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for the Anisotropic Compressible Stokes System

D. Bresch∗, C. Burtea †

July 20, 2019

Dedicated to the memory of Geneviève Raugel

Abstract

In this paper, we study the problem of global existence of weak solutions for the quasi-stationary

compressible Stokes equations with an anisotropic viscous tensor. The key element of our proof is the

control of a particular defect measure associated to the pressure which avoids the use of the e�ective �ux.

Using this new tool, we solve an open problem namely global existence of solutions à la Leray for such a

system without assuming any restriction on the anisotropy amplitude. It provides a �exible and natural

way to treat compressible quasilinear Stokes systems which are important for instance in biology, porous

media, supra-conductivity or other applications in the low Reynolds number regime.

Keywords: Compressible Quasi-Stationary Stokes Equations, Anisotropic Viscous Tensor, Global Weak

Solutions.

MSC: 35Q35, 35B25, 76T20.

1 Introduction

As explained in [13] or [16], there are various motivations for the study of quasi-stationary
Stokes problem. Such study may be used to try to understand how to build solutions of the
compressible Navier-Stokes system which exhibit persistence oscillations. The second motivation
is that such system may be used for instance in porous media, biology or concerning the dynamics
of vortices in supra-conductivity for instance which occurs in the low Reynolds number regime.
Such system has been study from a long-time ago for constant isotropic viscosities: see for
instance [10], [11], [12], [18], [15], [4] for constant viscosities and see for instance [1] for density
dependent viscosities. More complicated quasi-stationary compressible Stokes system has been
also studied in [5], [6], [9] and [8] in the multi-�uid setting for instance. Global existence of weak
solutions for general anisotropic viscosities for non-stationary compressible barotropic Navier-
Stokes equations or even quasi-stationary Stokes equations are open problems. Only recently a
positive result has been obtained by B.D. and P.�E. Jabin in [3] assuming some restrictions on
the shear and bulk viscosities. The result is not straightforward to prove as it involves a non-local
behavior in the compactness characterization explaining in some sense the main tool introduced
by the authors: a non-local compactness criterion with the introduction of appropriate weights.
In this paper, we solve the open problem for the quasi-stationary compressible Stokes equations
with an anisotropic viscous tensor namely for the following system:{

∂tρ+ div (ρu) = 0,
−div τ +∇ργ = ∇f. (1.0.1)
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where u is the velocity �eld and ρ is the density and where the strain tensor τ is as follows

τij(t, x,D(u)) = Aijkl(t, x)[D(u)]kl (1.0.2)

where D(u) = (∇u+ t∇u)/2 with

Aijkl = Aijkl(t, x) ∈W 1,∞((0, T )× T3). (1.0.3)

We assume the following extra hypothesis on the strain tensor τ :

•τ(t, x,D(u)) : ∇u = τ(t, x,D(u)) : D(u) (1.0.4)

•D(u) 7−→ τ(t, x,D(u)) : D(u) to be weakly lower semi-continuous (1.0.5)

•There exists c > 0 such that

E =

∫
T3

τ(t, x,D(u)) : ∇u ≥ c
∫
T3

|D(u)|2 (1.0.6)

• The application A : v 7→ −div τ(t, x,D(v))

is a second order invertible elliptic operator

such that A−1∇div is a bounded operator from L
3
2
−δ (T3

)
into L

3
2
−δ (T3

)
for some (1.0.7)

δ ∈ (0, 1/2). (1.0.8)

We consider the construction of solutions for system (1.0.1) with initial data

ρ|t=0 = ρ0 ≥ 0. (1.0.9)

We present a simple proof for the existence and the weak stability of solutions that consists in
introducing a particular defect measure for the pressure which allows to control the oscillation of
an approximating sequence of solutions of system (1.0.1)�(1.0.9). The advantage of our method
is that we are able to control this defect measure without using the e�ective �ux (presented in
the next section on a simple example). To the authors knowledge, this fact is completely new
and a mathematical justi�cation of this formal calculation (see subsection 3.3) allows for the �rst
time to get the global existence of weak solutions for compressible quasi-stationary anisotropic
Stokes systems. More precisely, we get the following result

Theorem 1. Let us assume that f ∈ H1((0, T );L2
(
T3
)
) and the initial data ρ0 satis�es the

bound

ρ0 ≥ 0, 0 < M0 =

∫
T3

ρ0 < +∞, E0 =

∫
T3

ργ0 dx < +∞

where γ > 1 and the strain tensor τ given by (1.0.2) satis�es (1.0.4)�(1.0.8). Then there exists
a global weak solution (ρ, u) of the compressible system (1.0.1) and (1.0.9) with

ρ ∈ C([0, T ];Lγweak(T
3)) ∩ L2γ((0, T )× T3), u ∈ L2(0, T ;H1(T3) with

∫
T3

u = 0.

A similar result can be obtained for the case of a bounded domain with Dirichlet boundary
condition: we have chosen periodic boundary conditions to simplify the presentation. It seems
di�cult to adapt the method to the non-stationary Navier-Stokes equations in a simple manner:
This will be the subject of the forthcoming paper [2]. Note that actually only one result exists
for the non-stationary Navier-Stokes equations (see [3]) with an assumption on the coe�cients
compared to the isotropic case.

We remark however that at least the weak-stability part of our result can be adapted without
to much e�ort to treat the following stationary system{

αρ+ div (ρu) = f,
βρu+ div (ρu⊗ u)− div τ +∇ργ = g,

where α, β > 0 and τ is as above. This later system can be viewed as an implicit time discretiza-
tion of the Navier-Stokes system.
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In the sequel, the �rst part is dedicated to present our new defect measure on the pressure
and to show how it is possible to control it if initially it is the case without using the e�ective �ux.
Our result uses in a crucial manner compactness properties on the velocity �eld in L2((0, T )×T3).
For the readers's convenience, we recall the classical method to control defect measures that has
been developed by P.�L. Lions and E. Feireisl-A. Novotny-H.Petzeltova and explain why the
anisotropic case seems to fall completely out of such strategy as explained in [3] for instance.
In the second part we present the derivation of the basic energy estimates and extra control
on the density (w.r.t. to the basic energy functional) which are needed in order to justify the
weak stability properties of sequences of solutions. In the third part we construct approximate
solutions satisfying these estimates uniformly in ε.

