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Abstract The present study aims at demonstrating the feasibility of performing
a fracture test in less than one minute in a lab CT scanner despite the severe
time constraints of tomography acquisition. After introducing the basic concepts
of Projection-based Digital Volume Correlation (P-DVC), the specific implemen-
tation of this methodology to a wedge splitting test on a refractory material is
presented. The kinematics of the test is described over a mesh tailored to the sam-
ple geometry, and the elastic behavior of the sample is exploited through finite
element computations to provide sensitivity fields of experimental boundary con-
ditions to allow for their “measurements.” Enhancing the simulation to account
for crack advance with extended finite element analyses allows the sensitivity of
the procedure to the crack position to be assessed. A confidence interval for the
refractory toughness is finally obtained.

Keywords Castable refractory · Digital volume correlation · extended finite
element analyses · Fracture energy · Wedge splitting test

1 Introduction

Computed Tomography (CT) has become a tool of choice in materials science [24,
32,34]. Industrial or natural materials are imaged internally using lab tomographs
or beamlines in synchrotron radiation facilities [2,12]. Various microstructures are
visualized and quantified in nondestructive or minimally intrusive ways [34,26].
Further advances have been achieved by performing in situ mechanical tests [14,
4,8,7], and displacement measurements via Digital Volume Correlation (DVC [4,
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33]). The latter technique has led to significant achievements in the mechanics of
materials field [3,9].

One limitation of X-ray tomography with standard lab scale equipment is re-
lated to the acquisition time of the series of radiographs needed for 3D recon-
structions. Tens of minutes if not hours are required for a single high quality
reconstruction. Yet, many states are to be imaged to precisely resolve the time
(load) history of tested samples. Further, relaxation is to be avoided (originating
either from the material due to its time-dependent behavior or testing device).
Synchrotron facilities allow these limits to be broken with tens of Hertz scan ac-
quisition rate, using classical methods [25]. Exceptional experimental set-ups are
required in addition to very bright X-ray beams.

The present study aims at demonstrating that using the recently introduced
projection-based DVC technique (i.e., P-DVC [23,35,17,19]) allows fast mechan-
ical tests to be performed in situ and monitored in a lab CT-scanner even with
non trivial kinematics. In the present case, a Wedge Splitting Test [37,6] is per-
formed on a castable refractory in less than one minute. Last, after discussing the
sensitivity on the measured crack tip position, the fracture toughness is estimated.

In Section 2, the principle of projection-based DVC is recalled. The analyzed
wedge splitting test is presented in Section 3. Section 4 is devoted to the numerical
simulations of the test via extended finite element (X-FEM) analyses from which
a reduced kinematic basis is constructed for the P-DVC procedure. With the lat-
ter, the wedge splitting test is studied and results are reported in Section 5. In
particular, the sensitivity of the P-DVC results to the crack length is investigated,
and a confidence interval on the fracture toughness is obtained.

2 Projection-based Digital Volume Correlation

This section aims at recalling the basics of DVC and P-DVC, together with the
notations used herein.

First, a flat field (i.e., image of the X-ray source on the detector with no imaged
sample) I0(r) is acquired. Then, the sample is positioned between the source and
the detector on a rotation stage, whose angular direction is parallel to the detector
columns. For many angles θ spanning [0, 2π], images are acquired I(r, θ). From
this series of images, projections are computed as

p(r, θ) = log(I0(r)/I(r, θ)) (1)

The 3D volume, f(x), is such that its projection (i.e., sum of absorption coefficient
along each point x of the beam ray hitting the detector at position r) should match
the recorded projection p(r, θ). This property is a linear relationship between f
and p

Πθ[f(x)] = p(r, θ) (2)

It is the inversion of this linear system for a large set of angles θ that is called
the reconstruction. Many algebraic reconstruction algorithms are based on the
minimization of the quadratic difference of the above left and right members [20]

f(x) = Argminϕ(x)
∑
r,θ

(Πθ[ϕ(x)]− p(r, θ))2 (3)
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Beam-hardening, which is the consequence of the X-ray source not being
monochromatic, may have to be corrected on p prior to the reconstruction step so
that Equation (2) is obeyed as closely as possible [15].

