systems. By allowing running several previously segregated 
pieces of software on the same computing platform, IMA in 
space applications is expected to have an impact on the 
overall avionics’ mass, volume, power consumption and 
recurrent cost. 

As the physical boundaries of federated subsystems 
disappear, IMA has to implement a new kind of separation 
between the different pieces of software involved, through 
the technique of partitioning. 

In the frame of Avionic-X demonstrator, the Middleware 
layer represents every piece of software between the bare 
hardware and the applicative software, including the 
partitioning layer (inside or outside the RTOS) and the OS. 

Here is a scheme of the Middleware in Avionic-X: 
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Figure 8.  Middleware in Avionic-X 



In partitioning-based software, like in ARINC-653 
systems for instance, isolation, protection and determinism 
lie on the concept of Time and Space Partitioning (TSP). It 
allows a strong segregation of pieces of software of mixed 
criticalities and/or mixed suppliers by implementing a static 
allocation of fixed amounts of memory for each partition, 
and a fixed amount of CPU time allocation of each partition 
according to a cyclic preemptive execution scheme. In this 
light, the MDHB-X represents the physical implementation 
of IMA. 

Actually, the market offers a wide panel of partitioning 
solutions, from bare metal hypervisors (or Virtual Machine 
Monitors) to userspace RTOSes over partitioning 
microkernels, and care must be taken when choosing a 
suitable option depending on the project. XtratuM hypervisor 
is currently foreseen, as well as in CNES and ESA studies. 

Another form of abstraction mechanism used in IMA 
system is the concept of Input/Output virtualization. 

This consists in presenting to every software instance the 
same abstracted and generic interface to manage I/Os by 
isolating high-level software and the communication system, 
having available each piece of data at each node of the 
system, solving equipment synchronization problematic, 
supplying data consistent with the equipment need (not only 
the last update), reading an entire engineering data like a 
quaternion (without update during acquisition) and ensuring 
data consistency. 

The resulting generic layer will be usable on every piece 
of equipment (i.e. MDHB-X). 

 

3) Other technological enablers 

The other work packages and technologies we are 
looking at in the frame of the Avionic-X project are not fully 
detailed in this paper, but they encompass: 

• Flight Control: 

Within Avionic-X we will explore different inertial 
navigation sensors (e.g. hemispherical resonator gyro or 
fiber-optics gyro), which would be less expensive than the 
gyrolaser technology used on Ariane 5. GNSS hybridization 
will also be considered, in order to improve the navigation 
precision or to compensate for less precise gyros, and to 
provide real-time localization for safeguard purposes. 

MEMS gyrometers distributed along the launcher will be 
considered in order to improve the robustness of Thrust 
Vector Control. As a matter of fact, vibrating structure 
gyroscopes manufactured with MEMS technology have 
become quite inexpensive and widely available.  

• Pyrotechnics: 

Both opto-pyrotechnics and advanced electro-
pyrotechnics will be assessed during the Avionic-X project. 

• RF communications: 

In order to improve the RF links between the launcher 
and the ground means (higher bit rate with less energy 

consumption), we will test and mature directive antennas, 
either phased array antennas or active antennas on innovative 
materials.  

• Power Generation and Distribution (Digital Power 
Control); 

• Data acquisition and sensors; 

• Ground System – Onboard Interfaces (electrical and 
radiofrequency parts of the Ground to Launch 
Vehicle Interface); 

• EGSE and Simulators; 

• Harness and connectors, taking into account that the 
communication and power supply harness of a 
typical Launch Vehicle electrical system represent 
more than 10 kilometers of cable of various types ! 

 

D. Methods: A focus on Model-Driven Engineering 

1) The MDE approach 

The MDE approach is meant to increase productivity by 
maximizing compatibility between systems (via reuse of 
standardized models), simplifying the process of design (via 
models of recurring design patterns in the application 
domain), and promoting communication between individuals 
and teams working on the system (via a standardization of 
the terminology and the best practices used in the application 
domain). 

