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Abstract

The sharing of data and resources in Future Internet ap-
plications such as the Internet of Things (IoT) introduces
a big challenge of maintaining good quality of informa-
tion (Qol). Two big factors influencing Qol are (i) Trust
on the information source and (ii) Uncertainty in the pro-
vided information. For a future Internet type of applica-
tion, these terms are "Distributed trust" and "Distributed
uncertainty". This paper discusses the problems of model-
ing trust and uncertainty together in a distributed Al envi-
ronment, provides a survey of the existing state of the art
in the domain and puts forward Distributed 11-ATMS as a
possible solution.
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Introduction

Digital society is moving towards making devices smarter.
A smart device can communicate with other peers (homo-
geneous or heterogeneous) and can take decisions on its
own. Future Internet is envisioned as the interconnection
of such smart devices. Connecting all uniquely identifiable
objects via the Internet is IoT [1]]. In such an interconnected
world, the biggest challenge for a smart device is to be able
to make a correct decision based upon the inputs from dif-
ferent sources. The sources can have different trust levels
and there can be different types of uncertainty [[14] associ-
ated with the data. Our work relates to finding a solution
for management of trust and uncertainty specific to a dis-
tributed environment. As a simpler system, we consider the
use case of Smart Home - where a centralized smart system
in the home is connected to various sensors and actuators.
Depending upon the inputs, the system can control devices
in the home. We present this use case in detail in section 3]
In order to model the problems of trust and uncertainty for
devices we need to understand how we as humans think of
them and how we solve them. In our daily life, we make
decisions all the time. Taking a bus, a cycle or a metro to

work, eating at the cafeteria or trying out a new restaurant,
buying clothes at a particular shop, etc. At each moment in
time where we take a decision, we consider a lot of things
like the source of information, possible consequences etc.
The common goal for all our activities and the decisions
that we take, is to become happy as a result of what we have
done. Two of the most important things that we consider,
knowingly or unknowingly, are :

1. Trust on the source of information

2. Uncertainty related to the truthfulness of the informa-
tion

The best choice is most often the one with the minimal un-
certainty (e.g. Choosing between biking to office or taking
a bus/metro) or the choice which is obtained from the most
trusted information source (e.g. Trusting your friend to go
and try out a restaurant) or the combination of the two (e.g.
Trusting the radio as a good information source and tak-
ing uncertainties related to biking or taking a bus/metro to
the office). This is no different for devices of the Future In-
ternet, which consists of multiple intelligent devices being
able to take their own autonomous decisions. In fact, trust
and uncertainty problems are the same for a smart device
or a human-being.
Most of the research across various domains consider trust
and uncertainty as independent entities. In IoT and com-
puter networks, trust is more often seen from privacy and
security point of view [9], i.e., devices in [oT are consid-
ered trustworthy if there exists a secured network to ac-
cess the sensor input values. Seldom are the trust and un-
certainty values associated with the devices and the val-
ues provided by them considered together as a part of data
fusion or data aggregation mechanism. Since, we believe
that the devices can be modeled as a Multi-agent System
(MAS), the consideration of trust and uncertainty aspects
are utmost important. Like reputation and recommendation
systems for people in Internet of People (IoP), there must
exist an equivalent trust and uncertainty management sys-
tem for the objects of IoT. This system should be able to
manage and evolve the trust and uncertainty values asso-
ciated with the different devices of IoT. Building such a



system is the goal of our work.

1 Trust

Trust is too ambiguous to be defined uniquely for an indi-
vidual. It may have as many types as the number of people
or objects involved. Further, it may vary according to the
context of consideration. It is understood and interpreted
differently by different people at different instants of time.
Human trust or Social trust depends on several factors. The
experiences with the person, the expertise that he/she has,
recommendations for the person etc. stand out as the visible
aspects for trusting on a particular person to be able to do
some task. However, there also exists some other cognitive
factors of trust such as philanthropism, selfishness, recip-
rocativeness etc. [3] which are not explicitly implied. They
are most often hidden and can only be explained by human
behavior. This is why trust is very difficult to be uniquely
defined and explained. For trust amongst agents in MAS,
it is possible to take into consideration all these aspects for
modeling it. In table 1, we present a list of desirable trust
components from several important works [[17} 2, 3] specif-
ically applicable to IoP. However, considering human be-
havioral aspects for [oT can complicate trust computation.
So for the sake of simplicity, we ignore components such
as utility, risk and reciprocation for our use case.