When following the 3D kinematics of a medium, a classical procedure is to re-
construct a series of such tomographic images, f(x, t) [7]. The displacement field,
u(x, t), is estimated using DVC [4,5,39,31], which is based on the assumption
of the conservation of the coefficient of absorption (or “gray level” of the recon-
structed volume). Introducing the Eulerian displacement field, it follows that

f(x, t) = f(x− u(x, t), t = 0) (4)

where the time parameter, t, is used here merely to label the different states where
a tomographic image is captured. It may thus be used as a superscript. Hence f0(x)
designates the reference volume and p0(r, θ) its projections.

To solve the above (inverse) problem, the displacement field is discretized in
space. When using global DVC [31], it is often chosen to use a finite-element mesh
fitted to the sample geometry, as it provides a natural interface with numerical
simulations [30,16,9]. Thus the displacement field is written as

ut(x) =
∑
i

utiψψψi(x) (5)

where ψψψi are finite element shape functions, and uti the corresponding nodal dis-
placements, which are gathered in the column vector {ut}. A variational formu-
lation is usually chosen, so that {ut} is obtained from the minimization of the
quadratic differences

{ut} = Argmin{v}
∑
x

(
f0(x− vjψψψj(x))− f t(x)

)2
(6)

The recently introduced variant of DVC, namely, projection-based DVC (or P-
DVC [23,35,18,17,19]) exploits a similar principle but on the projections. Hence
the minimization problem is rewritten as

{ut} = Argmin{v}
∑
r,θ

(
Πθ[f

0(x− vjψψψj(x))]− pt(r, θ)
)2

(7)

or, in order to minimize the effect of systematic bias of the detector, one may
exploit the fact that the undeformed projection is already known

uti = Argminvj

∑
r,θ

(
Πθ[f

0(x− vjψψψj(x))− f0(x)]− (pt(r, θ)− p0(r, θ))
)2

(8)

Although the two formulations look quite similar, P-DVC now offers new oppor-
tunities. It is worth noting that the microstructure of the sample is known as soon
as f0 has been computed. The remaining unknowns are the displacement compo-
nents uti, which are sparser than f t itself (i.e., the kinematic degrees of freedom
are much fewer than the number of voxels). Hence, there is no need for using as
many projections to track the motions as when one wishes to evaluate the 3D
image of the deformed microstructure. Several orders of magnitudes savings can
be reached [23].
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Moreover, using a time discretization that is nonlocal

u(x, t) =
∑
i,j

uijψψψi(x)φj(t) (9)

where φj are chosen time functions, allows the regularity of the temporal changes
to be set very early on in the formulation. It restores the status of t as a real
time parameter in the sense that rotation θ(t), but also mechanical loading, vary
continuously with t. With such a formulation, only one projection per load level is
needed with the natural benefit of carrying out an uninterrupted mechanical test
where projections are now captured on the fly [18].

The variational formulation is a mere extension of the previous one. For the
sake of notation conciseness, the projection differences are denoted as

ρ(r, t) = pt(r, θ(t))− p0(r, θ(t)) (10)

and

{u} = Argmin{v}
∑
r,t

(
Πθ(t)[f

0(x− vklψk(x)φl(t))− f0(x)]− ρ(r, t)
)2

(11)

where {u} gathers all unknown amplitudes uij . The above minimization is per-
formed by a Gauss-Newton algorithm as for standard DVC [9].