MDE reduces costs, in particular hidden costs or cost 
overruns, not foreseen at the beginning of a software project. 
The famous “Chaos Report” (an industry study by the 
Standish Group) [1] is nowadays contested, however it found 
that for IT (information technology) projects, the average 
cost overrun was 43 percent, and 71 percent of projects were 
over budget. 

Moreover, according to [4], available statistics on bugs in 
embedded systems show that approximately 75% of them are 
caused by ambiguities or misunderstandings between system 
requirements and software requirements. Moreover, such 
errors are generally found late in the project life, thus are 
particularly expensive to correct 5. 

In the frame of the European Project ASSERT (see [2]), 
it has been estimated that a gain of 10% is achievable in 
terms of productivity during software engineering, due to: 

• the use of formal modeling, proof and verification at 
system level, 

• data modeling and code generation techniques. 

                                                           
5  Original citation in French: « Les statistiques disponibles […] sur la 
cause des bugs dans les systèmes embarqués montrent qu’environ 75% de 
ceux-ci sont lies à des ambigüités ou des divergences de compréhension 
entre spécifications systèmes et spécifications logicielles. Ce type de bugs a 
pour circonstance aggravante d’être généralement trouvé très tard dans les 
projets et donc d’être particulièrement coûteux à corriger ». 



The MDE covers the whole range from software-
intensive systems to on-board code, and relies on the use of 
various modeling languages, which are presented in § D.2). 

 

The following figure shows a typical development cycle 
for a space transportation system, using a MDE approach: 

 

 

Figure 9.  Model-Driven Engineering process for a space transportation system 

 

2) Software intensive system Engineering 

In launchers systems, the role of the software is more and 
more important in functional chains. Furthermore, on one 
hand the embedded software becomes more complex and 
harder to master. On the other hand, the introduction of IMA 
(Integrated Modular Avionic) principles in avionics 
architecture implies new software rules: use of TSP (Time 
and Space Partitioning), distributed software architecture... 

It is essential to ensure the consistency of the software 
engineering all over the system development. Another very 
important aspect is to limit the risk and anticipate the 
potential problems which could be faced during the 
development: early validation shall also be an objective. To 
fulfill these objectives, it has been decided, in the context of 
the Avionic-X project, to define a Model Driven Engineering 
(MDE) process to support the embedded software 
development. 

 

The advantages of using models can be presented as 
below: 

• Consistency improvement: 

o Models are more formal than hand written 
document (misunderstanding limitation), 

o Models can be analysed to check development 
rules, to verify properties (software 
verification process improvement)... 

o Model transformation using tools instead of 
manual transformation from documents. 

• Early validation: 

o Models can be executed to verify behaviour of 
the system, 

o Models can be used to ease the build of 
validation tests. 

 

As shown in the ECSS-E-40 [6] following overview (see 
figure 10), the planned MDE process will cover all the 
software development activities from the “software related 
system requirements process” to the “validation w.r.t 
Technical Specification activity”. In addition to the following 
figure, another activity is essential: the “System data 
requirement” which consists in the management (all over of 
the system development) of all data exchanged between the 
different parts of the software intensive system. 

 



 

Figure 10.  Software engineering process overview 

 

For each activity, the following models are foreseen: 

• System data requirements: 

System related data model that will represent all 
the data and interfaces types in a common language 
(currently an extension of ASN1.0 is envisaged). 
This model is refined by all teams involved from 
their unit/dimension until their software interface 
implementation (taking into account the different 
level of implementation: equipment software, 
communication protocol, low level software, 
applicative software).  

• Software related system requirements 

Software-intensive system SysML model which 
describes the static architecture: definition of 
functional blocks, interfaces (data flow and control 
flow), mission data and the non algorithmic 
behaviour: mode automata, time line, activation 
condition, activation frequencies and acyclic 
actions… this model is independent of the chosen 
system architecture (redundancy policy, processing 
units …). It corresponds to the System Software 
Specification (SSS) in the ECSS wording.  