2 New approach to control defect measure related to the pressure

To be understandable for the reader, let us present formally on a simple example why the classical
approach to control defect measures fails to apply in the case of anisotropic viscosities and how
our new way to proceed provides a �exible method for Stokes type systems. More precisely, let
us consider (ρε, uε) a sequence of solutions for the following system.{

∂tρ
ε + div (ρεuε) = 0,

−∆νu
ε +∇((ρε)γ) = ∇f (2.0.1)

where
∆ν = νx∂

2
x + νz∂

2
y + νz∂

2
z

with νx, νy, νz > 0 which may be di�erent. Assume

‖uε‖L2(0,T ;H1(T3)) + ‖ρε‖L2γ((0,T )×T3) + ‖ρε‖L∞(0,T ;Lγ(T3)) ≤ C < +∞

where C does not depend on ε weak solutions of (2.0.1) and assume that

{uε}ε is compact in L2((0, T )× T3).

We denote (ρ, u) the weak limit and, using classical functional analysis arguments it is not hard
to see that we have {

∂tρ+ div (ρu) = 0,
−∆νu+∇(ργ) = ∇f. (2.0.2)

for some function ργ ∈ L2((0, T ) × T3). Of course, the main di�culty is to prove that ργ = ργ

and therefore to be able to characterize the possible defect measures.

Remark 2. Throughout the paper we denote the weak limit of a sequence (aε)ε>0 by ā.

Classical approach to control defect measures. As mentioned in [3], the usual method for isotropic
viscosities (namely νx = νy = νz = ν) is based on the careful analysis of the defect measures

dft[ρε − ρ](t) =

∫
T3

(ρ log ρ)(t)− ρ log ρ(t)) dx.

More precisely, we can write the two equations

∂t(ρ log ρ) + div(ρ log ρu) + ρdivu = 0 (2.0.3)

and
∂t(ρ log ρ) + div(ρ log ρu) + ρdivu = 0 (2.0.4)

Note that if ρ ∈ L2((0, T )×T3) then using the uniform bound on u ∈ L2(0, T ;H1(T3)), we have
ρdivu ∈ L1((0, T )×T3) and therefore the third quantity is well de�ned. At this level comes the
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so called e�ective �ux comes into play. More precisely, Lions [14] in ′93 (see also D. Serre [19]
for the 1d case) observes that the following quantity

F ε = p(ρε)− νdivuε

enjoys the following compactness property:

lim
ε→0

∫ T

0

∫
T3

(p(ρε)− νdivuε)b(ρε)ϕ =

∫ T

0

∫
T3

(p(ρ)− νdivu)b(ρ)ϕ. (2.0.5)

This is important at it provides a way to express ρdivu in terms of ρdivu and an extra term
which is signed. Substracting the two equations (2.0.3) and (2.0.4) and using the important
property of the e�ective �ux (2.0.5), one gets that

∂t(ρ log ρ− ρ log ρ) + div((ρ log ρ− ρ log ρ)u) =
1

ν
(p(ρ)ρ− p(ρ)ρ)

and using the monotonicity of the pressure, one may deduce that

dft[ρε − ρ](t) ≤ dft[ρε − ρ](0).

On the other hand, the strict convexity of the function s 7→ s log s with s ≥ 0 implies that
dft[ρε − ρ](t) ≥ 0. If initially this quantity vanishes, it then vanishes at every time. The
commutation of the weak convergence with a strictly convex function yields compactness of
{ρε}ε in L1((0, T )× T3).

Assuming anisotropic viscosities νx = νy 6= νz, the e�ective �ux property reads

ρdivu− ρdivu =
1

νx
[ρAνργ − ρAνργ ]

with some non-local anisotropic operator Aν = (∆ − (µz − µx)∂2
z )−1∂2

z where ∆ is the total
Laplacian in terms of (X, z) with variables X = (x, y) and z. Unfortunately, we are loosing the
structure and in particular the sign of the right-hand side. This explains why the anisotropic
case seems to fall completely out the theory developed by P.�L. Lions [13] and E. Feireisl, A.
Novotny and H. Petzeltova [7]. The �rst positive answer has been given by D. Bresch and P.-E.
Jabin in [3] for the compressible Navier-Stokes equations developing an other way to characterize
compactness in space on the density: it involves a non-local compactness criterion with the
introduction of appropriate weights. It allows them to obtain a positive answer assuming the
viscosity coe�cient νx, νy, νz to be close enough.

New approach to control defect measures in the Stokes regime. Our new approach is based on
the careful analysis of the defect measures

dft[ρε − ρ](t) =

∫
T3

(
(ργ)(t)− ργ(t)

)1/γ
dx.

The main idea here is to write the equation related to the energy which will not use the e�ective
�ux expression but is related to the viscous dissipation in the Stokes regime. More precisely, let
us observe that the pressure veri�es the following equation :

∂t (ρε)γ + div ((ρε)γ uε) + (γ − 1) (ρε)γ div uε = 0

which rewrites
∂t (ρε)γ + γ div ((ρε)γ u)− (γ − 1)uε∇ (ρε)γ = 0.

We observe that with the aid of the second equation of (2.0.1) we may write that

∂t (ρε)γ + γ div ((ρε)γ u)− (γ − 1)uε∆νu
ε = (γ − 1)uε∇f
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which can be put under the following form

∂t (ρε)γ + γ div ((ρε)γ u)− (γ − 1) ∆ν

(
|uε|2

2

)
= − (γ − 1)∇

ν
1
2
uε : ∇

ν
1
2
uε + (γ − 1)uε∇f, (2.0.6)

where we use the notation

∇
ν
1
2

=

(
ν

1
2
1 ∂1, ν

1
2
2 ∂2, ν

1
2
3 ∂3

)
.

Of course, we used that

∂jjuiui = ∂jj

(
(ui)

2

2

)
− (∂jui)

2

Assuming that
(uε)ε>0 is compact in L2((0, T )× T3)

by passing to the limit in (2.0.6) we obtain that

∂tργ + γ div (ργu)− (γ − 1) ∆ν

(
|u|2

2

)
= − (γ − 1)∇

ν
1
2
u : ∇

ν
1
2
u+ (γ − 1) (div(fuε)− f div uε) . (2.0.7)

In the following we will apply the same recipe to the limiting function (ρ, u). Indeed, from (2.0.2)
one can deduce that

0 = ∂tρ
γ + γ div (ργu)− (γ − 1)u · ∇ργ

= ∂tρ
γ + γ div (ργu)− (γ − 1)u · ∇(ργ − ργ)− (γ − 1)u · ∇ργ

= ∂tρ
γ + γ div (ργu)− (γ − 1)u · ∇(ργ − ργ)− (γ − 1)u · (∆νu+∇f)

which rewrites

∂tρ
γ + γ div (ργu)− (γ − 1)u∇(ργ − ργ)− (γ − 1) ∆ν

(
|u|2

2

)
= − (γ − 1)∇

ν
1
2
u : ∇

ν
1
2
u+ (γ − 1) (div(fu)− f div u) . (2.0.8)

Let us consider the di�erence between (2.0.7) and (2.0.8) in order to write that

∂t (ργ − ργ) + γ div ((ργ − ργ)u)− (γ − 1)u∇ (ργ − ργ)

= − (γ − 1)
(
∇
ν
1
2
u : ∇

ν
1
2
u−∇

ν
1
2
u : ∇

ν
1
2
u
)
.

which we put under the form

∂t (ργ − ργ) + div ((ργ − ργ)u) + (γ − 1) (ργ − ργ) div u (2.0.9)

= − (γ − 1)
(
∇
ν
1
2
u : ∇

ν
1
2
u−∇

ν
1
2
u : ∇

ν
1
2
u
)
.