Although none were implemented in the present study, additional features may
be implemented to further simplify processing and enhance both result quality and
convergence speed:

– The separated form of Equation (9) motivates a further reduction in the num-
ber of unknowns as performed in Proper Orthogonal Decomposition (POD) and
Proper Generalized Decomposition (PGD) analyses [10,28,21,22]. The driving
idea is to search for “modes,” labeled by an index k, composed of a spatial

part ψ̃ψψ
k
(x) = akiψψψi(x) and a temporal part, φ̃k(t) = bkjφj(t), and, if both of

these fields are normalized to 1, an amplitude ck such that

u(x, t) =
∑
k

ckψ̃ψψ
k
(x)φ̃k(t) (12)

A greedy approach [11], which is based on the determination of one mode at
a time, is an efficient way of handling this problem, which then reduces to

the determination of the additional mode ψ̃ψψ
k

and φ̃k(t) that will account for
most of the “residual difference,” i.e., the field ρ from which all contributions
of previous modes 1, ..., k − 1 have been subtracted. This PGD-type strategy
proved to be extremely efficient in the context of P-DVC [18].

– Use a substitute to time. For instance, a mechanical test may provide a load
signal F (t) that may be more legitimate than time to design a temporal basis,
and hence φj(t) = φ̂j(F (t)) may be better suited than regular functions of
time. Additionally, an improper geometry calibration may suggest that θ(t)
may be used with sine and cosine contributions as other temporal basis func-
tions, φj(t) = sin(θ(t)) or φj(t) = cos(θ(t)). Since those basis functions are
unconstrained, the present flexibility is a powerful way to include prior knowl-
edge or expectations into the problem formulation.
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– Another efficient approach is to rely on the guidance of a mechanical model.
The latter can be used to extract candidate fields either in space or time and
both that are firmly founded from a prior mechanical knowledge [16,9]. Sensi-
tivity fields — i.e., differential displacement fields resulting from the variation
of a parameter from the mechanical modeling (be it from constitutive prop-
erties, boundary conditions, or sample geometry) — are emblematic of such
examples [36].

This list does not provide a unique pathway to the solution. However, if offers
a wealth of opportunities to exert one’s expertise, knowledge or intuition. The
more suited the latter to the case of interest, the higher the reward. It may be
feared that too strong a guidance may be provided to the analysis. However, let
us stress that residuals will never be “explained” by an inappropriate model, and
hence the level of residuals (or its likelihood) may then be used to falsify the
model and possibly correct it [27]. A possibly wrong model may not be detected
(for instance an elastoplastic medium that is tested only within its elastic domain
cannot prove the inadequacy of a purely elastic model) but this is the fate of any
scientific statement according to Popper [29]. One can only assess the consistency
of a model with a given set of observations, which does not prove that the model
be valid. All models are wrong, those considered valid are simply awaiting for their
falsification.

3 Wedge Splitting Test

The considered material is a castable refractory. It is composed of an alumina
matrix with mullite-zirconia aggregates whose granulometry is in the millimeter
range (i.e., the maximum aggregate size is 3 mm). The sample was fired at 1400°C
for 5 h. Numerous pores were trapped within the sample before setting. This
microstructure produces a large contrast in X-ray absorption, and hence 3D images
display a very clear contrast, which is beneficial for DVC purposes [3,9]. The
sample was first cast in a cylindrical mould (60 mm in height (i.e., z-direction),
and 72 mm in diameter). Then, a 4-mm wide notch was ground using the lateral
grooves that were present in the as-cast geometry. The latter was designed for easy
initiation of the crack from the notch, but also to guide the cracked surface during
stable propagation. To this aim, a chevron-shape was chosen so that the crack front
length increased as the crack propagated. The apex of the V is located 13.5 mm
from the top surface. Figure 1 illustrates the geometry from three orthogonal
sections about the specimen center (i.e., the three median planes).
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(a) (b)

(c) (d)

Fig. 1: Sample geometry (a) and mid-sections along (b) (x, z) plane, (c) (y, z)
plane, and (d) (x, y) plane.

A 30° wedge made of wood was stiffened with an aluminum alloy plate bent
to the wedge angle to prevent too strong surface damage. This wedge was forced
down into the notch in order to open a mode I crack that propagated in the mid-y
plane, as can be seen at the top of Figure 1(b). The crack front, which was parallel
to the x axis, had thus an increasing length as it propagated down through the
sample, thereby providing the sought enhanced stability.

