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ABSTRACT
The direct detection and characterization of exoplanets will be a major scientific driver over
the next decade, involving the development of very large telescopes that require high-contrast
imaging close to the optical axis. Some complex techniques have been developed to improve
the performance at small separations (coronagraphy, wavefront shaping, etc.). In this paper,
we study some of the fundamental limitations of high contrast at the instrument design level,
for cases that use a combination of a coronagraph and two deformable mirrors for wavefront
shaping. In particular, we focus on small-separation point-source imaging (around 1 λ/D).
First, we analytically or semi-analytically analyse the impact of several instrument design
parameters: actuator number, deformable mirror locations and optic aberrations (level and
frequency distribution). Second, we develop an in-depth Monte Carlo simulation to compare
the performance of dark hole correction using a generic test-bed model to test the Fresnel
propagation of multiple randomly generated optic static phase errors. We demonstrate that
imaging at small separations requires a large setup and small dark hole size. The performance
is sensitive to the amount of optic aberration and the spatial frequency distribution but shows a
weak dependence on the actuator number or setup architecture when the dark hole is sufficiently
small (from 1 to � 5 λ/D).

Key words: instrumentation: miscellaneous – methods: numerical – techniques: high angular
resolution – techniques: miscellaneous – planet–star interactions.

1 IN T RO D U C T I O N

The direct detection and characterization of exoplanets will be a ma-
jor scientific driver over the next decade, especially regarding the
development of extremely large telescopes (ELTs). High-contrast
imaging provides an ideal method to characterize extra-solar plan-
etary systems (Marois et al. 2008; Kalas et al. 2008; Lagrange
et al. 2010) but faces multiple challenges. In particular, reaching
small angular separation between planets and stars is a must if one
wants: (1) to focus on exoplanet detection, ultimately down to ter-
restrial planets and very young giant planets, or more pragmatically
(2) to take full advantage of the angular resolution of the telescope.
The simulated planet population for young and nearby star sam-
ples (Bonavita et al. 2012) shows that an imaging contrast of 10−8

(J band) must be achieved at a separation of tens of milliarcseconds
in order to detect rocky planets (with the ELTs). In this context,
the abundance of M dwarfs in the Milky Way and their large frac-
tion of low-mass companions (Cassan et al. 2012) make them good
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candidates for searching for young planets, although they show
unfavourable properties.

Small-angular-separation imaging requires a major technological
breakthrough because it needs very high image quality and stability,
as a large amount of the on-axis point spread function (PSF) is con-
centrated inside 1 λ/D. High-contrast imaging needs multiple step
corrections, where seeing-limited PSFs will constantly be improved
by extreme-adaptive optics (ExAO), non-common path aberration
control, diffraction suppression or coronagraphy, and science im-
age post-processing to correct for atmospheric, static and quasi-
static aberrations. A few coronagraphs reach high-contrast levels
at small separation (vortex coronagraph – Mawet et al. 2005; Foo,
Palacios & Swartzlander 2005, phase-induced amplitude apodiza-
ton – Guyon et al. 2010b), at the cost of high sensitivity to aberra-
tions. While atmospheric aberrations are corrected with an adaptive
optic system, various techniques such as PSF subtraction or wave-
front control and shaping have been developed to minimize the
static or quasi-static part of the aberrations. Quasi-static speckle
calibration through post-processing or observational strategies is
routinely exploited in all leading observatories equipped with exo-
planet hunter instruments. For instance, GPI (Macintosh et al. 2007),
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SPHERE (Beuzit et al. 2008) and SCExAO (Guyon et al. 2010c)
make use of the most recent and well-known techniques such as
spectral differential imaging (SDI, Marois et al. 2006), spectral de-
convolution (SD, Sparks & Ford 2002), angular differential imag-
ing (ADI, Marois et al. 2005), or polarimetric differential imaging
(PDI, Kuhn, Potter & Parise 2001). These techniques significantly
increase the sensitivity of observing sequences, but become ineffi-
cient for small-angle fields of view. At small inner working angles
(IWA), these above-mentioned techniques suffer from insufficient
chromatic speckle elongation (with SD, speckles must move by at
least one resolution element between the shortest and the longest
wavelength, and thus it tends towards a long spectral range), and
an insufficient field of rotation (with ADI, speckles must rotate by
at least one resolution element, which translates into long observ-
ing times, for which temporal decorrelation of quasi-static speckles
will occur as a fundamental limitation). In addition, SDI relies on
an unknown a priori feature in the exoplanet’s spectrum and is
sensitive to non-common path errors, and PDI, despite a higher
sensitivity at small separations (owing to increased reflected light),
is severely impacted by photon noise because unpolarized reflected
light is not used. Small IWA observing mode thus call for alternative
approaches or observing strategies, especially in relation to ELTs.

