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Keywords: 

Outlinks feature different degree distributions than inlinks.

• Different link formation mechanisms cause the degree distribution distinctions.

• In/outdegree distribution distinction holds for different levels of system decomposition.

Introduction

Q3

Among network models Erdős-Rényi (ER) [START_REF] Paul Erdős | On the evolution of random graphs[END_REF] proposed a non-growing randomly connected model, Watts and Strogatz (WS) [START_REF] Watts | Collective dynamics of 'small-world' networks[END_REF] proposed a non-growing randomly re-connected network model (so called small world) and Barabási-Albert (BA) [START_REF] Barabási | Emergence of scaling in random networks[END_REF] proposed a growing network with the probability of addition of new nodes proportional to the number of incoming links (so-called preferential attachment model or rich-get-richer). In ER and WS models, number of nodes in the network is fixed, and linkages among existing link formation nodes are formed, while BA model assumes time-homogeneous network growth with a mechanism for preferential attachment link formation. There are also other growth models such as fitness model (Bianconi et al. [START_REF] Bianconi | Competition and multiscaling in evolving networks[END_REF]) attractiveness model (Dorogovtesev et al. [START_REF] Dorogovtesev | Structure of growing networks with preferential linking[END_REF]), accelerating growth model (Dorogovtesev et al. [START_REF] Dorogovtesev | Effect of the accelerating growth of communications networks on their structure[END_REF]), logarithmic growth model (Shi et al. [START_REF] Shi | Markov chain-based numerical method for degree distributions of growing networks[END_REF]), and random preferential attachment model (Liu et al. [START_REF] Liu | Connectivity distribution and attack tolerance of general networks with both preferential and random attachments[END_REF]).

Preferential attachment does not always explain network evolution, e.g. where the innovation of an article rather than the number of its citations causes a new attachment. Scientists such as Ergun et al. [START_REF] Ergun | Growing random networks with fitness[END_REF] and Xu et al. [START_REF] Xu | Mutual selection in network evolution: The role of the intrinsic fitness[END_REF] have discussed a methodology of fit-get-richer, implying that new vertices connect to highly fitted vertices. This explains attachment to a new network based on its intrinsic physical property or quality. In this area, Caldarelli et al. [START_REF] Caldarelli | Scale-free networks from varying vertex intrinsic fitness[END_REF] introduced a varying vertex fitness model. As far as link formation mechanisms are concerned, Newman [START_REF] Newman | Assortative mixing in networks[END_REF] defined assortativity mixing for undirected networks as a node tendency to connect to other nodes with similar degree. Piraveenan [START_REF] Piraveenan | Assortativity of links in directed networks[END_REF][START_REF] Piraveenan | Assortative mixing in directed biological networks[END_REF] defined this for directed networks as: in (out)-assortativity is the tendency whereby nodes tend to connect to other nodes with similar in (out)-degrees. Jackson and Rogers [START_REF] Jackson | Meeting strangers and friends of friends: how random are social networks?[END_REF] have also presented a dynamic model of link formation based on random as well as searching through the current structure.

Scientists have shown much interest in presenting power-law features within complex networks. For instance, Barabási and Albert [START_REF] Barabási | Emergence of scaling in random networks[END_REF] claimed a common property of many large networks was that vertex connectivity follows scale-free powerlaw distribution, and concluded that development of large networks is governed by robust self-organizing phenomena that go beyond the particulars of the individual systems. Barabási et al. [START_REF] Barabási | Evolution of the social network of scientific collaborations[END_REF] have also shown power law evolution in the social network of scientific collaboration. Furthermore, Faloutsos et al. [START_REF] Faloutsos | On power-law relationships of the Internet topology[END_REF] showed power-law features existing in the internet topology, implying its benefits in designing efficient protocols, creating accurate artificial models and speculating on the internet topology in the future.

Authors such as Jiang et al. [START_REF] Jiang | Network model of deviation from power-law distribution in complex network[END_REF] discussed a network model of deviation from power-law distribution. Some other authors had previously addressed this deviation and indicated that size effect (Bagrow et al. [START_REF] Bagrow | Phase transition in the rich-get-richer mechanism due to finite-size effects[END_REF]), information filtering mechanism (Mossa et al. [20]), and birth and death process (Shi et al. [START_REF] Shi | Evolving networks and birth-and-death processes[END_REF]) accounted for this deviation. Maillart et al. [START_REF] Maillart | Empirical tests of Zipf's law mechanism in open source Linux distribution[END_REF] tested Zipf's degree distribution via link creation and deletion mechanism in open source Linux distribution. In another work, Maillart et al. [START_REF] Maillart | Quantification of deviations from rationality with heavy tails in human dynamics[END_REF] used data collected by Google to identify the existence of power-law regimes for a population of Internet users to execute a given task after receiving a message.