Before starting the experiment, the sample was first carefully scanned. The X-
ray tube (W target) was set to 210 kV, with a current of 150 µA. A 0.5 mm thick
copper plate was used to limit beam hardening. The reconstruction was computed
with 1,200 projections over one full revolution (i.e., 360° range). Each projection
was acquired with an average over 30 frames (i.e., 3 s per projection) to reduce
noise. Including the sample rotation time, the overall acquisition time was 84 min.
Because of the coarse microstructure and specimen size, the resolution was set to
248 µm per voxel for 342×486 pixel projections. The same scanning protocol was
used at the end of the fracture experiment in order to allow for the validation of
the entire analysis, and have access to the fracture surface geometry.

Because the P-DVC algorithm exploits the connection between projections and
the reconstructed volume, it is important that this correspondence be trustful. In
particular, beam hardening (BH) artifacts should be reduced as much as possible.
Beam hardening results from the high absorption of low energy X-rays that affects
the energy spectrum of the beam as it traverses the medium, and hence introduces
an artificial contrast especially close to external surfaces. A large part of BH can
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be eliminated through a nonlinear correction of the gray levels in the projections
(thus as a preprocessing step) [15]. This correction was first calibrated from the
reconstruction, and then the same systematic transformation was performed on
each projection. In the present case, a cubic polynomial revealed sufficient to
account for most of the BH artifacts.

It is also noteworthy that the reconstruction itself may not be strictly iden-
tical to solving Equation (3). In particular, Fourier-based methods, such as the
so-called Feldkamp algorithm [13] for cone-beam reconstruction, involve an inher-
ently distinct discretization scheme for voxels as that involved in a mere projection
algorithm. In contrast, algebraic reconstruction methods such as SIRT [20] are
based on the direct solution to Equation (3), using precisely the same projection
operator as that used in P-DVC. Hence, it is beneficial to use SIRT-like proce-
dures for reconstructions. However, such approaches are also less computationally
efficient than Fourier-based methods. Thus, the choice was made to first perform
a Feldkamp reconstruction and then run on the obtained volume a few (typically
ten) SIRT iterations to have a consistent solution. Projections and reconstructions
are performed with the ASTRA toolbox [38] and geometrical parameters given by
the tomograph calibration. To evaluate the quality of the reconstruction, one can
consider the projection residuals, namely, the difference between the measured
projection p(r, θ) and the projection of the reconstructed volume Πθ[f(x)].

Figure 2 shows such a residual field when the projection direction lies along
the x-axis (i.e., parallel to the notch plane), which is the most sensitive to the
very precise reconstruction of the notch edge. The latter is faintly marked in this
residual field, but the gray level difference is comparable to the more massive, red,
rectangular shaped part in the lower part that is due to a systematic difference of
sensitivity of the four-quadrant detector. It means that instrumental acquisition
artifacts become the limiting factor in the reconstruction (more than noise). In
quantitative terms, the root mean square (RMS) residual per pixel is 0.153 arbi-
trary units as compared to a full dynamic range of the projection of about 8 (same)
arbitrary units. This residual requires an appropriate beam hardening correction
to reach such remarkably low levels.
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Fig. 2: Projection residuals for an orientation perpendicular to the x-axis (similar
to that of Figure 1(b)).

The wedge splitting test was conducted in situ. A testing machine specially
designed for the CT scanner was used to apply the load on the wedge [9]. The
maximum applied load was close to 6 kN (well below the machine capacity of
20 kN). Figure 3(a) shows the force-displacement curve that was recorded during
the entire experiment, which lasted 36 s. Such a short duration is to be compared to
the time devoted to acquiring the reference volume (i.e., close to 1h30 or 5,400 s).
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(a)

(b) (c)

Fig. 3: (a) Load-displacement curve of the wedge splitting test. Note that prior
to recording the curve, a full revolution was acquired in the low acquisition mode
with no applied load. The rotation number is shown in the graduation of the top
axis. (b) (y, z) mid-plane section through the sample in its initial state, (c) same
(y, z) section at the end of the test.