Wavefront shaping is an alternative way to address this chal-
lenging issue. Rather than wavefront control being the process of
flattening wavefront errors from imperfect optics, we refer, by wave-
front shaping, to the process of creating a dark zone (the so-called
dark hole) in the PSF. In this context, the calibration of quasi-static
speckles at small IWA can be done at a reduced efficiency through
coherence-based methods that can be implemented by modulating
the light in the speckles, either temporally (Guyon 2004) or spa-
tially (Baudoz et al. 2012). One limitation of wavefront shaping is
the Fresnel propagation of phase aberrations, described by the ‘Tal-
bot effect’: at the deformable mirror (DM) plane, out-of-pupil optics
create a mix of amplitude and phase errors that a single DM cannot
correct on the full field, or at the expense of loosing at least half of
the field (e.g. Bordé & Traub 2006; Give’on et al. 2007). One way to
tackle this effect is to use at least two DMs to correct for both phase
and amplitude. Multiple-DM control has been under extensive test-
ing worldwide for more than a decade in many laboratory test-beds
(THD, Galicher et al. 2014; HCIT, Riggs et al. 2013; HCIL, Pueyo
et al. 2011; Riggs et al. 2013; HiCAT, N’Diaye et al. 2013; and
SPEED, Martinez et al. 2014) that come within the scope of future
on-sky applications. A set of deformable mirrors is used to correct
for the wavefront error from imperfect optical surfaces as well as
to shape the wavefront to produce a dark zone in the PSF halo.
Various successful laboratory experiments using either a single DM
(e.g. Trauger & Traub 2007; Guyon et al. 2010a; Belikov et al. 2010;
Mazoyer et al. 2014; Delorme et al. 2016) or two DMs (e.g. Kay,
Pueyo & Kasdin 2009; Pueyo et al. 2011; Riggs et al. 2013) are
appealing for on-sky implementation of the technique. Nonethe-
less, a well-developed understanding and mastery of multiple-DM
architecture is to our knowledge limited to large and/or moderate
IWA science goals, leaving the slot of very small IWA uncovered.
It is worth exploring wavefront shaping optimization for this spe-
cific scientific window, which will ultimately allow the successful
implementation of the small IWA mode.

In this paper, we address in-depth understanding of science-
grounded instrument conception and contrast design at small IWA
(1 λ/D). The relationship between scientific and instrumental re-
quirements is not trivial, especially considering the Fresnel/Talbot
perturbations, and is generally not addressed when the optical de-
sign is defined. The scope of this work is essentially to assess the
relative impact of several optical setup parameters on the ability

of two DMs to efficiently control phase and amplitude to create
dark holes, as the optics’ Fresnel propagation constrains the use
of multiple DMs. A general background detailing current dark hole
algorithms and architecture with two DMs is presented in Section 2.
The implemented parameters, which potentially drive the Fresnel
propagation effects and contribute to limiting the dark hole depth,
are related to the DM configuration (number of actuators, location,
configuration, etc.) and the optical component quality (wavefront
error amount, frequency distribution). Specific limitations (DM lo-
cation, number of actuators and aliased speckles) are illustrated
and explained with simple cases in Section 3, and Section 5 gath-
ers Fresnel-propagation simulation outputs resulting from a Monte
Carlo approach for each of these parameters or combination of pa-
rameters. In the scientific context of detecting exoplanets in their
habitable zone with future ELTs from the ground, or with dedicated
missions in space, high image quality (with ExAO on ground) and
high-contrast coronagraph performance are expected. We thus con-
sider, for this study, some generic perfect coronagraph (Section 4),
meaning that we focus on more intrinsic properties of the optics and
setup (polishing frequency distribution, relative beam size, distance
between optics, and especially between DMs relative to the pupil
plane). In the same way, we assume a perfect AO system (sensing
and correction) to emphasize the impact of optical setup parame-
ters. The contrast obtained in Sections 3 and 5 (∼10−14 at best) is
thus well below what real instruments can achieve; for instance, the
photon noise from AO residual aberrations is already expected to
prevent high-contrast instruments from reaching below 10−9 (even
for the next very large-aperture ELTs, Kasper 2012). Nevertheless
we show that, if some of the above-mentioned optical parameters
are not appropriately set (e.g. the deformable mirror location), this
can limit the contrast level to ∼10−7.