We argue that WWW, Scientific Collaboration and OSS reuse networks are not undirected, as assumed in some studies; they are in fact directed networks where outlinks and inlinks demonstrate different degree distributions. Faloutsos et al. [START_REF] Faloutsos | On power-law relationships of the Internet topology[END_REF], Krapivsky et al. [START_REF] Krapivsky | Degree distribution of growing networks[END_REF], Tanimoto [START_REF] Tanimoto | Power laws of the in-degree and out-degree distributions of complex networks[END_REF] and more also assumed that preferential attachment is the dominant link formation mechanism in directed networks, resulting in power-law degree distribution. At the same time, we claim that there are different (out) inlink formation mechanisms within directed networks which result in degree distribution distinctions. We propose two hypotheses to explain causal effect of link formation mechanism on degree distribution.

We prove the hypotheses both analytically and empirically. In the analytical approach, apart from using indegree-based preferential attachment mechanism to prove our claims, we apply other link formation mechanisms such as outdegreebased preferential attachment, fitness-based preferential attachment. In the empirical section, we first consider the sample network of open-source-software (OSS) projects reuse to identify the distinction between indegree and outdegree distribution, then analyze whether this distinction holds in the corpus of each of those OSS projects, and at different system decomposition levels of package-package and class-class dependencies.

Theoretical development and hypotheses

Inlink and outlink formation logic

As already mentioned, inlink and outlink do not lead to similar types of degree distribution. Here we give few examples to demonstrate the logic behind this distinction.

• Complex stock trading network: Stock trading can be modeled for each transaction day where investors represent nodes and each transaction represents a directed link from seller to buyer, and trading size represents weight of each edge. Jiang et al. [START_REF] Jiang | Complex stock trading network among investors[END_REF] showed a powerlaw distribution in such a trading network. According to Barabási and Albert (BA) [START_REF] Barabási | Emergence of scaling in random networks[END_REF] the mechanism underlying inlink formation is (degree-based) preferential attachment, which leads to scale-free distribution. In the case of a network of creditors and individuals leveraging, quality-based attachment is the mechanism underlying formation of outlinks from creditors to individuals. Intuitively, this does not lead to heavy-tailed distribution, as creditors choose a finite number of individuals based on selection and their quality.

• Contact network of contagious virus epidemics:

In an epidemic network of respiratory spread agents, outlinks represent the number of infectious contacts produced by individuals. In this case, outdegree will not follow heavy-tailed distribution because the mechanism underlying outlink formation is random (and not preferential attachment), although only vulnerable persons might be affected.

• Webpage-ranking network:

Page ranking considers pages with many incoming links (infinitely) and few outgoing links as sources of information that are governed by indegree-based preferential attachment link formation mechanism; they follow power-law degree distribution. On the other hand, pages with many outgoing links and few incoming links represent portals; the mechanism underlying this outlink formation could either be outdegree-based preferential attachment or quality-based attachment.

Degree distribution for these portals will not be heavy-tailed.

• Open Source Software (OSS) network:

When OSS projects call or reuse each other, inlink represents linkage from project A (caller) to project B (called or reused).

Popular projects (with highest indegree of reuse) are called far more often than other projects (infinitely), considering that inlink formation mechanism is based on indegree-based preferential attachment, indegree distribution follows powerlaw. However, large projects call small projects less frequently (finitely), considering that outlink formation attachment mechanism is based on quality-based attachment, degree distribution will probably not follow power-law. In the case of network of OSS project corpus, a software package could be indefinitely reused (indegree dependency). Therefore, there tend to be some packages with very small and some with very large indegrees, therefore its indegree distribution is heavy-tailed.

While a package could reuse limited number of other software packages based on their quality (outdegree dependency), so its outdegree distribution tends to not be heavy-tailed.

• Citation network: Barabási et al. [START_REF] Barabási | Evolution of the social network of scientific collaborations[END_REF] made an assumption that scientific collaboration or paper citation network is undirected, and concluded a power-law degree distribution accordingly, although citation network is in fact a directed network. Barker et al. [START_REF] Barker | Deviations from power law in citation distributions[END_REF] claimed that power-law degree distribution for citations within a corpus of scholarly articles or web pages appears to be approximately true for incoming citations, whereas there is a substantial deviation from a power law for outgoing citations.