At this point we observe that owing to the convexity of the pressure function, we have that

ργ ≥ ργ a.e.

and
∇
ν
1
2
u : ∇

ν
1
2
u−∇

ν
1
2
u : ∇

ν
1
2
u ≥ 0 (2.0.10)

at least in the sense of measures. By multiplying (2.0.9) with 1
γ (ργ − ργ)

1
γ
−1

we get that

∂t (ργ − ργ)
1
γ + div

(
(ργ − ργ)

1
γ u
)
≤ 0
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such that by integration and using (2.0.10) we end up with∫ T

0

∫
(ργ − ργ)

1
γ ≤ T

∫
(ργ − ργ)

1
γ

|t=0 .

Therefore if we have compactness initially, we get compactness on ρε. Of course all the previous
formal calculations have to be justi�ed because of the weak regularity and of possible vanishing
quantity: this will be the subject of Subsection 3.3.

Remark. It interesting to note that our new approach to get characterization of the defect
measure on the pressure sequence is related to the energy equation and strongly uses the energy
dissipation. We speculate that it has a physical meaning in some sense.

3 Weak stability of sequences of global weak solutions

3.1 Classical functional analysis tools

This section is devoted to a quick recall of the main results from functional analysis that we need
in order to justify the computations done above. First, we introduce a new function

gε = g ∗ ωε(x) with ωε =
1

εd
ω(
x

ε
) (3.1.1)

with ω a smooth nonnegative even function compactly supported in the space ball of radius 1
and with integral equal to 1. We recall the following classical analysis result

lim
ε→0
‖gε − g‖Lq(0,T ;Lp(T3)) = 0.

Next let us

Proposition 3. Consider β ∈ (1,∞) and (a, b) such that a ∈ Lβ
(
(0, T )× T3

)
and b,∇b ∈

Lp
(
(0, T )× T3

)
where 1

s = 1
β + 1

p ≤ 1. Then, we have

lim rε (a, b) = 0 in Ls
(
(0, T )× T3

)
where

rε (a, b) = ∂t (aεb)− ∂i ((ab)ε) . (3.1.2)

Next, we state the following

Proposition 4. Consider 2 ≤ β <∞ and λ0, λ1 such that λ0 < 1 and −1 ≤ λ1 ≤ β/2−1. Also,
consider ρ ∈ Lβ

(
(0, T )× T3

)
, ρ ≥ 0 a.e. and u,∇u ∈ L2

(
(0, T )× T3

)
verifying the following

transport equation
∂tρ+ div (ρu) = 0

in the sense of distributions. Then, for any function b ∈ C0 ([0,∞)) ∩ C1 ((0,∞)) such that{
b′ (t) ≤ ct−λ0 for t ∈ (0, 1],
|b′ (t)| ≤ ctλ1 for t ≥ 1

it holds that
∂tb (ρ) + div (b (ρ)u) +

{
ρb′ (ρ)− b (ρ)

}
div u = 0 (3.1.3)

in the sense of distributions.

The proof of the above results follow by adapting in a straightforward manner lemmas 6.7. and
6.9 from the book of Novotny-Stra²kraba [16] pages 304− 308.
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3.2 A priori estimates

In this section we recall the basic apriori estimates for (regular) solutions for system{
∂tρ+ div (ρu) = 0,
−div τ +∇ργ = ∇f (3.2.1)

where τij = Aijkl(t, x)Dkl(u). First, of course we have the mass conservation:∫
T3

ρ(t) =

∫
T3

ρ|t=0 =

∫
T3

ρ0, (3.2.2)

for all t > 0 which follows by integrating the �rst equation of (3.2.1). Next, by multiplying the
velocity equation with u and integrating in space and time we get that∫

T3

ργ (t) +

∫ t

0

∫
T3

τ : ∇u ≤
∫
T3

ργ0 . (3.2.3)

The coercivity hypothesis (1.0.8) ∫
T3

τ : ∇u ≥ c
∫
T3

|D(u)|2

with c > 0, the zero mean value on u, the Körn inequality and Sobolev embedding allows us to
conclude that

u ∈ L2(0, T ;H1
(
T3
)
)

Next, following an idea of Lions 's [13] we can get some extra-integrability for the density. Indeed,
let us remark that

ργ −
∫
T3

ργ = f −
∫
T3

f + ∆−1 div div τ

and thus, we see that if f ∈ L2
(
(0, T )× T3

)
and assuming A(t, x) ∈W 1,∞((0, T )× T3))3×3, we

get that
ργ ∈ L2

(
(0, T )× T3

)
. (3.2.4)

3.2.1 Estimate for the time derivative of the velocity

We can recover time regularity for u by proceeding in the following way. We write that

A∂tu = div(∂tA(t, x)D(u))−∇∂tf +∇∂tργ

= div(∂tA(t, x)D(u))−∇∂tf

+∇ div

(
ργu−

∫
ργu

)
+ (γ − 1)∇

(
ργ div u−

∫
ργ div u

)
.

Let us consider φ with
∫
T3 φ = 0, such that

Aφ=div(∂tA(t, x)D(u))−∇∂tf

Multiplying by φ we get that

c

∫ t

0

∫
T3

|∇φ|2 ≤
∫ t

0

∫
T3

φAφ =

∫ t

0

∫
T3

(∂tA(t, x)D(u)− ∂tf)∇φ

≤ 1

8c

∫ t

0

∫
T3

|∂tA(t, x)D(u)|2 +
1

8c

∫ t

0

∫
T3

(∂tf)2 +
c

2

∫ t

0

∫
T3

|∇φ|2

and thus, we get that

c

2

∫ t

0

∫
T3

|∇φ|2 ≤ 1

8c

∫ t

0

∫
T3

|∂tA(t, x)D(u)|2 +
1

8c

∫ t

0

∫
T3

(∂tf)2 . (3.2.5)
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Next, we see that, owing to the linearity of the operator A we may write that

A (∂tu− φ) = ∇ div

(
ργu−

∫
ργu

)
+ (γ − 1)∇

(
ργ div u−

∫
ργ div u

)
.