2 G E N E R A L BAC K G RO U N D

This section introduces existing model-dependent techniques,
namely algorithm implementation and optical architecture, to create
a local dark hole at the image plane.

2.1 Dark hole algorithm

We focus on dark hole algorithms when assuming a linear response
to optical system perturbations. Wavefront shaping algorithms that
deal with non-linearity, for example to correct for pupil discontinu-
ities (Pueyo & Norman 2013), are out of the scope of this paper.
We describe the existing algorithms (speckle nulling and energy
minimization), and the analytical equation for energy minimization
(with one and two DM(s)).

2.1.1 Iterative speckle nulling

The classical speckle nulling technique (Trauger et al. 2004) has
proved its performance for laboratory setup (HCIT) and on-sky in-
struments (GPI, SCExAO). This method is based on identifying the
brightest speckles at the focal plane and determining their corre-
sponding phase at the pupil plane. The phase/speckle relation is
recovered by applying different phase shapes (sinusoidal shape) to
the DM and tracking speckle intensity variations at the focal plane.
The brightest speckles are thus iteratively removed. The drawback
of this method is that it can only remove speckles at the focal plane
with frequencies inside the dark hole, and thus it cannot correct for
those aliased speckles outside the correction range that create fea-
tures of sizes smaller than the PSF core (for details see Section 3.3).
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2.1.2 Energy minimization

Another method redefines the problem by minimizing the energy
inside the dark hole. The analytical approach of this method is
described in Give’on et al. (2007), Pueyo et al. (2011) and Groff
(2012) and is defined by first computing the total energy at the
image plane with one DM and then generalizing to the case with
two DMs.

We assume here a single DM correction (at the pupil plane), an
entrance aperture A, an initial aberrated field ϕ (ϕ can represent
both phase and amplitude errors, but for simplicity we assume only
a phase error) and the DM perturbation ψDM such that the electric
field at the pupil plane is given by

Ep(u, v) = A(u, v)eiϕeiψDM(u,v), (1)

where u and v are the spatial coordinates at the pupil plane. We
define C as the linear operator from the pupil plane to the image
plane, such that the final electric field is given by Ef(x, y) = C{Ep(u,
v)}, where x and y are the spatial coordinates at the image plane. By
assuming a small phase and DM perturbation (linear approximation
eiϕ ∼ 1 + iϕ) and by dropping the second-order terms, the focal
plane amplitude can be written as

Ef (x, y) ∼ C{A(u, v)eiϕ} + iC{A(u, v)ψDM(u, v)}. (2)

The intensity inside the dark hole, IDH, can be written as
(Groff 2012)

IDH(x, y) =
“

x,y∈DH

Ef (x, y)E∗
f (x, y) dxdy, (3)

= 〈C{Aeiϕ}, C{Aeiϕ}〉 + 〈C{AψDM, C(AψDM}〉
+ 2�(〈C{Aeiϕ}, C{AψDM}〉), (4)

where � represents the imaginary part and * is the complex con-
jugate. This equation can be written as a matrix multiplication by
assuming that the DM phase is described by the DM actuator num-
ber N, the DM influence functions fk and the DM coefficients ak such
that ψDM = ∑N

k=0 akfk(u, v). The intensity inside the dark hole is
thus

IDH = t a M0 a + 2 t a �(b0) + d0,

where
M0 = 〈C{Af }, C{Af }〉 = G∗G,

G = C{Af },
b0 = G∗C{Aeiϕ},
d0 = |C{Aeiϕ}|2.

M0 represents the system response to each DM poke, b0 represents
the interaction between the DM and the aberration, and d0 is the
initial intensity owing to aberrations. The algorithm minimizes the
intensity inside the dark hole by nulling its derivative with

a = −M−1
0 �(b0). (5)

Resolving equation (5) can lead to a solution with large stroke
values. One way to limit the algorithm to stable solutions is to
use the electric field conjugation (EFC) or stroke minimization
method. EFC (Give’on et al. 2007) minimizes the dark hole intensity
IDH weighted by a Tikhonov regularization. The cost function to
minimize is

J = IDH + α2
0‖a‖2, (6)

where α0 is the Tikhonov regularization parameter that guarantees
that the algorithm converges within stable actuator stroke values.
The DM coefficients are defined as

a = −(M0 + α2
011)−1�(b0), (7)

where 11 is the identity matrix. The parameter α0 represents the
actuator stroke weight in the minimization and is defined by linearly
increasing α0 and finding the smallest value that achieves high
contrast. EFC thus seeks to find the minimum energy within some
weighted stroke solution.