In the case of a paper citation network, one popular (more Visible) paper could be indefinitely cited. Therefore, some papers tend to have very small and others very large indegrees, and the network's indegree distribution is heavy-tailed. When a paper cites a limited number of other papers, based on their quality (more Relevant), then its' outdegree distribution tends not to be heavy-tailed.

Hypotheses

Barabási et al. [START_REF] Barabási | Evolution of the social network of scientific collaborations[END_REF] inferred the dynamic and the structural mechanisms that govern the evolution of a co-authorship network. This network of scientists represents a prototype of a complex social network through mapping the electronic database containing all relevant journals in mathematics (M) and neuro-science (NS) for an eight year period (1991)(1992)(1993)(1994)(1995)(1996)(1997)(1998).

Barabási showed that degree distribution for both Math and Neuroscience exhibits power law distribution. On the other hand, Barker et al. [START_REF] Barker | Deviations from power law in citation distributions[END_REF] claimed that power-law degree distribution for citations within a corpus of scholarly articles or web pages appears to be approximately true for incoming citations, whereas there is a substantial deviation from a power law for outgoing citations. Similarly, we argue that WWW, Scientific Collaboration and OSS reuse networks are not undirected, as assumed in some studies; they are in fact directed networks where outlinks and inlinks demonstrate different degree distributions. Faloutsos et al. [START_REF] Faloutsos | On power-law relationships of the Internet topology[END_REF], Krapivsky et al. [START_REF] Krapivsky | Degree distribution of growing networks[END_REF], Tanimoto [START_REF] Tanimoto | Power laws of the in-degree and out-degree distributions of complex networks[END_REF] and more also assumed that preferential attachment There are some properties of complex networks, where knowing degree distribution type is of great significance.

• Structural property of complex networks

For the purpose of design it is important to know what the network looks like. For instance, as mentioned by Baxter et al. [START_REF] Baxter | Understanding the shape of java software[END_REF],

we believe that current methodologies for software design lead to reusable, testable good software, but without knowing what good software resembles, how can we know if these methodologies really work?

• Statistical property of complex networks

We should know the type of degree distribution for the underlying complex network. For instance, if power-law distribution may not have finite mean and variance, then central limit theorem does not apply, and therefore sample mean and variance cannot be used as the estimator of the population mean and variance.

• Self-organizing property of complex networks Scale-free distribution has self-organizing property. Barabási and Albert [START_REF] Barabási | Emergence of scaling in random networks[END_REF] claimed common property of many large networks in that the vertex connectivity follows scale-free distribution, and concluded that development of large networks is governed by robust self-organizing phenomena beyond the particulars of individual systems.

• Distinctive property of directed networks

In this study, we consider sample network of OSS project reuse; we show that there is distinction between indegree and outdegree distribution. Also we consider sample network of java software corpus, where one also observes distinction between indegree and outdegree distributions. Therefore, this distribution distinction holds for different levels of system decomposition. Simon [START_REF] Simon | The organization of complex systems[END_REF] argued that complex systems more generally including biological and computing systems can be decomposed into constituent parts that operate in relative isolation from each other. Here system components are 1. Cluster of projects, 2. projects (including packages), 3. packages (including classes); and system interactions are 1.

project-project dependency within a cluster, 2. package-package dependency within a project, 3. class-class dependency within a package. Considering that complex systems can be decomposed into different levels, we would like to show that in/outdegree distribution distinction should exist. Hypothesis 2. In/outdegree distribution distinction holds for different levels of system decomposition; therefore this distribution distinction is a property of directed networks.

Analytical approach to link formation mechanisms 2.3.1. InLink formation mechanisms

Barabási-Albert (BA) [START_REF] Barabási | Emergence of scaling in random networks[END_REF] proposed a growing network with the probability of addition of new nodes proportional to the number of incoming links (indegree-based preferential attachment). There are also other inlink formation mechanisms, as listed below:

1. Indegree-based preferential attachment 2. Outdegree-based preferential attachment 3. Preferential attachment fitness model.

Although most studies define preferential attachment as: one becomes popular because of receiving many inlinks; however, one could also become popular because of having many outlinks, e.g. hub gamers outlinking to many other teams, web portals outlinking to many other websites and more; we call this out-degree preferential attachment.

1. Indegree-based preferential attachment mechanism implies that the probability of a new node inlinked to node i depends on the indegree k in i of that node such that ϕ 

 k in i  = k in i /  j k in j .
∂k in i ∂t = µ 1 m ϕ  k in i  = µ 1 m k in i m 0 +t-1  j=1 k in j . ( 1 
)
Take into account m links added to the network at each time step, after t steps the total quantity of degree increase is  j k in j = mt, where µ 1 m is the quantity of degree increase for part of new nodes preferentially attached to already existing nodes, and (1 -µ 1 )m represents degree increase for new nodes at each time step (Tanimoto [25]).