We will use a periodic variant of the following result due to Stampacchia and for more gen-
eral second order elliptic equation to Boccardo-Gallouët that can be found for instance in [17]
Proposition 5.1. page 77. Let ψ solution of{

∆ψ = f,
ψ|∂Ω = 0

where f ∈ L1(Ω) with Ω a smooth bounded domain then we have that

‖∇ψ‖
W 1, 32−(Ω)

≤ Cδ ‖f‖L1(Ω) . (3.2.6)

The periodic version reads as follows: Let ψ a solution of

∆ψ = f with f ∈ L1(T3) and

∫
T3

f = 0

then (3.2.6) is satis�ed. As ργ div u ∈ L1((0, T )× T3), let us consider ψ the solution of

∆ψ (ρ, u) = ργ div u

which veri�es that

‖∇ψ (ρ, u)‖
L1(0,T :L

3
2−(T3))

≤ Cδ ‖ργ div u‖L1(0,T ;L1(T3)) ≤ Cδ ‖ρ
γ‖L2((0,T )×T3) ‖div u‖L2((0,T )×T3) .

But then, we may write that

A (∂tu− φ) = ∇ div (ργu) + (γ − 1)∇ (ργ div u)

= ∇ div (ργu) + (γ − 1)∇ div∇ψ (ρ, u)

and using hypothesis (1.0.8) we arrive at

‖(∂tu− φ)‖
L1(0,T ;L

3
2−(T3))

≤
∥∥∥∥ργu− ∫

T3

ργu

∥∥∥∥
L1(0,T ;L

3
2 (T3))

+ ‖∇ψ (ρ, u)‖
L1(0,T ;L

3
2−(T3))

≤ ‖ργ‖L2((0,T )×T3) ‖u‖L2(0,T ;L6(T3)) + ‖ργ‖L2((0,T )×T3) ‖div u‖L2((0,T )×T3)

≤ ‖ργ‖L2((0,T )×T3) ‖∇u‖L2((0,T )×T3) . (3.2.7)

We get a uniform bound for ∂tu in L1
(
0, T ;L3/2−(T3

)
) by combining estimates (3.2.5) and

(3.2.7) in the following manner

‖∂tu‖
L1(0,T ;L

3
2−(T3))

≤ ‖(∂tu− φ)‖
L1(0,T ;L

3
2−(T3))

+ ‖φ‖
L1(0,T ;L

3
2−(T3))

≤ ‖ργ‖L2((0,T )×T3) ‖∇u‖L2((0,T )×T3) +
√
t ‖φ‖L2(0,T ;L6(T3))

≤ ‖ργ‖L2((0,T )×T3) ‖∇u‖L2((0,T )×T3) +
√
t ‖∇φ‖L2((0,T )×T3) (3.2.8)

≤
(
‖ργ‖L2((0,T )×T3) +

√
t ‖∂tA‖L∞((0,T )×T3)

)
‖∇u‖L2((0,T )×T3) +

√
t ‖∂tf‖L2((0,T )×T3) .

Also, for later purposes it is convenient to observe that we actually proved that if

Au = divF

then Hypothesis (1.0.8) made on the operator A implies that

‖∇u‖
L

3
2−(T3)

≤ ‖F‖L1(T3) . (3.2.9)

Of course combining this information with the energy inequality (3.2.3) we obtain an uniform
bound for

u ∈ L2(0, T ;H1(T3)) ∩W 1,1(0, T ;L3/2−(T3)).
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Remark 5. The previous estimates are not all available in the case of the full compressible
Navier-Stokes system. For instance we do not have control on the time derivative of the velocity
and ργ is not square integrable. We control only ∂t(ρu) in L1(0, T ;H−1(T3)) allowing to get
compactness on

√
ρu in L2((0, T ) × T3)) and we gain extra integrability ργ+θ ∈ L1((0, T ) × T3)

for 0 < θ < 2γ/3− 1.

3.3 Weak stability of solutions of (2.0.1)

The aim of this section is to provide the arguments that make rigorous the computations pre-
sented in the introduction. {

∂tρ+ div (ρu) = 0,
−div τ +∇ργ = ∇f. (3.3.1)

As we saw in Section 3.1 under certain integrability conditions one may conclude that ργ veri�es
the following equation :

∂tρ
γ + div (ργu) + (γ − 1) ργ div u = 0.

Of course, the result of Proposition 4 that allows us to write the above equation does not take in
account the structure of the system (3.3.1). In the following, we propose a more accurate result
taking in consideration the equation of the velocity.

Proposition 6. Consider f ∈ L2γ
(
(0, T )× T3

)
and (ρ, u) a weak solution of (3.3.1) satisfying

ρ ∈ L2γ
(
(0, T )× T3

)
, ρ ≥ 0 and u,∇u ∈ L2

(
(0, T )× T3

)
: Then, one has that

∂tρ
γ + γ div (ργu)− (γ − 1) div(τ : u)

− (γ − 1) div (uf) + (γ − 1) f div u

= − (γ − 1) τ : ∇u (3.3.2)

in the sense of distributions.

Remark 7. In order to prove Proposition 6 we do not require regularity on the time derivative
of f as it is needed in order to obtain the apriori estimates for ∂tu, see Section 3.2.1

The proof of the Proposition 6 follows the techniques introduced by Lions in [13], see also the
book of Novotny and Stra²kraba ( [16]). Recall the notation introduced in (3.1.1) and (3.1.2)
and let us write

∂tρε + div (ρεu) = rε (ρ, u)

which by multiplying with γ(ρε)
γ−1 yields

∂t (ρε)
γ + div ((ρε)

γ u) + (γ − 1) (ρε)
γ div u = γ rε (ρ, u) (ρε)

γ−1 .

Let us rewrite the above equation in the following manner:

∂t (ρε)
γ + div ((ρε)

γ u) + (γ − 1) {(ρε)γ − (ργ)ε′}div u+ (ργ)ε′ {div u− div uε′}
+(ργ)ε′ div uε′ = γrε (ρ, u) (ρε)

γ−1 .