All along the loading history (up to peak force), and while the rotation was
taking place (both loading and rotation were simultaneously and continuously
activated), radiographs were acquired at a fast rate. The X-ray source was held
at similar conditions to those used for initial and final tomography acquisitions
(i.e., 210 kV, 150 µA current, copper plate), and the resolution was also unchanged
(i.e., 1 voxel ≡ 248 µm). The rate of acquisition was 10 fps, similar to that of the
reference tomographic images. However, instead of averaging over 30 frames, single
frames were recorded (giving rise to a much higher level of noise, but allowing
for a higher rotation rate with no motion blur). During the first revolution, no
loading was applied (the wedge was simply positioned in contact with the sample
top notch, with minimal static load). This first stage was performed to ensure
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that the P-DVC algorithm could be run on the same data quality as the actual
mechanical test, and the absence of measured strain constitutes a validation of
the approach in real conditions. The previously reported projection residual levels
and the illustration in Figure 2 were obtained.

During the 36 s duration of the test, a 1,700° range was covered (or, in other
words, 4.72 full revolutions including the first revolution without load). The sam-
ple deformation and the penetration of the wedge by about 3 mm are such that
classical reconstructions could not be performed based on this set of 425 radio-
graphs. However, as earlier mentioned, the motivation is to utilize P-DVC for the
analysis of the detailed (and load-resolved) kinematics all along the test.

4 FE Model

The reference volume is used to tailor a tetrahedral mesh to the exact sample
geometry. As shown in Figure 4, the mesh is composed of 5,201 nodes, and 25,767
4-noded tetrahedral elements. Because of its fine microstructure, the material is
modeled as homogeneous. Moreover, its behavior is considered as elastic, with
parameter values E = 58 GPa and ν = 0.1 issued from prior tests.

Fig. 4: Mesh used to simulate the experiment with Abaqus. Only surface elements
are shown for a better readability. The same mesh, which was designed to fit
precisely the 3D image, is used for P-DVC.

To model fracture, an extended finite element (X-FEM) strategy (as imple-
mented in Abaqus [1]) is used. In the following, no crack propagation will be mod-
eled. Rather, several crack lengths will be considered to analyze different stages.
Consequently, the sample geometry at any stage is fully described by the mesh,
and a single extra parameter h that quantifies the advance of the crack front over
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the mid y plane from the initial geometry where conventionally h = 0. However,
it is worth noting that the X-FEM framework allows for modeling such a propa-
gation, ruled either by a critical stress intensity factor or by a more sophisticated
description such as a cohesive zone model, whose finality is to enrich the linear
elastic fracture propagation model. Thus the limiting factor is not modeling but
rather the experimental sensitivity to additional parameters.

Let us emphasize that the very same mesh is used to perform all P-DVC anal-
yses. P-DVC may theoretically be performed using all degrees of freedom allowed
by the mesh (i.e., 15,603 DOFs). However, this would be vain since the sensitivity
to each individual kinematic DOF is low and would result in a very noisy displace-
ment field. Thus, rather than considering a totally unconstrained kinematics, it is
rewarding to exploit the prior knowledge about the mechanical behavior, which is
essentially a linear problem when the crack front does not propagate. Yet, a num-
ber of unknowns accounting for the boundary conditions remains to be determined.
These unknowns are collectively called {p} = {pi}, for i = 1, ..., Np. Concerning
time, when the first rotation is considered, because no load is applied, a single time
function (i.e., a constant equal to unity) is chosen. For the four following rotations
where the wedge penetration increases at a constant velocity, two time functions
were selected in the form of a constant and a linear evolution. Notwithstanding
this global evolution spanning the entire loading period, restricted time windows
could be chosen to speed up the computation time.

In order to add the time dimension to the problem, with the above temporal
shape functions, φj(t), additional unknowns, pij , are introduced such that pi(t) =
pijφj(t). To ease notations, one may introduce a multi-index notation i = (i1, i2),
and hence pi1 i2 may be denoted as pi. Note that the same convention may also hold
for the nodal displacement i1 along the temporal basis function φi2 , ui1 i2 = ui.