∂k in i ∂t = µ 1 m k in i mt = µ 1 k in i t
.

(

) 2 
Considering the initial condition for connectivity of node added to network

k in i (t i ) = (1 -µ 1 )m, then k in i (t) = (1 -µ 1 )m  t t i  µ 1 t ≫ t i . (3) 
Older vertices with smaller t i increase their connectivity at expense of younger vertices with larger t i ; this results in highly-connected vertices. These phenomena help us calculate P(k in i < k).

P(k in i < k) = P  t i > t (m(1 -µ 1 )) 1/µ 1 k 1/µ 1  . (4) 
Assuming that new vertices are added in equal time step P i (t i ) = 1/(m 0 + t), then

P  t i > t (m(1 -µ 1 )) 1/µ 1 k 1/µ 1  = 1 -P  t i < t (m(1 -µ 1 )) 1/µ 1 k 1/µ 1  = 1 - t (m(1 -µ 1 )) 1/µ 1 (t + m 0 )k 1/µ 1 .
(

) 5 
Density will be power law:

p (k) ∼ k -(1+ 1 µ 1 ) p (k) = ∂P(k in i (t) < k) ∂k = t (m (1 -µ 1 )) 1 µ 1 µ 1 (t + m 0 ) k -  1+ 1 µ 1  . (6) 
2. Outdegree-based preferential attachment mechanism implies that the probability of a new node inlinked to node i depends on the outdegree k out i such that ϕ 

k in i  = k out i /  j k out j .
Take into account m links added to the network at each time step, after t steps the total quantity of degree increase is  j k in j = mt, where µ 2 m is the quantity of degree increase for part of new nodes preferentially attached to already existing nodes, and (1 -µ 2 )m represents degree increase for new nodes at each time step (Tanimoto [25]).

k out i (t) = (1 -µ 2 )m  t t i  µ 2 t ≫ t i (7)
∂k in i ∂t = µ 1 m k out i mt = µ 1 (1 -µ 2 ) m  t t i  µ 2 t . (8) 
Consider initial condition k out i

(t i ) = (1 -µ 2 )m k in i = µ 1 (1 -µ 2 ) m µ 2  t t i  µ 2 + (µ 2 -µ 1 ) m µ 2 . (9) 
These help us calculate

P(k in i < k) P(k in i < k) = P  t i >  µ 1 (1 -µ 2 ) m (µ 1 -µ 2 ) m + kµ 2  1 µ 2 t  . (10) 
Assuming that new vertices are added in equal time step P i (t i ) = 1/(m 0 + t), then,

P  t i >  µ 1 (1 -µ 2 ) m (µ 1 -µ 2 ) m + kµ 2  1 µ 2 t  = 1 -P  t i <  µ 1 (1 -µ 2 ) m (µ 1 -µ 2 ) m + kµ 2  1 µ 2 t  = 1 -  µ 1 (1 -µ 2 ) m (µ 1 -µ 2 ) m + kµ 2  1 µ 2 t (t + m 0 ) . (11) 
Density will be a power law, if µ 1 = µ 2 .

p (k) = ∂P(k in i (t) < k) ∂k = µ 2 t (t + m 0 )  1 (µ 1 -µ 2 ) m + kµ 2  1 µ 2 . ( 12 
)
3. Fitness model implies fit-get-richer instead of rich-get-richer (BA preferential attachment model). The problem with BA model is that for instance in case of citation network, BA model does not allow for a very good scientific paper to be more cited than older but less important one. A new network evolution model has been proposed (Bianconi et al. [START_REF] Bianconi | Competition and multiscaling in evolving networks[END_REF]), which is based on characteristic of vertex, so-called fitness, in which each node is assigned a fitness x i from a given probability distribution f (x). The probability that a new node connects with the already-present node i depends on its connectivity k i and its fitness x i .

∂k in i ∂t = m x i k in i  j x j k in j . (13) 
Similar to BA model, the time evolution of k in i follows a power-law. The degree distribution can be obtained by:

k in x i (t) = m  t t i  µ . (14) 
Following the steps in degree distribution given by Bianconi et al. [START_REF] Bianconi | Competition and multiscaling in evolving networks[END_REF], P (k) will also follow a power-law.