Next, we observe that owing to the second equation of (3.3.1) we get that

(ργ)ε′ div uε′ = div ((ργ)ε′uε′)− uε′divτε′ − uε′∇fε′
= div ((ργ)ε′uε′)− div(τε′ : uε′) + τε′ : ∇uε′
− div (uε′fε′) + fε′ div uε′

and thus, we may write that

∂t (ρε)
γ + div ((ρε)

γ u) + (γ − 1) {(ρε)γ − (ργ)ε′} div u+ (γ − 1) (ργ)ε′ {div u− div uε′}
+ (γ − 1) div ((ργ)ε′uε′)− (γ − 1) div(τε′ : uε′) + (γ − 1) τε′ : ∇uε′

− (γ − 1) div (uε′fε′) + (γ − 1) fε′ div uε′ = γrε (ρ, u) (ρε)
γ−1 .
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Using the strong convergence properties of the convolution, Proposition 3 and the expression of
τ , we get that

(ρε)
γ → ργ in L2

(
(0, T )× T3

)
for ε→ 0,

(ρε)
γ u→ ργu in L1

(
(0, T )× T3

)
for ε→ 0,

(ργ)ε′ {div u− div uε′} → 0 in L1
(
(0, T )× T3

)
for ε′ → 0

(ργ)ε′ div uε′ → ργ div u in L1
(
(0, T )× T3

)
for ε′ → 0,

τε′ : uε′ → τ : u and τε′ : ∇uε′ → τ : u in L1
(
(0, T )× T3

)
for ε′ → 0,

uε′fε′ → uf in L1
(
(0, T )× T3

)
for ε′ → 0,

fε′ div uε′ → f div u in L1
(
(0, T )× T3

)
for ε′ → 0,

rε (ρ, u) (ρε)
γ−1 → 0 in L1

(
(0, T )× T3

)
for ε→ 0.

Consequently, we get that

∂tρ
γ + γ div (ργu)− (γ − 1) div(τu)− (γ − 1) div (uf) + (γ − 1) f div u = − (γ − 1) τ : ∇u.

This ends the proof of Proposition 6. Next, we investigate the weak stability of a sequence of
solutions of system (3.3.1). Our main results reads

Theorem 8. Consider a sequence of solutions (ρε, uε)ε>0 for (3.3.1) with initial data (ρε0)ε>0 ⊂
Lγ
(
T3
)
, i.e. 

∂tρ
ε + div (ρεuε) = 0,

−div τ ε +∇(ρε)γ = ∇f ε,
ρε|t=0 = ρε0,

(3.3.3)

with
τ εij = Aεijkl(t, x)Dkl(u

ε).

Assume the following :

ρε0 → ρ0 in Lγ
(
T3
)
,

‖ρε‖L∞(0,T ;Lγ(T3))∩L2γ((0,T )×T3) + ‖uε‖L2(0,T ;H1(T3))∩W 1,1(0,T ;L3/2−(Td)) ≤ C,
ρε ⇀ ρ weakly in L2γ

(
(0, T )× T3

)
,

uε ⇀ u weakly in L2(0, T ;H1(T3)),
uε → u in L2((0, T )× T3)),
Aε(t, x)→ A(t, x) in W 1,∞((0, T )× T3),
f ε → f in L2((0, T )× T3)).

(3.3.4)

where C is independent of ε. Then (ρ, u) veri�es
∂tρ+ div (ρu) = 0,
−divτ +∇ργ = ∇f,
ρ|t=0 = ρ0.

(3.3.5)

with
τij = Aijkl(t, x)Dkl(u).

The assumptions allow us to conclude that there exist three functions (ρ, u) and ργ such that
up to a subsequence we have the following informations :

ρε ⇀ ρ weakly in L2γ
(
(0, T )× T3

)
(ρε)γ ⇀ ργ weakly in L2

(
(0, T )× T3

)
,

∇uε ⇀ ∇u weakly in L2
(
(0, T )× T3

)
,

uε → u strongly in L2
(
(0, T )× T3

)
.

(3.3.6)

Moreover, we may take the above subsequence such as{
τ ε : ∇uε ⇀ τ : ∇u inM

(
(0, T )× T3

)
and

τ : ∇u ≤ τ : ∇u in the sense of measures
(3.3.7)
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using the weak lower semi-continuity of the viscous work: see hypothesis (1.0.5). The above
information allows us to conclude that{

∂tρ+ div (ρu) = 0,
−div τ +∇ργ = ∇f, (3.3.8)

with
τij = Aijkl(t, x)Dkl(u).

Of course, the delicate part is to identify ργ with ργ . Let us observe that for any ε > 0 , (ρε, uε)
veri�es the hypothesis of Proposition 6 and thus we infer that

∂t(ρ
ε)γ + γ div ((ρε)γuε)− (γ − 1) div(τ ε : uε)

= − (γ − 1) τ ε : ∇uε + (γ − 1)[div(f εuε)− f εdivuε] (3.3.9)

Moreover, using the information of relation (3.3.6) we may pass to the limit in (3.3.9) such as to
obtain

∂tργ + γ div ((ργu)− (γ − 1) div(τ : u)

= − (γ − 1) τ : ∇u+ (γ − 1)[div(fu)− fdivu]. (3.3.10)

Observing that we may put the system (3.3.8) under the form{
∂tρ+ div (ρu) = 0,
−div τ +∇ργ = ∇(ργ − ργ) +∇f (3.3.11)

with τij = Aijkl(t, x)Dkl(u) and using Proposition 6 we write that

∂tρ
γ + γ div (ργu)− (γ − 1) div(τ : u)

− (γ − 1) div (u (ργ − ργ)) + (γ − 1) (ργ − ργ) div u

= − (γ − 1) τ : ∇u+ (γ − 1)[div(fu)− fdivu] (3.3.12)

Next, we take the di�erence between (3.3.12) and (3.3.10) we get that

∂t (ργ − ργ) + div ((ργ − ργ)u) + (γ − 1) (ργ − ργ) div u

= − (γ − 1)
{
τ : ∇u− τ : ∇u

}
(3.3.13)

We denote by

δ
not.
= ργ − ργ µ

not.
= τ : ∇u− τ : ∇u

and thus (3.3.13) rewrites as

∂tδ + div (δu) + (γ − 1) δ div u = − (γ − 1)µ.

We regularize the above equation in order to obtain (again recall the notations introduced in
(3.1.1) and (3.1.2))

∂tδε′ + div (δε′u) + (γ − 1) (δ div u)ε′ = rε′ (δ, u)− (γ − 1)µε′ .

we multiply with 1
γ (h+ δε′)

1
γ
−1

where h is a �xed positive constant. We end up with

∂t (h+ δε′)
1
γ + div

(
(h+ δε′)

1
γ u
)

+ (h+ δε′)
1
γ
−1

[

(
1

γ
− 1

)
δε′ − h] div u

+

(
1− 1

γ

)
(h+ δε′)

1
γ
−1

(δ div u)ε′

=
1

γ
(h+ δε′)

1
γ
−1
rε′ (δ, u)− 1

γ
(h+ δε′)

1
γ
−1

(γ − 1)µε′ .
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Let us integrate the above relation in order to get that∫
T3

(h+ δε′)
1
γ (t)

=

∫
T3

(h+ δε′)
1
γ (0) +

∫ T

0

∫
T3

[
1

γ
(h+ δε′)

1
γ
−1
rε′ (δ, u)− 1

γ
(h+ δε′)

1
γ
−1

(γ − 1)µε′

]
≤
∫
T3

(h+ δε′)
1
γ (0) +

∫ T

0

∫
T3

1

γ
(h+ δε′)

1
γ
−1
rε′ (δ, u)−

∫ T

0

∫
T3

Rε′

with

Rε′ = (h+ δε′)
1
γ
−1
[(1

γ
− 1

)(
δε′ div u− (δ div u)ε′

)
− hdiv u

]
(3.3.14)

The last inequality is justi�ed by combining the positiveness of the measure µ (which is obtained
using the lower semi-continuity assumption (1.0.5)) along with the fact that the convolution
kernel is positive. We integrate the above relation in time in order to recover that∫ T

0

∫
T3

(h+ δε′)
1
γ (t)

≤ T
∫
T3

(h+ δε′)
1
γ (0) + T

∫ T

0

∫
T3

1

γ
(h+ δε′)

1
γ
−1
rε′ (δ, u)−

∫ T

0

∫
T3

Rε′ .

with Rε′ given by (3.3.14). Thanks to Proposition 3, we get that

rε′ (δ, u)→ 0 in L1
(
(0, T )× T3

)
.