A second approach, stroke minimization (Pueyo et al. 2011),
seeks to find the minimum stroke values that reach a given contrast
ratio. It minimizes the DM coefficients ‖a‖2 such that the intensity
in the dark hole IDH � 10−C, where C is the targeted contrast ratio.
The cost function to minimize is

J = ‖a‖2 + μ0(IDH − 10−C). (8)

The DM coefficients are computed using

a = −
(

M0 + 1

μ0
11

)−1

�(b0). (9)

As for the EFC, the parameter μ0 is determined by a line search on
μ0. The EFC and stroke-minimization methods are equivalent for a
single DM in monochromatic light.

Pueyo et al. (2011) and Groff (2012) demonstrated that the case
with one DM can be generalized to two DMs by defining the linear
operators C1 and C2 from respectively DM1 (first DM) and DM2

(second DM) to the image plane1. The interaction matrix becomes
M0 = G∗G with G = [G1, G2].

The energy minimization method reformulates the problem in
a global way by correcting for the overall energy inside the dark
zone and thus partially address the issue of aliased speckles. A
speckle at a frequency outside the DM correction range cannot be
fully extinguished as the DM cannot mimic its central frequency,
but its intensity can be decreased by fitting a linear combination of
speckles inside the correction range (see Section 3.3).

2.2 Setup architecture

Wavefront shaping with two DMs can be implemented in various
ways: in collimated or convergent beams. Zhou & Burge (2010)
showed that diffraction propagation effects can be computed in a
converging beam as well, using the conjugation location of elements
in an equivalent unfolded collimated beam design. The two setups
are described in Fig. 1. The case of the converging beam (right in the
figure) is defined with DM2 located after the lens but before the fo-
cus, such that the DM virtual object is after the focal length, leading
to a large equivalent distance between the two DMs (d). The con-
verging beam setup parameters are determined using geometric op-
tics by defining the geometrical beam size at DM2. The DM2 ampli-
tude patterns shown in Fig. 1 are computed with Fresnel propagation
(PROPER code, Krist 2007) for the two architectures with equal equiv-
alent distance between the two DMs, showing the same diffracting
structure. The main advantage of the converging beam setup is a
large gain in total setup length, leading, however, to a potential loss
in the wavefront shaping efficiency, as the beam size at DM2 is
smaller than in the case for the collimated beam, and thus contains
less actuators. For instance, in the generic setup used for the main

1 In the following, when referring to DM distances, DM1 is always located
upstream of the pupil plane, while DM2 is always downstream.
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Figure 1. Setup with one deformable mirror in a collimated (left) and converging (right) beam, and their corresponding amplitude pattern.

simulation (see Section 4.2.1), a loss of 10 per cent of actuators leads
to a more compact optical train of about 15 per cent. The converging
beam setup can be used when the physical size of one DM is smaller
than the other one and thus cannot be implemented in the collimated
beam, but the performance of the two architectures has not yet been
compared.

3 POT E N T I A L F U N DA M E N TA L LI M I TATI O N
TO H I G H C O N T R A S T AT SM A L L S E PA R AT I O N

The previous section presented the general background for cre-
ating a dark hole using two DMs (algorithm and setup architec-
ture). The following section describes and illustrates, using simple
cases, the setup limitations for high contrast at small separa-
tions (DM location in the setup, DM actuator number and aliased
speckles).

3.1 Setup DM location

This section describes how to determine the optimal DM distances
for high-contrast imaging at small separation (around 1 λ/D). For
that purpose, we analytically compute the impact of an out-of-pupil
DM in a simple imaging setup.