P (k) ∝  dx f (x) µ  m k  1+µ ∼ k -(1+µ) log(k) . ( 15 
)

OutLink formation mechanisms

As already explained, outlinks do not follow similar mechanism of creation as inlinks'. Degree-based preferential attachment does not hold for outlink formation underlying mechanism. Large firms outsource to small firms due to business quality, or respiratory spread agents outcontact individuals randomly, or a country decides to choose another country to trade with based on assortativity. Therefore, the outlink formation mechanisms are:

1. Random attachment 

∂k out i ∂t = µ 2 1 m 0 + t -1 . (16) 
Consider the initial condition k out i (t i ) = 0, at each time step k out i links will be added to the network, and k out i (t) will be determined as:

k out i = µ 2 ln m 0 + t -1 m 0 + t i -1 . (17) 
Then,

P(k out i < k) = P  t i > (m 0 + t -1) exp  - k µ 2  -m 0 + 1  = 1 - (m 0 + t -1) exp  -k µ 2  -m 0 + 1 m 0 + t . (18) 
Density shows exponential distribution for random link formation.

p (k) = ∂P(k out i (t) < k) ∂k = (m 0 + t) -1 µ 2 (m 0 + t) e  -k µ 2  . ( 19 
)
2. In the case of Quality-based attachment, similar to the intrinsic fitness model, the probability of a couple of nodes i, j

connecting is f  x i , x j 
, where each node is assigned a fitness x i (Caldarelli et al. [START_REF] Caldarelli | Scale-free networks from varying vertex intrinsic fitness[END_REF]). As opposed to fitness model proposed by Bianconi et al. [START_REF] Bianconi | Competition and multiscaling in evolving networks[END_REF], the preferential attachment rule is eliminated, then:

k (x) = N  ∞ 0 f (x, y) g (y) dy = N F (x). ( 20 
)
Assuming that F (x) is a monotone function, for large number of nodes,

P (k) = f  F -1  k N  d dk F -1  k N  . ( 21 
)
As an example, consider f

 x i , x j  =  x i , x j  /
x Max , where x Max is the largest value of x in the network, then

P (k) = x 2 Max N⟨x⟩ f  x 2 Max N⟨x⟩ k  . (22) 
Fig. 1. Illustration of different system decomposition levels in OSS project network, project-project, package-package (P 1 ), class-class (C 1 ), method-method (m 1 ).

If intrinsic fitness function f (x) follows an exponential distribution, then outdegree distribution P (k) will also be exponential. If intrinsic fitness function is Bernoulli, then outdegree P (k) will also be Binomial. As opposed to preferential attachment fitness model for k in i , we did not assume power-law time evolution for k out i .

3. Assortativity is also considered under the category of quality-based attachment when fitness of nodes x i = x j .

Empirical approach

In this section, we would like to accomplish numerical proof to distinction between indegree and outdegree distribution in different levels of system decomposition, as illustrated in Fig. 1. We first consider sample network of open-sourcesoftware (OSS) projects reuse to identify the distinction between indegree and outdegree distribution for projects illustrated in Figs. 2 and4, then analyze whether this distinction holds in the corpus of each of those OSS projects, and different system decomposition levels of package-package and class-class dependencies.

Sample network of OSS projects

In order to build a sample network of OSS projects, using snowball sampling, we adopted one OSS project called ''Jpox'', subsequently obtained all the projects which reuse ''Jpox''. Then in the next step, we obtained other projects which reuse those projects that reuse ''Jpox'' in the first place. We observed that the projects reusing ''Jpox'' also reuse each other and this also holds in the second level, those projects also reuse each other. We see the network of these projects in Fig. 2, where Q4 blue lines represent the simple reuse and red lines show reciprocal reuse.

In the higher level of system decomposition, the sample network is divided into three connected clusters, shown by redlines. In the next step, to distinguish these three clusters, we omit a few low-weighted links (less number of reuse) from Fig. 2. The resulting figure shown in Fig. 4 indicates that: First, the sample OSS network is divided into three connected clusters (numbers inside each circle show clustering coefficient of each project; projects within one cluster have higher clustering coefficients compared to projects outside cluster). Second, these three clusters are mostly connected via ''Jpox'' and ''Data Nucleus'' projects. As one observes in the higher level of system decomposition, clusters are also weakly interconnected, and strongly and reciprocally intra-connected. The local clustering coefficient for a module is given by the proportion of links between the modules within its neighborhood divided by the number of links that could possibly exist between them. For a directed graph, for each neighborhood there are k (k -1) links that could exist among the modules within the neighborhood, while it is equal to k (k -1)/2 for undirected network, where k denotes degree of each module.

We do not further discuss degree distribution of inlinks and outlinks between clusters.