To account for the boundary conditions, one may note that the top surface
is partitioned in two because of the notch, and the wedge prescribes different
kinematics on both sides. Ideally, only the motion along the contact line should
matter, and all other surfaces but the base should be free. However, because of
possible nonlinearities taking place along this contact line, it is considered safer
to introduce as unknown the mean rigid body motions (6 DOFs) of the two top
surfaces (i.e., 12 unknowns). This may not be completely faithful to reality, as it
neglects the possible deformation of these top surfaces. Yet, to account for the bulk
kinematics, and especially for crack advance, the discarded modes are assumed to
have a negligible influence. In addition, the bottom surface is also treated as rigid
giving rise to six more DOFs, or a total of 18 DOFs. Such parameterization works,
yet a significant projection residual remains in the lower part of the sample after
the P-DVC analysis, thereby signaling that this kinematics is not fully satisfactory.
A closer examination of the bottom boundary condition shows that the sample is
essentially resting on a thin groove machined on the sample opposite to the opening
wedge in order to prevent its rotation. As a result, a flexure of the bottom surface
is likely to happen. This effect is introduced through an extra DOF in the form
of an angular discontinuity (rotation about the axis parallel to x in the bottom
plane). With these 19 spatial DOFs, a very significant decrease in the projection
residuals occurred, and hence, all the following analyses were performed with these
19 spatial DOFs, which — when dressed with the two temporal shape functions
— amount to a total of 38 DOFs.
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For any set of parameters {p}, the FE model provides the sensitivity coefficients
Sij = ∂ui/∂pj of nodal displacement i with respect to boundary condition DOF
j. Let us note that the problem is linear elastic, and hence the sensitivities are
constant. The only possible nonlinearity would come from crack propagation. To
facilitate the solution to this problem, crack propagation during one revolution
was neglected. However, different crack lengths h were considered in parallel as
independent problems, and the one giving rise to the smallest residual was selected.

5 Results

As earlier discussed, the first revolution was performed with virtually no load. The
evaluation of the residuals leads to an RMS estimate of 0.15 arbitrary unit showing
that the algorithm was successful in achieving a very low value (i.e., about 2 %
of the dynamic range). To complement this validation, one may check that the
measured kinematics is essentially that of a rigid body. The von Mises equivalent
strain was determined in the volume from the measured displacement field, giving
a volume average of 4× 10−3. This also provides an estimate of the displacement
uncertainty by computing the RMS value of the nodal displacements after having
removed the rigid body motion. For all components, this uncertainty is of order
0.01 voxel.

Figure 5 shows the 3D displacement field measured for the fifth revolution,
along the mid-x cross-section. Although the most salient feature is the crack open-
ing in Mode I (along y), which amounts to about 2 voxels, or 500 µm, it is more
clearly observed in Figure 6 that some mode II and III components also appear
as a result of a possibly irregular slip of the wedge as it penetrates into the notch.
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Fig. 5: Three components of the displacement field along the mid-x plane at the
fifth and last revolution. All values are expressed in voxels (1 voxel ≡ 248 µm)).



14 Clément Jailin et al.

(a) (b)

(c)

Fig. 6: 3D rendering of the deformed medium. (a) ux, (b) uy, (c) uz components
expressed in voxels (1 voxel ≡ 248 µm)). The displacement discontinuity shows
that a significant mode III (a) and mode II (c) are present, although mode I is
dominant (b).

Figure 7 shows the corresponding projection residual before and after regis-
tration for an orientation of the sample that is such that the projection direction
is essentially along x. This orientation is the most sensitive to the crack opening
fields. The RMS value of the residual is 0.29 arbitrary unit, a much higher level
than that obtained with the first revolution (no load), yet quite small as compared
to the dynamic range of projections, which is about 8 arbitrary units.
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Fig. 7: Residuals at the fifth and last revolution for a crack length equal to half its
maximum size (which is observed to minimize the residual). The color bar is graded
in arbitrary units, and should be compared to the dynamic range of projections,
which is about 8 (arbitrary units. (a) before registration, (b) after registration.
The registration brings the RMS residual from 0.46 down to 0.29 arbitrary unit.