1.1 Modeling Trust

In general, there have been several ways to model trust. We
have tried to bring them together in following list.

1. Discrete trust models : These trust models represent
trust of an agent quantitatively by assigning a partic-
ular value within a given numerical range for e.g. [-
1, +1] as used by Marsh [17]. This value is updated
according to the interactions of the agent with other
agents in the system. We can further divide these types
of models into :

— Reputation-based trust models([[7,/15])) : Reputation
is a numeric value that an agent earns from another
agent on accomplishment of a task. This is called
evidence-based model in some literature. Reputa-
tion of an agent evolves over time, depending on
the various feedback values it received from differ-
ent agents.

— Recommendation-based trust models In [2],
Abdul-Rahman describes Recommendation as a
communicated trust information that contains rep-
utation information. Like reputation, the recom-
mendations evolve over time. An agent can have
multiple recommendations for a task from different
agents.

2. Socio-cognitive trust models : These types of trust
modeling consider the sociological aspects such as :
competence, willingness, persistence, motivation for
computing the trust values of the agents. The semi-
nal work of Castelfranchi and Falcone [3] is of great
importance in this respect. In [6], the authors call the

Trust components IoT | Remarks

Reputation Y

Recommendation Y

Basic trust [17] Y Represents the trust dis-
position of an agent

General trust [[17] Y Trust between agents in
general

Situational trust [[17]] Y Trust between agents in a
situation

Transitivity [12] Y | Transfer of trust among
agents

Importance Y | Importance of the cur-

rent interaction

Utility Y/N | A numerical value of
cost/benefit ratio
Involved risk in the inter-
action

Risk [3] N

Reciprocation [3|] N

TABLE 1 — Trust components for [oT

trust as behavioral trust. These models are important
for modeling trust as human behavior for IoP (e.g. so-
cial networks) type of application.

3. Belief-based trust models : These trust models con-
sider belief and disbelief as important aspects for
trust calculation. The root of these models lies in the
Dempster-Shafer belief theory [24]]. Jgsang [11] fur-
ther considers uncertainty along with the belief as-
pects to provide an improved belief-based trust model.

4. Security-based trust models : Some models employ
cryptographic algorithms to secure the communica-
tion among various peers in a network. A public key
infrastructure (PKI), Pretty Good Privacy (PGP) and
X.509 are some of the examples of such models.
These mechanisms do not guarantee trustworthiness
in a true sense. These models say that an agent is trust-
worthy because the underlying communication mech-
anism is secure and/or a renowned third party has cer-
tified the agent to be so.

For a comprehensive model for trust more than one aspect
of trust needs to be taken into account. As our research
focuses to find a solution for distributed Al systems such
as IoT and IoP, we see the need to model trust as composed
of components listed in Table 1. The necessary components
are marked as 'Y’.

2 Uncertainty

According to Halpern [8], “Uncertainty is a fundamental
- and unavoidable - feature of daily life". Mathematically,
uncertainty is the parameter that measures the dispersion
of a range of measured values. More often researchers [21]]
prefer to deal with certainty which is the complement of
uncertainty (1 - uncertainty). Since, this is an unavoidable



commodity, the goal of the researches have been to mini-
mize uncertainty related to occurrence of an event or min-
imize uncertainty related to data. If we are provided with
two types of data : one with high uncertainty and the other
with low uncertainty, we would always go with the low un-
certainty data as we feel that this data is more trustworthy.
In other words, lower uncertainty reflects more trustwor-
thy source and vice versa. There can be many types and
sources of uncertainty as explained in the section [2.2] We
limit ourselves to uncertainty related to data (Data uncer-
tainty). This is sometimes referred to as Quality of Infor-
mation [18]].