Thus observing that (h+ δε′)
1/γ−1 ≤ h1/γ−1 (because γ > 1 and δε′ ≥ 0), we have∫ T

0

∫
T3

(h+ δε′)
1
γ
−1
rε′ (δ, u) ≤ h

1
γ
−1
∫ T

0

∫
T3

|rε′ (δ, u)|

and we conclude that

|Rε′ | ≤
(

1− 1

γ

)
h

1
γ
−1 |rε′ (δ, u)|+ h

1
γ |div u| .

Taking in account the last observations, by making ε′ → 0 we get that∫ T

0

∫
T3

(ργ − ργ + h)
1
γ ≤ T

∫
T3

(ργ − ργ + h)
1
γ

|t=0 + h1/γ

∫ T

0

∫
T3

| div u|

Letting h go to zero and using the strong convergence at initial time shows that the term in the
RHS of the above equation is 0 and the conclusion is that

ργ = ργ a.e. on (0, T )× T3.

This ends the proof of Theorem 8.

4 Construction of solutions

In this section, we propose a regularized system with di�usion and drag terms on the density for
which we prove global existence and uniqueness of strong solution on (0, T ) using a �xed point
procedure. Then passing to the limit with respect to the regularization parameter provides a
global solution of the quasi-stationary compressible Stokes system with di�usion on the density
and drag terms on the density. It remains to show that these extra terms do not perturb the
stability procedure, we explained in subsection 3.3, to prove Theorem 8.
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4.1 The approximate system

Let us be more precise. For any �xed strictly positive parameter ε, δ, η, we wish to construct a
global solution of the following regularized system

∂tρ+ div (ρωδ ∗ u) = ε∆ρ− ηρ2γ − ηρ3,
−Au+∇ωδ ∗ ργ = 0,
ρ|t=0 = ρreg0

(Sε,δ,η)

with ωδ a standard regularizing kernel see (3.1.1). This is achieved by a �xed point argument.
In a second time, we pass to the limit δ go to zero to prove global existence of solution of the

system 
∂tρ+ div (ρu) = ε∆ρ− ηρ2γ − ηρ3,
Au+∇ργ = 0,
ρ|t=0 = ρreg0

(4.1.1)

which veri�es the following uniform estimates (uniformly in ε and η) :

∫
T3

ρ (t) + η

∫ t

0

∫
T3

ρ2γ + η

∫ t

0

∫
T3

ρ3 =

∫
T3

ρreg0 ,∫
T3

ργ (t) + (γ − 1)

∫ t

0

∫
T3

τ : ∇u

+η γ
[∫ t

0

∫
T3

ρ3γ−1 +

∫ t

0

∫
T3

ργ+2
]

+4ε[1− 1

γ
]

∫ t

0

∫ ∣∣∣∇ρ γ2 ∣∣∣2 ≤ ∫ (ρreg0 )
γ
,

‖ργ‖L2((0,T )×T3) ≤ Cγ
∫
T3

(ρreg0 )
γ
.

(4.1.2)

Finally, we show that we can adapt the proof of Theorem 8 in order to pass to the limit ε
and η → 0 and thus obtaining a solution for the compressible Stokes system.

4.2 Construction of solutions for the regularized system (Sε,δ,η)

We consider T > 0 to be precised later and we denote by

L2(0, T ; Ḣ1(T3)) =

{
u ∈ L2(0, T ;H1(T3)) :

∫
T3

u (t) = 0 a.e. t ∈ (0, T )

}
Consider

B : L2(0, T ; Ḣ1(T3))→ L2(0, T ; Ḣ1(T3))

de�ned as 
∂tρ+ div (ρωδ ∗ v) = ε∆ρ− ηρ2γ ,
AB(v) +∇ωδ ∗ ργ = 0,
ρ|t=0 = ρreg0

(4.2.1)

Obviously if v ∈ L2(0, T ; Ḣ1(T3)) then ωδ ∗ v ∈ L2(0, T ;C∞(T3)) such that the existence of a
regular positive solution for the �rst equation of system (4.2.1) follows by classical arguments.
Also, B (v) is well-de�ned as an element of L2(0, T ; Ḣ1(T3)) and∫ T

0

∫
T3

A(t, x)D(B(v)) : D(B(v)) =

∫ T

0

∫
T3

ωδ ∗ ργdivB(v)

which provides
‖∇B (v)‖L2((0,T )×T3) ≤ C ‖ωδ ∗ ρ

γ‖L2((0,T )×T3) , (4.2.2)
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with C depending only on the dissipation operator. Let us integrate the equation de�ning ρ in
order to see that ∫

T3

ρ (t) + η

∫ t

0

∫
T3

ρ2γ + η

∫ t

0

∫
T3

ρ3 =

∫
T3

ρreg0

which, enables us to conclude, that

‖∇B (v)‖L2((0,T )×T3) ≤
C

η

∫
T3

ρreg0 . (4.2.3)

Thus, we conclude that for any T > 0, the operator B (trivially) maps ET into itself where

ET =

{
v ∈ L2

T (Ḣ1(T3)) : ‖∇v‖L2((0,T )×T3) ≤
C

η

∫
T3

ρreg0

}
In the following, we aim at showing that B is a contraction on ET .