In the previous figures, the crack front position is chosen to be at mid height
from its initial position to the bottom surface, i.e., h = hmax/2 where the minimum
value of the residual is reached. However, the minimum is shallow and rather
suggests that the crack tip position lies in between hmax/2 and hmax.

Let us comment some more on the accuracy of the determination of the crack
front position. It is to be noted that the latter is mostly insensitive for all angular
orientations not parallel to the x-axis. To evaluate the sensitivity to the crack
front position, one may consider the difference in residuals along the x projection
direction for the two probed h positions (i.e., h = hmax/2 and h = hmax). This
difference is essentially the increment of displacements δu due to the crack front
advance, contracted with the image gradient ∇∇∇f and projected Πθ[δu ·∇∇∇f ]. This
field is the one to be used when evaluating the crack front position, through the
evaluation of having lower or higher residuals when this field is added to the present
residual values. Figure 8 shows such sensitivity field. It is observed that most of
the signal is concentrated along the notch faces (because of the large contrast) and
away from the crack because of the larger displacement expected there due to a
lever effect. Although this sensitivity displays significant features, its amplitude is
about the level of uncertainty, and hence, it is unfortunately vain to have a finer
determination of the crack front position with the present data.
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Fig. 8: Projection residual difference (for a projection direction along x) obtained
for two proposed crack front positions h = hmax/2 and h = hmax.

Last, it is proposed to evaluate bounds for the toughness (i.e., critical stress
intensity factor) from the two limiting values hmax/2 and hmax of the crack front.
The stress intensity factor KI was evaluated with the standard procedures of
Abaqus [1] at different points along the crack front for the two proposed crack
lengths. (Note that because of the V shape of the notch, the crack front length
is shorter when h = hmax/2, and thus y spans a smaller interval, than when h =
hmax where the entire sample width is concerned.) The fluctuations of KI along
the front are not meaningful, but the mean values 3.9 MPa

√
m and 2.2 MPa

√
m

for the two extreme crack front positions provide bounds for the toughness Kc.
Consequently, a first order estimate of Kc is 3±0.8 MPa

√
m. It is noteworthy that

the Young’s modulus was not evaluated in the present experiment (i.e., no load
data were considered). Rather its value was taken from an independent estimate
(E = 58 GPa). Hence, the present experiment should only claim for the evaluation
of Kc/E, a combination which is a kinematic quantity (i.e., 0.05± 0.015

√
µm).
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Fig. 9: Mode I, II and III stress intensity factors evaluated along the crack front
for h = hmax/2 (C, ◦ and O) and h = hmax (�, square and ?).

It was earlier noted that modes II and III were present in this experiment.
From the FE model, the corresponding stress intensity factors for these modes
and the two possible scenarios for the crack front position are straightforwardly
accessible. They are shown in Figure 9. For both scenarios, their level remains less
than 1 MPa.m1/2. Although these values are smaller than the corresponding mode
I data, they suggest to consider with caution the above toughness evaluation.

6 Conclusions

Projection-based Digital Volume Correlation (P-DVC) was reviewed and applied
to a fracture test performed in situ in a lab CT-scanner, which challenges the
methodology for an extremely fast (i.e., sub-minute) test as compared to common
practice (i.e., one high quality scan would take up to 5,400 s in the present case).
It has been shown that in spite of the degraded quality of projections due to
fast acquisition, noise was still not a limiting factor (as compared to detector
imperfections). The P-DVC algorithm could resolve the kinematics of the test
and provide an estimate of the crack front advance. A confidence interval on the
toughness of the studied refractory was finally obtained. Thus, a complete analysis
of the test kinematics was achieved.

The kinematic degrees of freedom were here selected in order to achieve a
good (although not perfect) description of the kinematics through 19 different
fields. A more systematic determination of the appropriate basis would be highly
desirable. Although a very efficient screening can be provided by model reduction
techniques [18,19], once a first kinematic basis is chosen, this initial selection of
a sufficient large kinematic space to embed the solution is computationally very
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demanding. This point is a direction of progress that would be very beneficial to
the present method.
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