2.1 Modeling uncertainty

There are various qualitative and quantitative approaches
[19! 20] to model uncertainty. Since our work is related
to sensors and data from sensors, we are more interested
in the modeling of the quantitative analysis of uncertainty.
Uncertainty alone (without the consideration of Trust as-
pect of the information source) can be modeled as one of
the following ways :

1. Probabilistic logic : This is the most common, natural
and probably the most widely used way of represent-
ing uncertainty. Each of the possible outcomes of a
proposition is represented by a value in the range [0,
1]. This follows all the laws of probability theory.

2. Fuzzy logic : This approach, as introduced by Zadeh
(1965), allows to classify data into different classes
called Fuzzy Sets, depending upon their relevance or
closeness to the set. Halpern [8] calls such modeling
as “Possibility Measures".

3. Dempster-Shafer belief theory : Dempster-Shafer
Theory basically deals with measures of two main as-
pects belief and plausibility. The belief is related to the
certainty of the occurrence of an event and the plau-
sibility is related to the possibility of the occurrence
of the event. A simplified version of Dempster-Shafer
theory is explained in the paper [24]].

4. Subjective logic : Based on probabilistic logic and
DST, this approach has come up as one of the impor-
tant ways to model uncertainty. There can be one or
more opinions about a given proposition. A binomial
opinion is represented as a Beta distribution while
multinomial opinion is represented as Dirichlet dis-
tribution. It explicitly takes belief and uncertainty into
account. Jgsang’s work [10, [11]] provides good exam-
ples for this.

2.2 Sources and types of uncertainty

Amongst the latest researches for dealing with uncertainty
inIoT are [23], [22] and [[18]]. Wasserkrug et al. [23] present
various sources of uncertainty. [22] is a working group
report which brings forward the issues of uncertainty, its
causes and the challenges to counter it. [[18] is whitepaper
which is the outcome of ongoing future internet projects

under FI PPP[H The whitepaper [18] lists some of the prac-
tical problems posed by uncertainty in IoT and the various
sources of uncertainty. As we would like to find a solution
for these types of uncertainty, we list them below with fur-
ther explanation.

Uncertainty due to lack of trust on data source A data
source may have different levels of trust at different
times and different contexts. Uncertainty on a data
source which has provided accurate measurements
fairly regularly is less than compared to a new data
source.

Data uncertainty vs. Model uncertainty [22] Data
uncertainty is caused mainly by imprecise sensor
readings while model uncertainty is mainly because
of error in the specification and parameter estimation.
For uncertainty management, generally one of them
needs to be fixed. If the model is considered true,
the data must comply to the model or if the data
uncertainty is fixed the model must comply to the
data. If they do not comply, we would need to repair
the data or the model accordingly.

Uncertainty due to inaccurate sensors This is basically
the measurement error that are related to the devices.
e.g. cheap sensors yielding data of very low precision.

Uncertainty due to absence of data Sometimes, due to
some faulty sensors or due to lack of sensors in
the area of interest, there may be no data at all. In
some other cases, we may have data not exactly at
the points of interest that is wanted. So, interpola-
tion/extrapolation of data needs to be done. This re-
sults in uncertainty to reason or to infer on a particular
statement.

Uncertainty due to abductive reasoning When we try to
reason to our best explanations on top of available
data, we are doing an abductive reasoning. For e.g.,
the external luminosity sensor reported a very low
value. Based on this to infer that it is evening/morning
time of the day can be wrong.

Uncertainty due to propagation In various data fusion
components, uncertainties are taken into account to
obtain a value or to take help take a decision or to
pass the value to another component. This obviously
propagates the uncertainty value from the first step to
a later step.

Uncertainty is primarily related to data. Of all the different
types of uncertainty presented in above list, the first one
is of particular interest as it is related to the data source
rather than data itself. We consider managing this type of
uncertainty in our work.

