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Abstract—In this paper we propose a simple model of trust
for the agents in a distributed environment. In the absence of
sufficient information about the source and the data produced by
it, we argue that the uncertainty in the data is proportional to the
trustworthiness of the source. We model an agent consisting of a
Π-ATMS. The agent assigns uncertainty values to the hypotheses
and justifications about the world and inputs it to the Π-ATMS
to obtain a list of conclusions with varying levels of uncertainty
that help it to make a decision. We show how this approach can
solve the problem applied to a crowd sourced garbage collection
use case.

I. INTRODUCTION

Digital society is moving towards making devices smarter.
A smart device can communicate with other peers (homo-
geneous or heterogeneous) and can take decisions on its
own. Future Internet is envisioned as interconnecting such
smart devices. Connecting all uniquely identifiable objects via
the Internet is “Internet of Things” (IoT) [1]. In such an
interconnected world, the biggest challenge for a device is
to be able to make a correct decision based upon the inputs
from different sources. The sources can have contrasting levels
of trust and there can be different types of uncertainty [17]
associated with the measured data. In this work, we propose
a solution for uncertainty that arises due to the lack of trust
on the information source. We model trust as a combination
of different components (cf. section IV) which we think
are important for the Future Internet type of applications
such as IoT. In the presence of multiple sources providing
information about a hypothesis, there can be two possibilities:
either the sources support the hypothesis or they contradict
against it. In order to solve this, we propose a discounting
function that considers the number of sources supporting
a hypothesis and credulity of an agent. Maintaining both
support and contradictions against a hypothesis can lead to
inconsistencies. The Π-Assumption-based Truth Maintenance
System (Π-ATMS) enables to maintain a consistent belief base
for uncertain hypotheses. Furthermore, it provides justifications
for conclusions and dependency driven backtracking in the
advent of failed hypotheses. We illustrate the functioning of the
entire agent model with a garbage collection use case. Thus,
the objectives of this work are: (i) to explain the problems
of trust and uncertainty in Future Internet applications, (ii) to
propose a model of trust for IoT, (iii) to explore Trust-based
Π-ATMS as a solution for resolving the problem, and (iv)
to explain the solution approach with a real world garbage
collection use case.

The rest of the article is organized as follows. Section II
explains related works and section III introduces the garbage
collection use case. The trust and uncertainty models used in

the work are explained in the sections IV. Section V explains
our solution approach and we finally conclude in VI.

II. RELATED WORK

The respective domains of trust and uncertainty are quite
huge and they had been topics of great interest even be-
fore the computers came into existence. A large amount of
research has been done to deal with the problems of trust
and uncertainty separately. Very few researchers have focused
on the dual aspects of trust and uncertainty together. [22],
[20], [21] are some recent work where the authors present
similar problems. Venanzi et al. [22] construct a likelihood
model of user trustworthiness by scaling the uncertainty of
its multiple estimates. They use this model to their data
fusion application. The type of uncertainty considered by them
is one that arises due to imprecise measurements. This is
inappropriate in a scenario like ours where the data is more
subjective and we need to select a single agent out of many
based upon the trustworthiness of the agent. Sensoy et al [20]
present a solution for a similar problem by exploiting conflicts
from trustworthy sources to revise trust in information. Their
formalism consists of a subset of Description Logic and is
based on Dempster Shafer’s Theory (DST) of beliefs and
disbeliefs. However, there have been issues relating to correctly
interpreting the counter-intuitive results produced by DST [8].
There are quite a few existing data fusion technologies to deal
with inputs from crowd sourcing applications [16], [22], [11],
[13]. While some consider all sources being equally trustwor-
thy [16], others take trustworthiness of information sources
by scaling uncertainty measurements of the estimates [22].
Though simplicity of assuming all sources as being equally
trustworthy may be worthwhile, it is not logical to assume
this in a real scenario (section III) as ours. Further, it may
be a requirement to classify the sources based upon the level
of their trustworthiness. Rather than fusioning the information
and form an aggregate, there may be a need to select the best
source.