Interface requirement Document is 
automatically generated from a refinement of the 
System related data model.  

Software-intensive system design model which 
describes the processing units, the avionic 
communication means, the physical equipments, the 
software partitions, redundant equipments, data 
flows and their associated latencies, the allocation of 
functional blocks to partition, the partition allocation 
to processing units (AADL 6 is currently envisaged 
to describe this model). This model corresponds to a 
part of SRS in the ECSS-E-40 wording. 

 

                                                           
6  AADL stands for “Architecture Analysis & Design Language”, but it is 
interesting to remind that at the beginning, AADL stood for Avionics 
Architecture Description Language. 

• Software requirements & architecture 

Software static architecture model which 
describes the static decomposition (in terms of 
software components/objects) of the software. This 
model will use UML for manual code and Scade for 
code that will be automatically generated. Interfaces 
between the two formalisms will be ensured using the 
ASN1.0 language (and automatically generated 
wrappers). 

Software-intensive system detailed design model 
which is a refinement of the previous system design 
model. It contains the thread definition, subprograms 
(interfaces), data flow timing constraints, worst case 
timing (bus and subprogram estimations). 

Interface Control Document is automatically 
generated from a refinement of the System related 
data model.  

• Software design & implementation 

The implementation will be made using 
Automatic Code Generation (ACG) for interfaces 
(code skeleton) from UML model, and Scade models 
are refined until containing all the functional aspects 
(to be able to generate a final flight code). 

• Validation & Verification related to implementation 
and models 

One of the goals of all these modelling activities 
is also to provide early validation and/or automatic 
replay/generation of (early) validations activities. 
The following list is far from exhaustive:  

o Software-intensive system SysML model: use of 
simulation with a system granularity. 
Automatic generation of validation tests from 
sequence diagrams.  

o Software intensive system detailed design 
model: automatic generation of on-board 
software scheduler (or configuration) and for 
numerical validation software, TSP 
configuration, verification of all the worst case 
timing information (data flow latencies, worst 
case execution times …)  

o Software architecture models: automatic 
generation of integration tests.  

o Software design and implementation: unit test 
& coverage performed at model level for Scade 
models. Use of formal proof (ADA 2012) to 
replace some unit test for (suited) manual code.  

• Models consistency 

The Avionic-X models shall ensure some 
consistency between their different views. Part of the 
work is made by the refinement of the data interfaces 
defined in the system related data model. But it is far 
from sufficient.  



Intra-model consistency will be verified using 
OCL rules for AADL, UML, SysML models. Scade 
models will be verified using in-house TCL scripts.  

Inter-model consistencies have many different 
means to be verified. Most of them will be assured by 
using scripts which will import a version of the 
interface and data types. For instance, an Acceleo 
script can be written in order to translate an ASN1.0 
data type in a UML/SysML/AADL data type.  

• Others Models 

In parallel to these models dedicated to on-board 
software development, the MDE activity in Avionic-X will 
also cover following modelling: Data handling system with 
SystemC (data handling system specification: used for 
specification verification and simulator generation (for 
applicative software development support)); Equipment 
Simulator Software Architecture using UML and ASN1.0 
interfaces (for functional closed loop validation of the on-
board software); Algorithm Prototyping Models using in-
house common formalism (for a faster and safer translation 
of prototype to on-board software). 

 

IV.  AVIONIC-X DEMONSTRATION PLATFORM 

The last activity branch of the project shall cover all 
platform needs in order to be ready for the first test phase at 
the end of the first increment, and shall manage the various 
demonstrator configurations, deriving from the other two 
activity branches (SEL-X and technological enablers, see 
part III). 

The key properties of this demonstrator are modularity, 
openness and connectivity. It will keep evolving, and will be 
able to host different demonstrations (unitary or integrated). 
The “virtual layer” (shown at the bottom of figure 11) and 
the simulators will allow several testing configuration, from 
SWIL to HWIL. 