3 Smart Home Use case

IoT has made it possible for us to connect a large
numbers of electronic devices to a network and man-
age/control/monitor them virtually. One of the most

1. http://www.fi-ppp.eu
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promising areas of application of such kind of a connec-
tivity is the concept of “Smart Home" or “Home automa-
tion". Smart home generally deals with controlling of heat-
ing, ventilation, thermostat, air-conditioning, lighting, mul-
timedia, shading (control of curtains), security etc. by using
an intelligent system that can take decisions like humans
both in the presence/absence of the humans. As shown in
figure [T} we can have multiple sensors in a smart home.
Sensors to capture interior/exterior temperatures, luminos-
ity, presence of the persons in the room etc. In fact, most
of the time there are multiple sensors of the same or differ-
ent type to detect the data more precisely. In the figure, we
have two humidity and temperature sensors (HT1 and HT?2)
and two presence and luminosity sensors (PL1 and PL2).
The goal for the controller application which controls the
devices is to effectively control the devices smartly based
upon approximation of available sensor data.

The problem with such a setup is more related to effec-
tive sensor data fusion based on levels of trust and uncer-
tainty associated with the respective data sensors. For ex-
ample, let us consider that temperature sensors (HT1 and
HT?2) provide us values with uncertainty in the range (i)
=+ 0.5 °C with probability 0.15, and (ii) in the range + 2 °C
with probability 0.65 (assuming that we have a probability
density function for the sensors). Let us assume that the
sensors have a default level of trust value associated with
them when the system begins functioning. Also, let’s as-
sume a possible scenario where over a time ‘¢, sensor HT'1
provides us measurements within the more precise range
(£ 0.5°C) more often than the other sensor HT2. Based
on this sequence of events, we argue that trust levels as-
sociated with the sensors need to be updated. Precisely,
the trust value for HT1 should increase and for HT2 de-
crease (by what amounts is a point of discussion and there
is a existing literature which suggests that trust deteriorates
faster than it ameliorates [[16]]). Thus, we put forward the
intuition that uncertainty in the sensor data affects the trust
level associated with the sensor. Conversely, we also ar-
gue that the uncertainty values to be calculated for the fu-
ture sensor readings should incorporate the newly available
trust values. We assume this kind of a mechanism of dy-
namic evolution of trust and uncertainty values to exist for
all available sensors.

There are also cases where data from two different types
of sensor may be dependent. For example, a high humidity
value may imply that we could have a high temperature
value. This introduces additional complexity to model the
system. The general problem is to deal with the issue of
incoherent data from different sensors.

4 Proposed Solution Approach

As explained in the earlier use case, there is a need to be
able to rank the different inputs based upon the source’s
trustworthiness and uncertainty in the measurement. To
solve these issues, we propose to use of a distributed
version of Assumption-based Truth Maintenance System

humidity and temperature sensor

| — |
L 1
&C window
PL1
.7 \ \\
door radiator

222222

c& PL2

presence and lighting sensor

FIGURE 1 — Smart home with devices (TV, lamp, radiator)
controlled by an intelligent system

(ATMS) [4], explained further in the following subsection.
Accomodating uncertainty into ATMS needs a special type
of ATMS - the II-ATMS, which is explained in the subsec-
tion

4.1 Assumption-based Truth Maintenance
System (ATMS)

An Assumption-based Truth Maintenance System
(ATMS), also called Belief Revision System, is a system
for maintaining consistent set of beliefs in the knowledge-
base. It is attached to a problem solver, which provides
inputs to the ATMS in the form of nodes and justifications.
Some nodes are designated as assumptions. They are
considered true unless otherwise proven false. A justifi-
cation relates how a node can be derived from any other
node(s). A justification written as a3 A ag A ... A a, — ¢,
expresses that the node ¢ can be justified from the nodes
ai,as,...,a;. An environment E of a node n is a set
of assumptions (£ = az,as9,...a;) the conjunction of
which derives the node, i.e., a1 A as A ...a; — n. The
task of ATMS is to maintain beliefs, or in other words
check whether the assumptions hold good on the arrival
of new nodes and justifications and then inform this to the
problem solver. The nodes which lead to falsity are called
nogood nodes.

The main advantage of ATMS over other belief revision
systems is that it facilitates comparison of competing the-
ories to explain a set of data. This closely resembles to our
problem statement which consists incoherent data from dif-
ferent sources, giving rise to competing theories. Hence,
we consider ATMS as a solution.