III. USE CASE

Smart city is a revolutionary concept where information
sharing (from a crowd of people, sensors or things) along
with the existing physical infrastructure of the city enables a
sustainable economic development in the city leading to a well
managed natural resources and high quality of life [4]. Some
examples include Smart energy management, Smart public
transportation system, Smart noise and pollution control etc.
We consider one such smart city application “Smart Garbage
Collection”, to explain the need of trust and uncertainty
management.



Usually an agency or a company is responsible for gath-
ering all the garbage from the city and for disposing it to an
appropriate location. The agency has a static itinerary (daily,
weekly) to send its vehicles and employees to each and every
corner of the city and collect the garbage. To make this process
smarter the agency makes use of “intelligent containers”1.
These containers have a specially designed wireless sensor
that detects the amount of garbage in them and relay the
information in real-time to one of data collector, which in
turn relays it to the central information system. Thus, these
containers form a wireless sensor network. The information
obtained from this network allows the agency to plan a better
itinerary and to improve its efficiency for garbage collection.
However, the sensor network cannot be made omnipresent.
Perhaps, because of the cost constraints or because garbage
may be thrown randomly on the streets. In some cases, the
citizen may be more careless and just let the garbage on the
road, not even close to the container.

In order to deal with the problem of omnipresence of the
sensors, the agency makes use of crowd-sourcing mechanism
such as telephone calls from citizens, or a web-portal to report
the random garbage and/or garbage near the garbage collection
point. Thus, the problem of smart garbage collection can be
further supported by crowd-sourcing.
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Trust on A = TA
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Fig. 1: A smart garbage collection system

Figure 1 shows a block diagram of such a system. Citizens
A and B call the system and inform about garbage laying
near their neighborhood. Additionally, there may be some
information from the deployed sensors S in the streets. Based
on the information received from the sources, the system then
instructs the garbage men to get the garbage collected from
that location.

The problem with such a setting is that there can possibly
be more than one source reporting an information, there is
always an uncertainty on which information source to rely on
to take a decision. Another issue is how does the number of
sources that report the same information affect the trust of the
agent on the information. We seek to find the solutions to these
problems in this work.

1http://www.urbiotica.com/

IV. TRUST

Trust is too ambiguous to be defined uniquely. It may have
as many types as the number of principals involved. Further,
it may vary according to the context of consideration. It is
understood and interpreted differently by people/parties. From
the available literature on trust, the researchers have seen it
as composed of different components, differing from domain
to domain. We list them in the following section and discuss
their relevance from a IoT perspective.

1) Computational aspects: Marsh’s work [18] forms the
foundation for computational aspects of trust. He
distinguishes trust into three categories: basic, general
and situational. A basic trust represents the general
trust disposition of an agent (whether optimist or
pessimist). A general trust is one that an agent has
on other without any specification of a situation and
a situational trust is specific to a situation. He also
presents a numerical formalism for computing aspects
such as importance, risk and cost/benefit ratio for a
situation.

2) Cognitive aspects [5]: These aspects model the mental
state of an agent. Competence, Willingness, Depen-
dence, Reciprocation, Benevolence etc. come under
cognitive aspects.

3) Reputation [15], [14]: It is a numeric value that an
agent earns from another agent on accomplishment
of a task. Reputation of an agent evolves over time,
depending on the various feedback values it received
from different agents.

4) Recommendation/Trust transitivity [2]: Recommen-
dation for a data source is the communicated trust
values for it by other agents.

For a distributed system like IoT, the number of agents
can be rather large. Due to this constraint, we need to have
a computationally simple and a realistic model for trust.
Though combining all the aspects discussed above would make
the model more realistic, it would be unfeasible in terms
of computational complexity. Taking this into account, we
propose a simple model for trust composed the reputation and
the recommendation for an agent.

Let A and B be two agents. Then trust of agent A on agent
B is given by:

ATB = (AρB , ARecB) (1)

where:

• ρB represents the reputation of the agent B for accom-
plishing the task. It is obtained from the evaluation
of previous interactions between the agents A and B.
Along the lines of Jøsang et al.[15], this reputation can
be represented using Beta probability distribution. For
r and s numbers of positive and negative interactions
respectively, the reputation of agent B for agent A can
be given by the expectation value of the β-distribution,
i.e.:

AρB = (r + 1)/(r + s+ 2), (2)

The default value of trust without any interactions
between any two agents (r = 0, s = 0) is 0.5.