Network of OSS java project corpus

In recent years, many studies analyzed software systems from the perspective of complex networks (Baxter et al. [START_REF] Baxter | Understanding the shape of java software[END_REF]), software structures and architecture (Harrison et al. [START_REF] Harrison | Comparing programming paradigms: an evaluation of functional and object-oriented programs[END_REF]) (Wang et al. [START_REF] Wang | The complexity measurement of software through program decomposition[END_REF]) World-Wide-Web and Cellular networks (Ma et al. [START_REF] Ma | Modeling the growth of complex software function dependency networks[END_REF]), and evolution and growth of software dependency networks (Wen et al. [START_REF] Wen | Proc. 6th IEEE Int. Conf. on Cognitive Informatics, ICCI'07[END_REF]). Studying the control properties of complex networks providing insight into how designers and engineers can influence these systems to achieve a desired behavior (Ruths et al. [START_REF] Ruths | Control profiles of complex networks[END_REF]). Exploring software systems and managing dependencies reflect design and implementation of the underlying system. Managing dependencies is useful for programmers to evaluate the impact of a change, and is useful for reviewers and architects for assessing the coupling within an application. We consider OSS java project corpus as a We conclude that in/outdegree dependencies do not lead to similar types of distribution. Java Project Corpus Dependency shows very different characteristics including in/outdegree, implicit/explicit, concrete/abstract, at different levels of system decomposition (package, class, method), where these might make distinctions in the degree distributions. We use complex network modeling where dependency graph comprises nodes for software artifacts linked using in/outdegree dependency. We only refer to dependencies for classes and packages, where classes refer to each other, packages call each other, and they constitute two system decomposition levels of software corpus network.

• Class dependencies:

If some classes require other classes to do their operations, the former classes are dependent on the latter classes. Generally, if one element A requires another element B to do its operation, then one is dependent, and the other is dependable.

• Indegree and outdegree dependencies:

It depends how to look at dependency. Say that class A is dependent and class B is dependable. A depends on B (A → B). We say that A has outdegree dependency while B has indegree dependency.

• Implicit and explicit dependencies:

Dependencies are implicit if those are only in the code within the class, and not outside the class or interfaces; while explicit dependencies exist between classes, and appear mostly in an object's constructor. Implicit class dependencies cost more to deal with, because they are more tightly coupled to other constructors, while explicit class dependencies are clear to identify their operational calls [39].

• Concrete and Abstract (Interface) dependencies:

If a class depends on an interface, then it does not depend on its concrete implementation, but some implementation, whereas the class cannot perform without its implementation. Developers would rather use the implementation of those interfaces than providing their own [START_REF]Understanding dependencies tutorial[END_REF]. In Java, a concrete class is any class that can be directly created using a new operator; the class type is fixed when the code is compiled. A dependency occurs when one class utilizes another concrete class within its implementation. As experience in developing object-oriented systems has evolved, designs that minimize dependencies on concrete types have proven to be the most flexible. This flexibility is achieved through the use of abstract classes (like interfaces in Java).

• • All three softwares detect both concrete and abstract (or interface) classes.

• All three softwares render most classes and packages as confirmed, and others as unconfirmed [36,37]. Depfinder computes class dependencies for unconfirmed classes, but not Depanalyzer.

• Depfinder detects three types of explicit dependencies (class to class, method to class, method to method), as well as all implicit dependencies [36]; while, Depanalyzer and Jdepend detect just explicit dependencies.

• Most recent versions (snapshot) of the OSS projects shown in Figs. 2 and with flat top as shown also by Barker [27]; while, outdegree package-package dependencies obtained by both Jdepend and Depanalyzer do not show power-law distribution.

Fitting to data

In this subsection, we will fit the analytical models to our empirical results. Consider the degree distribution formula for indegree preferential attachment given in [START_REF] Dorogovtesev | Effect of the accelerating growth of communications networks on their structure[END_REF]. In order to fit the model to the data, first set m 0 = 0.