The �rst observation that we make in towards this direction is that using a maximum principle
we get

‖ρ‖L∞((0,t)×T3) ≤ ‖ρ
reg
0 ‖L∞(T3) exp

(∫ t

0
‖divωδ ∗ v‖L∞(T3)

)
≤ ‖ρreg0 ‖L∞(T3) exp

(√
tCη,δ

)
. (4.2.4)

Next, let us multiply with ρ and integrate in order to obtain that

1

2

∫
T3

ρ2 + ε

∫ t

0

∫
T3

|∇ρ|2 + η

∫ t

0

∫
T3

ρ2γ+1 + η

∫ t

0

∫
T3

ρ4 = γ

∫
T3

ρ2 div (ωδ ∗ v)

and thus by Gronwall's lemma we get that

1

2

∫
T3

ρ2 + ε

∫ t

0

∫
T3

|∇ρ|2 + η

∫ t

0

∫
T3

ρ2γ+1 + η

∫ t

0

∫
T3

ρ4

≤ 1

2

∫
T3

(ρreg0 )
2

exp

(∫ t

0
‖div (ωδ ∗ v)‖L∞(T3)

)
≤ 1

2

∫
T3

(ρreg0 )
2

exp

(
tCδ

∫ t

0
‖∇v‖2L2(T3)

)
≤ 1

2

∫
T3

(ρreg0 )
2

exp

(
tCδ,η

∫
T3

ρreg0

)
(4.2.5)

Let us consider v1, v2 ∈ ET and let us consider ∂tρi + div (ρiωδ ∗ vi) = ε∆ρi − ηρ2γ
i − ηρ3

i ,
AB(vi) +∇ωδ ∗ ργi = 0,
ρi|t=0 = ρreg0

with i ∈ 1, 2. Of course, ρ1 and ρ2 verify estimate (4.2.5). We denote by r = ρ1 − ρ2 and
w = v1 − v2. We infer that

∂tr + div (rωδ ∗ v1) = ε∆r − η
(
ρ2γ

1 + ρ3
1 − ρ

2γ
2 − ρ3

2

)
− div (ρ2Vδ ∗ w) ,

A (B(v1)−B (v2)) +∇ωδ ∗ (ργ1 − ρ
γ
2) = 0,

r|t=0 = 0
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Next, we observe that∫
T3

r2 (t)

2
+ ε

∫ t

0

∫
T3

|∇r|2 + η

∫ t

0

∫
T3

(
ρ2γ

1 + ρ3
1 − ρ

2γ
2 − ρ

3
2

)
r (4.2.6)

≤
∫ t

0

∫
T3

r2 divωδ ∗ v1 +

∫ t

0

∫
T3

div (ρ2ωδ ∗ w) r

≤
∫ t

0

∫
r2 ‖divωδ ∗ v1‖L∞(T3) +

1

2ε

∫ t

0
‖ρ2‖2L2(T3) ‖ωδ ∗ δv‖

2
L∞(T3) +

ε

2

∫ t

0

∫
T3

|∇r|2

≤
∫ t

0

∫
T3

r2 ‖divωδ ∗ v1‖L∞(T3) + Cδ,ε exp

(
tCδ,η

∫
ρreg0

)∫ t

0
‖δv‖2L6(T3) +

ε

2

∫ t

0

∫
T3

|∇r|2

≤
∫ t

0

∫
T3

r2 ‖divωδ ∗ v1‖L∞(T3) + Cδ,ε exp

(
tCδ,η

∫
ρreg0

)∫ t

0
‖∇δv‖2L2(T3) +

ε

2

∫ t

0

∫
T3

|∇r|2

(4.2.7)

and thus using Grönwall's lemma we get that∫
T3

r2 (t)

2
+
ε

2

∫ t

0

∫
T3

|∇r|2 + η

∫ t

0

∫
T3

(
ρ2γ

1 − ρ
2γ
2

)
r + η

∫ t

0

∫
T3

(
ρ3

1 − ρ3
2

)
r

≤ Cδ,ε exp

(
tCδ,η

∫
T3

ρreg0

)∫ t

0
‖∇w‖2L2(T3) exp

(∫ t

0

∫
T3

‖divωδ ∗ v1‖L∞(T3)

)
≤ Cδ,ε exp (Cδ,εt)

∫ t

0
‖∇w‖2L2(T3) = Cδ,ε exp (Cδ,εt)

∫ t

0
‖∇v1 −∇v2‖2L2(T3) (4.2.8)

Finally, recalling that
A (B(v1)−B (v2)) +∇ωδ ∗ (ργ1 − ρ

γ
2) = 0,

we infer that

‖∇ (B (v1)−B(v2))‖L2((0,t)×T3) ≤ Ct
1
2 ‖ργ1 − ρ

γ
2‖L∞(0,t;L2(T3)) (4.2.9)

We use the intermediate value theorem and estimate (4.2.4) in order to asses that

|ργ1 − ρ
γ
2 | ≤ γ |ρ1 − ρ2|max

{
‖ρ1‖γ−1

L∞((0,t)×T3)
, ‖ρ2‖γ−1

L∞((0,t)×T3)

}
≤ γ |ρ1 − ρ2| ‖ρreg0 ‖

γ−1
L∞(T3) exp

(√
tCη,δ

)
(4.2.10)

which, in turn implies that

‖ργ1 − ρ
γ
2‖L∞(0,t;L2(T3)) ≤ γ ‖ρ

reg
0 ‖

γ−1
L∞(T3)) exp

(√
tCη,δ

)
‖r‖L∞(0,t;L2(T3)) .

This last estimate along with (4.2.8) gives us

‖∇ (B (v1)−B(v2))‖L2((0,t)×T3) ≤ t
1
2Cδ,ε exp ((1 + t)Cη,δ) ‖∇v1 −∇v2‖L2((0,t)×T3) .

We conclude that for a small T ? the operator has a �xed point u ∈ ET ? which veri�es (Sε,δ,η).
As the pair (ρ, u) solution of the above system veri�es by integration of the �rst equation∫

T3

ρ (t) + η

∫ t

0

∫
T3

ρ2γ + η

∫ t

0

∫
T3

ρ3 =

∫
T3

ρreg0 ,

using the second equation of (Sε,δ,η) we see that the last relation implies that

‖∇u‖L2((0,T ?)×T3) ≤
C

η

∫
T3

ρreg0 .

Thus, we may re-iterate the �xed point argument. This implies that the solution (ρ, u) of (Sε,δ,η)
is global.
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4.3 The limit δ → 0

We consider
(
ρδ, uδ

)
a sequence of solutions to ∂tρ

δ + div
(
ρδωδ ∗ uδ

)
= ε∆ρδ − η(ρδ)2γ − η

(
ρδ
)3
,

Auδ +∇ωδ ∗
(
ρδ
)γ

= 0,
ρ|t=0 = ρreg0

(Sε,δ,η)

The sequence veri�es the following estimates uniformly in δ :

∫
T3

ρδ (t) + η

∫ t

0

∫
T3

(
ρδ
)2γ

+ η

∫ t

0

∫
T3

(
ρδ
)3

=

∫
T3

ρreg0 ,∫
T3

(
ρδ
)γ

(t) + (γ − 1)

∫ t

0

∫
T3

uδAuδ

+ηγ

∫ t

0

∫
T3

(
ρδ
)3γ−1

+ ηγ

∫ t

0

∫
T3

(
ρδ
)γ+2

+4ε[1− 1

γ
]

∫ t

0

∫
T3

∣∣∣∣∇(ρδ) γ2 ∣∣∣∣ ≤ ∫
T3

(ρreg0 )
γ
,∥∥∥ωδ ∗ (ρδ)γ∥∥∥

L2((0,T )×T3)
≤
∥∥∥∆−1 divAuδ

∥∥∥
L2((0,T )×T3)

≤ Cγ
∫
T3

(ρreg0 )
γ
.