• ARecB represents the recommendation of other agents
about agent B to agent A. A recommendation is a
communicated trust information, that contains reputa-
tion information [2]. If S1, S2, ... Sn are n recom-
menders for agent B to agent A, then recommender
trust for A is given by weighted mean of their trust
values:

ARecB =
ATS1

∗ S1
TB + ... + ATSn

∗ Sn
TB

ATS1
+ ATS2

+ ... + ATSn

where,
ATSi

is the trust of agent A on agent Si

Si
TB is the recommendation trust for agent B to A

by agent Si

and, i ∈ {1, 2, ..., n}

Combination of the reputation and recommendation trust is
done by a weighted mean:

ATB =
ω1 ∗ AρB + ω2 ∗ ARecB

ω1 + ω2
(3)

where ω1 and ω2 are the weights that distinguish whether the
reputation or the recommendation is of more importance.

A. The Discounting Function

In a situation where all sources of information have same
levels of trust, it is again a difficult proposition to make the
selection of the best source. To resolve this we introduce the
discounting function: f(n, γA) where n denotes the number of
sources with the same information and γA is the discounting
factor of agent A. The discounting function is a characteristic
of an agent. It represents how easily an agent can be influenced
in the presence of multiple sources with the same information
and is given by:

f(n, γA) = (1− exp(−γAn)) (4)

As seen in figure 2, the function is exponentially growing
beginning at zero and peaking up slowly or rapidly according
to the value of γA. For instance, a value of γA equal to 1,
0.5 and 0.1 can correspond to a credulous, a pragmatic and a
disbeliever type of agent. A credulous agent can be convinced
to trust on an information rather easily (with fewer number of
information sources) which is reflected in the graph. Provided
all other factors remain constant and the same information
coming from two different sources, the credulous will trust
86% while the pragmatist and the disbeliever will have lower
trustworthiness (63% and 18% respectively for our example)
for the same number of sources n = 2. Also, it can be
noted that the more the number of sources providing the same
information, the higher is the value of the discounting function.
Thus, our trust model including the discounting function is
given by:

ATB
dis. = f(n, γA) ∗ ATB (5)

B. Uncertainty

According to Halpern [12], “Uncertainty is a fundamental
- and unavoidable - feature of daily life”. Mathematically,
uncertainty is the parameter that measures the dispersion of a
range of measured values. More often researchers prefer to deal
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Fig. 2: The plot of the discounting function f(n,γA) =
1-exp(-γAn) for γA equal to 5, 1, 0.5 and 0.1.

with certainty which is the complement of uncertainty [19].
Since this is an unavoidable commodity, the goals of the
researches have been to minimize uncertainty related to data.

There can be many different types and sources of uncer-
tainty. Two broad types are: (i) uncertainty due to imprecise
sensor measurements (ii) uncertainty due to lack of sufficient
knowledge about the domain. In this work, we limit ourselves
to finding a solution for the second type. For instance, in the
use case explained earlier, the system encounters uncertainty
in the provided information due to lack of trust on the source.
To solve this, we model uncertainty due to lack of trust on
an information source as a possibility measure [9]. According
to possibilistic logic, a proposition p can be represented by
possibility measure Π(p), or necessity measure N(p), which
are dual of each other ∀p N(p) = 1 − Π(¬p). By definition,
a possibility measure Π(p) satisfies the following axioms:

1) Π(⊥) = 0, Π(>) = 1,
2) ∀p, ∀q, Π(p ∨ q) = max(Π(p),Π(q)).

C. Relationship between trust and uncertainty

In Distributed Systems such as IoT, we have a number
of autonomous/semi-autonoumous/non-autonomous agents in-
teracting amongst themselves to achieve the goals that they
are assigned. As an agent is limited in capabilities, it is
usual to request informations from others. In this scenario, the
agents will mostly cooperate and provide the desired infor-
mation. However, because some agents are autonomous, non-
cooperative behavior is also likely. This creates an uncertainty
for decision making agent, whether or not the interacting agent
will cooperate or defect. This uncertainty arises due to the
lack of trust on the interacting agent. In other words, lack of
trust on an agent causes uncertainty whether the interacting
agent would act in favor or against the decision making agent.
This is particularly important for systems like IoT as an
agent in such a system may have several agents to obtain the
information from. As pointed out as conclusion on uncertainty
and trust for distributed systems by Aras et al. [3], a desirable



representation of trust for the problem must have the following
three characteristics:

1) It should be able to reflect/integrate different types of
uncertainties.