In the Statement of Work, the overview of the platform 
was drafted as follows: 
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Figure 11.  First draft of an overview of the Avionic-X demonstrator 

Then we have been fine-tuning the requirements and 
objectives during the feasibility phase, and a first set of 
“platform means” has been written down, as shown on figure 
12, which gives an overview of the global concept of 
Avionic-X demonstrator. 

 

 

Figure 12.  Overview of the Avionic-X demonstrator 

 

The EGSE is mainly composed of the following sub-
systems: 

• The test supervisor based on the AITS (Advanced 
Integration and Tests Services) product which offers 
the user interface to control the tests and 
commanding activities; 

• The front-ends equipments which interface with the 
product under test (Time server, Telemetry, Power 
supply, Avionic buses I/F…). 

• The matrix connections whose objective is to 
dispatch the signals between the front ends and the 
product under test taking into account the SEL-X 
configuration; 

• The avionic simulators interface with the test 
supervisor; 

• and specific check-out equipments if necessary. 

The following figure shows how the three activity 
branches of the Avionic-X project interact continuously in 
order to reach our objectives of TRL and IRL, and build 
performance files for various launcher avionics architectures, 
based on test results and benchmarks. 
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Figure 13.  Links between the three activity branches of Avionic-X 

 

V. CONCLUSION 

The Avionic-X project covers a wide range of 
technologies and avionics functions. It will provide a test 
bench to integrate innovative technologies. Its 
complementarities with other existing programs like FLPP 
will allow to contribute effectively to future launcher 
developments. It was initiated in the frame of the French 
PIA, but it remains open to the European partners involved in 
Avionics systems. 

The development plan is foreseen to adopt iterative 
cycles in order to integrate new technology demonstrations 
which are not necessarily identified yet. This flexibility will 
allow, up to 2013, to associate new partners who would 
propose innovative solutions for launcher avionics. 
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VII.  GLOSSARY 

AADL Architecture Analysis & Design Language 

ACG Automatic Code Generation 

AFDX Avionics Full DupleX switched ethernet 

AFRL US Air Force Research Laboratory 

AVQ-X Avionic-X 

CNES Centre National d’Etudes Spatiales 

DAL Design Assurance Level (according to 
EUROCAE ED-12B / DO-178-B 
standards) 

DDASCA Distributed Dependable Architectures for 
Safety-Critical Applications 

EGSE Electrical Ground Support Equipment 

EMC ElectroMagnetic Compatibility 

EMI ElectroMagnetic Interference 

ESA European Space Agency 

FDIR Failure Detection Isolation and Recovery 

FLPP Future Launchers Preparatory Program 

GNC Guidance, Navigation & Control 

GNSS Global Navigation Satellite Systems 

GSTP General Support Technology Program 

HWIL Hardware-In-the-Loop 

IMA Integrated Modular Avionics 

IMU Inertial Measurement Unit 

IOM Input-Output Module 

IRL Integration Readiness Level 

LV Launch Vehicle 

MDE Model-Driven Engineering 

MDHB-X Modular Data Handling Block 

MEMS MicroElectroMechanical Systems 

NGL Next Generation Launcher 

NGMP Next Generation Multi-Purpose 
Microprocessor 

OBC On-Board Computer 

PIA Plan d’Investissement pour l’Avenir 

PM Processing Module 

POA Power Optimized Aircraft 

R&T Research and Technology 

RTOS Real-Time Operating System 

UML Unified Modeling Language 

SAVOIR Space AVionics Open Interface 
Architecture 

SAG SAVOIR Advisory Group 

SIL Safety Integrity Level (IEC/EN 61508) 

SPA Space Plug-and-Play Architecture 

SWIL Software-In-The-Loop 

SysML Systems Modeling Language 

TCO Total Cost of Ownership 

TRL Technology Readiness Level 

TRP Technology Research Program 

TSP Time and Space Partitioning 

 

 