4.2 [I-ATMS

II-ATMS (also called Possibilistic ATMS), as introduced
by Dubois and Prade [3], is an extension of ATMS. It
takes into consideration the uncertainty values that may be
related to the environments, clauses and assumptions. In
other words, it integrates possibilistic logic with ATMS.
II-ATMS provides a mechanism to rank different environ-
ments based on the associated uncertatinty values, with the
help of which the least certain ones can be safely ignored.
According to possibilistic logic, uncertainty can be repre-
sented by possibility measure II(p), or necessity measure
N (p), which are dual of each other Vp N(p) = 1 —II(—p).
By definition, a necessity measure NN (p) satisfies the fol-
lowing axioms :

1. N(L) =0, N(T) =1,
2. Vp, ¥Yg, N(p A q) = min(N(p), N(q)).

Each propositional formula f is associated with a weight
« € [0,1] and is written as (f «). Here, « represents the
lower bound of the necessity measure of the formula. A
propositional formula (f «) which is composed of the dis-
junction of clauses c1, co, ...c, can be equivalently written
as {(c1 a),(c2 @), ..., (cy, a)}. The resolution rule for re-
solving between two clauses (¢ «) and (¢ ) is given by
(Resolvent(cy, co) min(a, 5)).

For e.g., let us suppose that we know two facts.
First, temperature below 10°C denotes coldweather
and second, we have a sensor which shows temper-
ature below 10°C with a certainty of 65%. These
facts can be represented by two clauses as (i).
(—=TemperatureLessThanl0 V ColdWeather 1), (ii).
(TemperatureLessThan10 0.65), then applying resolu-
tion rule we can infer (ColdW eather min(1,0.65)) i.e.,
(ColdWeather 0.65). Thus, II-ATMS integrates uncer-
tainty into the reasoning process. Given necessity or possi-
bility values for the clauses, it allows a problem solver to
rank different alternatives.

4.3 Distributed II-ATMS

Distributed reason maintenance systems have been stud-
ied in the past for resolving a distributed problem [13]. We
use a variant of such reason maintenance system called -
Distributed II-ATMS (DPi-ATMS). It is a II-ATMS in a
distributed setting. The main motivation for us to look into
DPi-ATMS is because of the distributed knowledge in our
use case. An agent can not possess the entire knowledge of
the world itself. It has to communicate with a number of
sensors and other information sources in order to augment
its knowledge base.

A simple example of such a setting with two agents is
shown in figure[2] As shown, DPi-ATMS is a component of
an agent. The other components being Problem Solver (PS)
and Trust Module (TM). The problem solver is the core of
an agent. It communicates with other agents, sensors, actu-
ators and the external world and constructs its belief base.
The trust module stores an agent’s trust on other agents.

The PS updates the trust values corresponding to an agent
after each interaction with it. Though the TM may be a part
of the belief base itself, we have considered it separately for
clarity. Assuming that trust on an agent (or data source) is
proportional to the uncertainty in the data, a numerical trust
value is converted to corresponding possibility or necessity
measure. A distributed II-ATMS serves two distinct pur-
poses. Firstly, it can resolve uncertain clauses and classify
them from the least possible to the most likely. Secondly,
it acts as a cache for all the facts entered into it by the PS.
In our use case, the agents could be the sensors, the central
sensor control device, gateway devices connecting to the
smart home to external services.

5 Discussion/Conclusion

Smart devices need to consider the aspects of data uncer-
tainty and trust on data sources, when they make their de-
cisions. Also, since they make decisions by their own, they
must be able to reason for the decisions that they make.
An ATMS is one such tool which helps compare differ-
ent beliefs simultaneously. But, it still lacks ability to han-
dle uncertainty and trust values associated with the input
clauses. A II-ATMS is a modified ATMS used to consider
uncertainty into the clauses of ATMS. For the simplest of
cases, we can consider trust on a data source as certainty
measure. Since, in II-ATMS, we are concerned with com-
paring the necessity or possibility measures of the clauses,
the relative values of certainty measures of the sources can
be helpful. Converting trust on data sources to absolute un-
certainty measures may be domain-specific and subjective.
As a future work, we look to extend our work to more com-
plicated use cases and to a distributed environment.
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