2) It should allow for decision making; i.e., enable
ranking of alternatives, allow comparison with own
standards and calculate expected risk.

3) It must be able to provide explanation/interaction
context.

“A Π-ATMS” provides an answer to all the above require-
ments. Firstly, we model trust as a combination of reputation,
recommendation and personal disposition of the agent. A
possibilistic uncertainty representation is known to be effective
in such scenarios where there is uncertainty due to lack of
knowledge of trust on the sources, or uncertainty due to lack
of precision measurements [2], [21], [23], [6]. Secondly, the Π-
ATMS is able to rank different possible outcomes given sets of
premises, assumptions and justifications based upon the values
of trust on their respective sources. It is also possible to rank
different contexts based on the trust levels of the input sources.
Finally, with the support of the labels of the different nodes
of the Π-ATMS, an explanation can be provided as to how
the node can be derived from the given nodes, assumptions
and justifications. The Π-ATMS is further explained in section
V-B.

V. SOLUTION APPROACH

As explained in the earlier use case, there is a need to
be able to rank the different information sources based upon
their trustworthiness. In order to solve these issues, we use Π-
ATMS [10]. We give a brief introduction of ATMS concepts
in the following subsection.

A. Assumption-based Truth Maintenance System (ATMS)

An Assumption-based Truth Maintenance System (ATMS),
also called Belief Revision System, is a system for maintaining
consistent set of beliefs in the knowledge-base. It is attached
to a problem solver, which provides inputs to the ATMS in
the form of nodes and justifications. A node is associated
with a real world information called datum. One of the node
types is Premise, that is used to represent a statement which
is always true. Some nodes are designated as assumptions.
They are considered true unless otherwise proven false. A
justification relates how a node can be derived from any other
node(s). A justification J written as a1 ∧ a2 ∧ ... ∧ an → c,
expresses that the node c can be justified from the nodes
a1, a2, ..., ai. An environment E of a node n is a set of
assumptions (E = {a1, a2, ...ai}) the disjunction of which
derives the node n, i.e., a1 ∧ a2 ∧ ...ai → n. An environment
becomes inconsistent if false, denoted as ⊥, is derivable from
its set of assumptions. A Context is a set of assumptions of a
consistent environment and the nodes that can be derived from
them. Each node n of the ATMS is represented by its Label.
It is a set of environments associated with the node. A more
detailed literature on ATMS is [7].

The task of ATMS is to maintain beliefs, or in other
words to check whether the assumptions hold good on the
arrival of nodes and justifications and then inform this to the

problem solver. A set of assumptions that lead to contradiction
is called a nogood environment. As shown in figure 3, the
ATMS receives new beliefs, justifications and query requests.
The ATMS updates the contexts and responds with whether
an assumption is supported (the node corresponding to the
assumption is true) or not. The main advantage of ATMS over
other belief revision systems is that it facilitates comparison of
competing theories to explain a set of data. This matches our
scenario that consists incoherent data from different sources,
giving rise to competing theories. Also, ATMS functions as a
cache for the problem solver.

Fig. 3: An agent with a Π-ATMS and a trust module

B. Possibilistic Assumption-based Truth Maintenance System
(Π-ATMS)

Π-ATMS (also called Possibilistic ATMS), as introduced
by Dubois and Prade [10], is an extension of ATMS. It takes
into consideration the uncertainty values that may be related
to the datum, assumptions and justifications. In other words, it
integrates possibilistic logic with ATMS. Π-ATMS provides
a mechanism to rank different environments based on the
associated uncertainty values, with the help of which the least
certain ones can be safely ignored.