p (k) = (m (1 -µ 1 )) 1 µ 1 µ 1 k -  1+ 1 µ 1  . (23) 
Then fix m as average of indegree for each OSS project (m = 50 for class-class and m = 6.5 for package-package dependency in Archiva project), the only remaining parameter in the indegree distribution is µ 1 . We should regress P (k) over k to calculate 1/µ 1 for each OSS project. This results in µ 1 = 5 for class-class and µ 1 = 1.67 for package-package dependency Q5 in Archiva project. As observed in Fig. 7, we do see flat-top for indegree distributions as shown also by Barker [27], but we do not see exponential cut-off for indegree distribution as shown also by Baxter et al. [START_REF] Baxter | Understanding the shape of java software[END_REF]. Same procedure can be applied for outdegree distribution model in [START_REF] Bagrow | Phase transition in the rich-get-richer mechanism due to finite-size effects[END_REF]. Again in order to fit the model, set m 0 = 0; for large t we will have:

p (k) = 1 µ 2 e  -k µ 2  . ( 24 
)
If we regress p (k) for random attachment over k to calculate µ 2 , it does not fit. It means that, this network is not based on random attachment. Then we use the fitness model as: ) as an exponential function, where N⟨x⟩ as total number of nodes (N⟨x⟩ = 2530 for class-class and N⟨x⟩ = 50 for package-package dependency in Archiva project), then we regress p (k) over k. OSS project outdegree distribution sound to be exponential as given by the formula for both class-class and package-package dependencies.

P (k) = x 2 Max N⟨x⟩ f  x 2 Max N⟨x⟩ k  . (25) 

Conclusion

In this paper, first we discussed the importance of directed networks, where outlinks have been often neglected in other studies. Second, we analyzed causal factors for distinction between indegree and outdegree distributions (where this distinction has already been noticed in Barker et al. [START_REF] Barker | Deviations from power law in citation distributions[END_REF] and Baxter et al. [START_REF] Baxter | Understanding the shape of java software[END_REF]) for sample network of OSS projects as well as Java software corpus. Third, we investigated whether this distinction holds for different levels of system decomposition from project-project to package-package dependency and finally down to class-class dependency.

We emphasized the importance of studying indegree and outdegree distribution distinction, and why type of distribution is significant, in terms of (a) Structural property of complex network, (b) Statistical property of complex network, (c) Selforganizing property of complex network, (d) decomposability property of complex network.

Within undirected networks, we noted that scientists have shown much interest in presenting power-law features within complex networks, e.g. Barabási and Albert [START_REF] Barabási | Emergence of scaling in random networks[END_REF] claimed common property of many large networks in that the vertex connectivity follows scale-free power-law distribution, whereas authors such as Jiang et al. [START_REF] Jiang | Network model of deviation from power-law distribution in complex network[END_REF] discussed deviation from powerlaw distribution. Some others have also addressed this deviation and indicated size effect (Bagrow et al. [START_REF] Bagrow | Phase transition in the rich-get-richer mechanism due to finite-size effects[END_REF]), information filtering mechanism (Mossa et al. [START_REF] Mossa | Truncation of power law behavior in ''scale-free'' network models due to information filtering[END_REF]), and birth and death process (Shi et al. [START_REF] Shi | Evolving networks and birth-and-death processes[END_REF]) to account for this phenomena.

Within directed networks, most authors have either considered that outlinks follow similar mechanism of creation as inlinks' formation (Faloutsos et al. [START_REF] Faloutsos | On power-law relationships of the Internet topology[END_REF], Krapivsky et al. [START_REF] Krapivsky | Degree distribution of growing networks[END_REF], Tanimoto [START_REF] Tanimoto | Power laws of the in-degree and out-degree distributions of complex networks[END_REF]) in that link creation rate is the linear function of node degree, resulting in power-law shape for both indegree and outdegree distribution. At the same time, we claimed that (1) Outlinks feature different degree distributions from inlinks; and different link formation mechanisms cause the distribution distinctions, (2) in/outdegree distribution distinction holds for different levels of system decomposition; therefore this distribution distinction is a property of directed networks. We attempted to prove our claims both analytically and empirically. In the analytical section, apart from using indegree-based preferential attachment mechanism introduced by Barabási and Albert [START_REF] Barabási | Emergence of scaling in random networks[END_REF], we applied other link formation mechanisms such as outdegree-based preferential attachment, fitness-based preferential attachment, quality-based attachment and random attachment and assortativity.

In the empirical section, we first considered sample network of open-source-software (OSS) projects reuse, where there was clear distinction between indegree and outdegree distribution; second we analyzed the network of java software corpus, where we noticed also clear distinction between indegree and outdegree distribution for both class-class and package-package dependencies. We concluded that indegree and outdegree do not lead to similar type of distributions.

Finally, we fitted the analytical models to the empirical data, and resulted that indegree dependencies follow overall powerlaw distribution (power-law with flat-top), while outdegree dependencies do not follow heavy-tailed degree distribution (we obtained exponential fit to archiva open software project).

(Hypothesis 1 .