(4.3.1)

Moreover, we have that

1

2

∫
T3

(
ρδ
)2

+ ε

∫ t

0

∫
T3

∣∣∣∇ρδ∣∣∣2
+ η

∫ t

0

∫
T3

(
ρδ
)2γ+1

+ η

∫ t

0

∫
T3

(
ρδ
)4

= γ

∫ t

0

∫
T3

(
ρδ
)2

div
(
ωδ ∗ uδ

)
≤ η

2

∫ t

0

∫
T3

(
ρδ
)4

+
γ2

2η

∫ t

0

∫
T3

(
ωδ ∗ div uδ

)2

and owing to the uniform bound on ∇uδ ensured by the estimates (4.3.1) we get that

1

2

∫
T3

(
ρδ
)2

+ ε

∫ t

0

∫
T3

∣∣∣∇ρδ∣∣∣2 + η

∫ t

0

∫
T3

(
ρδ
)2γ+1

+
η

2

∫ t

0

∫
T3

(
ρδ
)4
≤ C

η

∫
T3

(ρreg0 )
γ
. (4.3.2)

Moreover, we have that

∂tρ
δ is bounded uniformly in W−1,1

(
(0, T )× L1

(
T3
))

+ L1
(
(0, T )× T3

)
(4.3.3)

The estimates (4.3.1), (4.3.2) and (4.3.3) are enough in order to pass to the limit when δ → 0
such that we obtain the existence of a solution of system

∂tρ+ div (ρu) = ε∆ρ− ηρ2γ − ηρ3,
Auδ +∇ργ = 0,
ρ|t=0 = ρreg0

which veri�es the following bounds

∫
T3

ρ (t) + η

∫ t

0

∫
T3

ρ2γ + η

∫ t

0

∫
T3

ρ3 =

∫
T3

ρreg0 ,∫
T3

ρδ (t) + (γ − 1)

∫ t

0

∫
T3

uAu

+ηγ

∫ t

0

∫
T3

ρ3γ−1 + ηγ

∫ t

0

∫
T3

ργ+2

+4ε[1− 1

γ
]

∫ t

0

∫
T3

∣∣∣∇ρ γ2 ∣∣∣ ≤ ∫
T3

(ρreg0 )
γ
,

‖ργ‖L2((0,T )×T3) ≤ Cγ
∫
T3

(ρreg0 )
γ
.

(4.3.4)
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4.4 Weak stability result for the perturbed system with di�usion and drag

terms

In view of what was proved in the last section, let us consider a sequence (ρε, uε) of solutions of
∂tρ

ε + div (ρεuε) = ε∆ρε − ε (ρε)2γ − ε(ρε)3,
Auε +∇ (ρε)γ = 0,
ρ|t=0 = ρreg0

(Sε)

which veri�es the following estimates uniformly in ε

∫
T3

ρε (t) + ε

∫ t

0

∫
T3

(ρε)2γ + ε

∫ t

0

∫
T3

(ρε)3 =

∫
T3

ρreg0 ,∫
T3

(ρε)γ (t) + (γ − 1)

∫ t

0

∫
T3

τ ε : ∇uε

+εγ

∫ t

0

∫
T3

(ρε)3γ−1 εγ

∫ t

0

∫
T3

(ρε)γ+2

+4ε[1− 1

γ
]

∫ t

0

∫
T3

∣∣∣∇ (ρε)
γ
2

∣∣∣2 ≤ ∫
T3

(ρreg0 )
γ
,

‖(ρε)γ‖L2((0,T )×T3) ≤ Cγ
∫
T3

(ρreg0 )
γ
.

(4.4.1)

In the following we show that it is possible to slightly modify the proof of stability in order to
show that the limiting function (ρ, u) is a solution of the semi-stationary Stokes system. Indeed,
let us observe that

γ (h+ ωε′ ∗ (ρε))γ−1 ∆ωε′ ∗ (ρε)

= ∆ ((h+ ωε′ ∗ (ρε))γ)−∇ (h+ ωε′ ∗ (ρε))γ−1∇ωε′ ∗ (ρε)

= ∆ ((h+ ωε′ ∗ (ρε))γ)− (γ − 1) (h+ ωε′ ∗ (ρε))γ−2∇ωε′ ∗ (ρε)∇ωε′ ∗ (ρε)

= ∆ ((h+ ωε′ ∗ (ρε))γ)− γ (γ − 1)(γ
2

)2 ∇ (h+ ωε′ ∗ (ρε))
γ
2 ∇ (h+ ωε′ ∗ (ρε))

γ
2 .

Thus, in the sense of distributions, we get that

γ (h+ ωε′ ∗ (ρε))γ−1 ∆ωε′ ∗ (ρε) →
ε′,h→0

∆ (ρε)γ − 4 [1− 1

γ
]
∣∣∣∇ (ρε)

γ
2

∣∣∣2 .
Also, we have that  (h+ ωε′ ∗ (ρε))γ−1 ωε′ ∗ (ρε)2γ →

ε′,h→0
(ρε)3γ−1 in L1

t,x

(h+ ωε′ ∗ (ρε))γ−1 ωε′ ∗ (ρε)3 →
ε′,h→0

(ρε)γ+2 in L1
t,x.

We may thus write the renormalized equation for (ρε)γ which yields

∂t(ρ
ε)γ + γ div ((ρε)γuε)− (γ − 1) div(uετ ε)

= − (γ − 1) τ ε : ∇uε

+ ε∆ (ρε)γ − 4ε [1− 1

γ
]
∣∣∣∇ (ρε)

γ
2

∣∣∣2 − ε (ρε)3γ−1 − ε (ρε)γ+2

Then, we conclude that

∂t (ργ − ργ) + div ((ργ − ργ)u) + (γ − 1) (ργ − ργ) div u

= − (γ − 1)
{
τ : ∇u− τ : ∇u

}
− ν (4.4.2)

where ν is a positive measure i.e.

ν = lim
ε→0

(
4ε[1− 1

γ
]
∣∣∣∇ (ρε)

γ
2

∣∣∣2 + ε(ρε)3γ−1 + (ρε)γ+2
)
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which will not perturb the stability procedure which follows exactly the same lines as in Subsec-
tion (3.3).
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