In Π-ATMS, each propositional formula f is associated
with a weight α ∈ [0, 1] and is written as (f α). Here, α
represents the lower bound of the necessity measure of the
formula. A propositional formula (f α) that is composed
of the disjunction of clauses c1, c2, ...cn can be equivalently
written as {(c1 α), (c2 α), ..., (cn α)}. The resolution rule for
resolving between two clauses (c1 α) and (c2 β) is given by
(Resolvent(c1, c2) min(α, β)). It is also the ATMS’s task to
check whether the resolvent clause is:

(c1 α) (c2 β)

(Resolvent(c1, c2) min(α, β))
(6)

In a Π-ATMS the definitions of environment, nogood, label
and context of a standard ATMS must be modified to take into
account the uncertainty of assumptions, facts and justifications.
Let J be a set of weighted justifications, H a set of weighted
hypotheses, E a subset of H and d a datum. Then we have
the following definitions:

• Environments: [E α] is an environment of d iff d can
be derived from J ∪ E with a certainty degree α. [E α]



Assertion Meaning
1. Say(X , P ) This denotes that agent X informs (says) to the

system of the presence of garbage at some location
P

2. Goto(P ) This indicates the garbage collection team to goto
location P to collect the garbage.

3. IsTrue(X , P ) This asserts that the agent X is true about provid-
ing garbage information P .

TABLE I: Assertions used in the example.

is an α-environment of d iff [E α] is an environment
of d and ∀ α′ > α, [E α′] is not an environment of d
(i.e., α is maximal).

• Nogoods: [E α] is an α-contradictory environment, or
α-nogood iff J ∪ E is α-inconsistent, i.e., ⊥ can be
deduced from J ∪ E with α maximal (α is called the
inconsistency degree of J ∪ E).
The α-nogood [E α] is minimal iff there is no β-
nogood [E′ β] such that E ′ ⊂ E and α ≤ β.

• Labels: The label of a datum d noted L(d)={[Ei αi],
i∈I } is the subset of the set of environments which
satisfies the following properties:

C. Obtaining Necessity Weights

As we have no other information regarding the uncertainty
of information from different sources apart from their trust
values, we convert the numeric trust value to represent neces-
sity. We assume that trust on an information source is equal
to the certainty or degree of truth in the information provided
by it. While this may not be true in all cases, it can be argued
that trust values of the sources are the only way to . If pA is
a proposition put forward by an agent A with a trust TA as
observed by other agent then the necessity value can be written
as:

N(pA) = TA (7)

D. A Working Example

Continuing with the figure 1, let us consider three sources
of information: A, B and C. The sources A and B are citizens
of the city. Also let us assume that in the past A has provided
some useful information and that agent B has never provided
any information. So, the reputation and hence the trust for A
will be greater than that of B. Let us assume these values being
TA=0.65 and TB=0.5 respectively. The value 0.5 represents the
default trust value on an agent without any prior interactions
obtained from equation 2. Since the agent C is a sensor, we
can assume that it will provide the system with more precise
information. Let us assume its trust value be TC=0.8. Next,
we define the assertions used in the example in table I.

Let us suppose that a citizen or a sensor (an agent) X
informs the system that there is a garbage at location PY . If
this information is true (IsTrue(X, P) denotes that the agent X
generally tells the truth about garbage information P ), then the
garbage collecting vehicle should be informed to go to location
PY and collect the garbage. We represent this information in
the following propositional logic statements:

Say(X,PY ) ∧ IsTrue(X,P ) =⇒ GarbageAt(PY ) (8)
GarbageAt(PX) =⇒ Goto(PX) (9)

Since, these justifications are generic and defined by the system
itself, the necessity values associated to them are equal to
1. This is because the system trusts on itself the most. In
the example, we assume that the agent A informs of the
garbage at location PA and two agents B and C inform about
the presence of garbage at location PB . We assume these
informations are provided in a time instance t, and avoid more
complicated situations for simplicity. We use weighted Horn
clause representation to illustrate resolution of the statements.
The list of clauses and their respective weights are given below.