 1 link creation rate as linear function of node degree) is the dominant link formation mechanism in directed networks, resulting in power-law degree distribution. At the same time, we claim that there are different (out) inlink formation mechanisms within directed networks which result in degree distribution distinctions. Moreover, we propose a hypothesis to explain causal effect of link formation mechanism on degree distribution as: Outlinks feature different degree distributions from inlinks; and different link formation mechanisms cause the distribution distinctions.

Fig. 2 .

 2 Fig. 2. Illustration of sample network of OSS software projects, where blue lines show the simple reuse and red lines show reciprocal reuse. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) prototype for complex network where modules (classes and packages) represent nodes and module dependencies represent links. We use three dependency softwares dependency finder (Depfinder) [36], dependency analyzer (Depanalyzer) [37], and Jdepend [38] to obtain a dependency matrix and then compute out and indegree dependencies for Class-Class dependencies and Package-Package dependencies. We conclude that in/outdegree dependencies do not lead to similar types of

  Direct and Indirect dependencies If class A uses class B, then A is directly dependent on B. However if A depends on B and B depends on C, then A is indirectly dependent on C. In this empirical study, I use just direct dependencies.In Tables 1-3, the possibilities of the three softwares for dependency computations are shown. Note that, we simply show the types of dependencies being used; one can explore these free softwares more or even add new measurement possibility to those already existing.

Fig. 3 .

 3 Fig. 3. Illustration of OSS reuse network divided into three clusters, each containing some OSS java projects. Connection between projects indicates the reuse, and numbers written in each project circle indicate clustering coefficient.

3. 3 .

 3 Empirical results3.3.1. Empirical evaluation of sample OSS project networkIn the empirical section, we considered sample network of open-source-software (OSS) projects reuse shown in Figs.2 and 3to identify the distinction between indegree and outdegree distribution. We obtained number of all project reuses from Ohloh website. Ohloh shows by which other projects, one is reused and how many times it is called. Unfortunately, Ohloh for each OSS project renders maximum of 100 inlinking projects' reuse as shown in Fig.4(left). However it is enough to show that in the double log diagram, indegree distribution represents indeed a power-law. We have also computed the

Fig. 5 .

 5 Fig. 5. Double Log class-class a. indegree dependency by Depfinder checked with Depanalyzer for robustness (left) b. outdegree dependency by Depfinder checked with Depanalyzer for robustness (right), for last snapshot of projects.

Fig. 6 .

 6 Fig. 6. Double Log package-package a. indegree dependency by Jdepend checked with Depanalyzer for robustness (left) b. outdegree dependency by Jdepend checked with Depanalyzer for robustness (right), for last snapshot of projects.

Fig. 7 .

 7 Fig. 7. Double Log degree distribution a. indegree for class-class dependency (top-left) b. outdegree for class-class dependency (top-right), c. indegree for package-package dependency (bottom-left), d. outdegree for package-package dependency (bottom-right).

  

  The indegree distribution P(k in i < k) can be obtained below, as shown by Barabási et al.[START_REF] Barabási | Mean-field theory for scale-free random networks[END_REF]. If number of initial nodes is denoted by m 0 , after t time steps, network includes N = m 0 + t nodes and mt links. Then continuous rate of change of k in

i is as:

outdegree distribution in our sample of reuse network containing 1000 OSS projects, and depicted in the double log diagram in Fig. 4 (right). This clearly deviates from a power-law.

Empirical evaluation of software project corpus

In this section, first we evaluate the difference between outdegree/indegree class-class dependencies. Then the difference between outdegree/indegree package-package dependencies will be evaluated. for different java projects, and computed the number of class dependencies using VB Excel. Then using un-normalized Complementary Cumulative Distribution Function (CCDF), we show the degree distribution for last version of java projects.

As one observes in Fig. 5 right, the outdegree class-class dependency obtained by Depfinder and Depanalyzer do not show heavy-tailed distribution; whereas indegree class-class dependencies (Fig. 5 left) feature a power-law distribution with exponential cut-off as shown also by Baxter [START_REF] Baxter | Understanding the shape of java software[END_REF]. This conforms to the intuition that one software could be indefinitely reused (indegree dependency), so there tend to be many nodes with very small and very large degrees, therefore its indegree degree distribution is supposed to be heavy-tailed; while one software reuses limited number of others (outdegree dependency), so its outdegree distribution cannot be heavy-tailed.

Here, we try to evaluate the difference between outdegree/indegree of package-package dependencies. One can observe in Fig. 6 left and Fig. 6 right, both Jdepend and Depanalyzer softwares give similar package-package dependency, which is also a robustness test. As one sees in Fig. 6 left, indegree package-package dependencies feature a power-law distribution