C1 (Says(A, PA) 1),

C2 (Says(B, PB) 1),

C3 (Says(C, PB) 1),

C4 (IsTrue(A, P) 0.5),

C5 (IsTrue(B, P) 0.65),

C6 (IsTrue(C, P) 0.8),

C7 (¬Says(A,PA) ∨ ¬IsTrue(A, P) ∨ GarbageAt(PA) 1),

C8 (¬Says(B, PB) ∨ ¬IsTrue(B,P) ∨ GarbageAt(PB) 1),

C9 (¬Says(C,PB) ∨ ¬IsTrue(C,P) ∨ GarbageAt(PB) 1),

C10 (¬GarbageAt(PA) ∨ Goto(PA) 1),

C11 (¬GarbageAt(PB) ∨ Goto(PB) 1)

We use the resolution formula from (6) to resolve the clauses
in C1-C11. For instance, using the formula on clauses C1,
C4 and C7 yields (GarbageAtPA 0.5) as the resolvent. A
complete deduction is shown in the figure 4. The nodes in
white rectangle are premises as indicated by empty set of
environments. The white elliptical nodes are the assumption
nodes, e.g. IsTrue(A, P). The blue rectangles are the derived
nodes, e.g. GarbageAt(PA) is derived from nodes Says(A,PA)
and IsTrue(A, P) using the justification clause C7.

When the problem solver (the garbage collection system in
the example) queries the Π-ATMS about the nodes of interest
Goto(PA) and Goto(PB), it receives the labels of the nodes as
response. The certainty with which Goto(PA) is supported is
0.5. The explanation for why Goto(PA) is supported is given by
the label of Goto(PA) = {{TrueA}0.5}. The 0.5-environment
explains that the node Goto(PA) is supported because of the
assumption IsTrue(A, P) and with a certainty value 0.5. For
Goto(PB), however, there are two assumptions that support it
as indicated by its label. They are IsTrue(B, P) and IsTrue(C,
P) with certainty values 0.65 and 0.8 respectively. Thus, the
system will instruct the garbage men to go to place PB that
has greater support over PA.

For the use of the discounting factor, let us assume that
the trust on all three sources in the example are equal, i.e.,
TA=TB=TC and that their value is in the range [0.5,1),
say 0.65. In such a case, we have two sources B and C,
informing garbage at PB with a necessity 0.65 and the source
A informing garbage at PA also with a necessity 0.65. Since,
all the values are equal, the Π-ATMS responds with two
places PA and PB be visited with equal certainty. In this
scenario, we use the equation 5 to obtain discounted value of
certainty for each of the alternatives. Assuming γsystem=0.5,
the discounting function is equal to 0.43 and 0.63 for n=1



Goto(PA)
{{IsTrue(A, P)}0.5}

GarbageAt(PA)
{{IsTrue(A, P)}0.5}

Say(A,PA)
{{}1}

IsTrue(A, P)

{{IsTrue(A, P)}0.5}

Goto(PB)
{{IsTrue(B, P)}0.65, {IsTrue(C, P)}0.8}

GarbageAt(PB)
{{IsTrue(B, P)}0.65, {IsTrue(C, P)}0.8}

Say(B,PB)

{{}1}
IsTrue(B, P)

{{IsTrue(B, P)}0.65}

Say(C,PB)

{{}1}
IsTrue(C, P)

{{IsTrue(C, P)}0.8}

Fig. 4: Lattice showing Environments of the various nodes of the ATMS

and n=2 respectively. Thus, the discounted trusts for Goto(PA)
and Goto(PB) become (0.43 * 0.65) ≈ 0.28 and (0.63 *
0.65) ≈ 0.41 respectively. So, the system prefers instructing
the garbage men to go to PB before PA. Since, the necessity for
Goto(PA) is still 0.63, the system wil still instruct the garbage
men to go to PA.

VI. CONCLUSION

Smart devices need to consider the aspects of data un-
certainty and trust on data sources, when they make their
decisions. Also, since they make autonomous decisions by
their own, they must be able to reason for the decisions that
they make. ATMS is one such technology which helps compare
different beliefs simultaneously. But, it still lacks ability to
handle uncertainty about trust values associated with the input
clauses. Π-ATMS can be used to consider uncertainty into the
clauses of ATMS. For the simplest of cases, we can consider
trust on a data source as certainty measure. Since in Π-ATMS,
we are concerned with comparing the necessity measures of
the clauses, their relative values can be helpful to select the
most trustworthy source and make the best decision under
uncertainty.

In this paper, we considered a simple use case of street
garbage collection. We presented trust-based Π-ATMS based
central agent for managing decisions with information pro-
vided by untrustworthy sources. In real world, the use cases
are much complex. As a future work, we plan to implement
a network of ATMS-based agents to achieve trust-based dis-
tributed truth maintenance.
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