3.1.1 Impact of one out-of-pupil DM

We assume a simple imaging setup with one lens (focal length F)
such that the linear operator from the pupil plane to the image plane
(C in Section 2.1.2) is a Fourier transform. A DM is located at
a distance z downstream from the pupil plane. The electric field
at the focal plane (Ef) is computed by first Fresnel propagating
the DM electric field to the lens denoted El(α, β), where α and β

are the spatial coordinates, adding the lens contribution and finally
propagating to the focal plane. The electric field at the lens plane is
defined as

El(α, β) = ei 2π
λ (F−z)

iλ(F − z)

“
EDM(u, v)ei π

λ(F−z) ((α−u)2+(β−v)2)dudv,

(10)

where EDM is the DM electric field (DM amplitude and phase pertur-
bation depending on the spatial coordinates u and v). The complex
amplitude Ef(x, y) at the focal plane is thus

Ef (x, y) = ei 2πF
λ

iλF
ei πz

λF (x2+y2) Êl(α, β), (11)

Figure 2. Sine contribution as a function of the dark hole frequencies for
different deformable mirror locations: 0.3 m (black), 1.5 m (red) and 3 m
(blue) from the pupil plane.

Ef (x, y) = ei 2π
λ (2F−z)

iλF
̂EDM(u, v)

[
cos

( πz

λF 2
(x2 + y2)

)

+ i sin
( πz

λF 2
(x2 + y2)

) ]
, (12)

where ˆ represents the Fourier transform. The electric field, when
expressing the spatial frequencies in units of λ/D (where D is the
pupil diameter), is given by

Ef (x
′, y ′) = ei 2π

λ (2F−z)

iλF
̂EDM(u, v)

[
cos

(
πλz

D2
(x ′2 + y ′2)

)

+ i sin

(
πλz

D2
(x ′2 + y ′2)

) ]
, (13)

where x′ and y′ are the spatial frequencies in units of λ/D. The
image-plane electric field is thus modulated by sine and cosine
functions depending on the DM location z but also on the dark hole
spatial frequencies (image-plane coordinates x′ and y′). This mod-
ulation impacts the real and imaginary parts of the image plane and
contributes to the DM efficiency in the sense of stroke amplitude:
low sine or cosine values will need to be compensated by a large
DM stroke, which will be outside of the algorithm linear regime
assumption described in Section 2.1.2, and outside of the DM cor-
rection range. We first focus on the sine term by showing (see Fig. 2)
the absolute values of the sine contribution for three DM locations
(0.3 m, black; 1.5 m, red; 3 m, blue), in the case of a beam diameter
of 7.7 mm and a wavelength of 1.65 μm (for consistency with the
more complex model described in Section 4). It can be seen that
the sine term oscillates and thus degrades the overall efficiency over
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222 M. Beaulieu et al.

Figure 3. Sine (dash) and cosine (long dash) contributions averaged from
0.8 to 4 λ/D as a function of the deformable mirror location z in metres and
optimum deformable mirror location (red line) that maximizes the overall
coverage.

the spatial frequencies. We also note that the DM location can be op-
timized to maximize the averaged sine coverage over a defined dark
hole. In particular, the sine contribution for high-contrast imaging
at a large separation (around 4 to 10λ/D) is well covered by a DM
located at 0.3 m from the pupil plane (black curve). On the other
hand, a high contrast at small separation (around 1λ/D) requires a
large DM location (>1 m, blue and red curves) but also a small dark
hole size: the sine contribution for those DM locations shows large
oscillations and thus poor coverage when trying to enlarge the dark
zone region. We can apply the same rationale for the cosine contri-
bution: Fig. 3 shows the modulation contribution (sine and cosine)
averaged over spatial frequencies from 0.8 to 4 λ/D (for the goal of
high contrast imaging at small separation). The optimum distance
is the one with the same contribution for the real and imaginary
parts of the focal plane (the intersection of the sine and cosine con-
tribution, shown in red in Fig. 3). The modulation term thus directly
impacts the DM stroke, even more for a high initial aberration level,
and depends on the wavelength and pupil diameter (proportional to
the Fresnel number, see equation 13). The discussion part of this
paper describes the impact of the pupil diameter and wavelength on
the optimum DM distances (see Fig. 17, Section 6).

3.1.2 Impact of two out-of-pupil DMs

The previous section showed that the location of an out-of-pupil
DM determines the focal plane modulation impact (cosine and sine
contribution) at the dark hole frequencies. The case with two DMs
can be derived from the case with one DM by assuming that the
DM contributions are small and that there is no diffracting ele-
ment between the two DMs. We can thus add the two modulation
contributions and write the focal plane electric field as

Ef 2DM(x ′, y ′) ∝ a1 cos(
πλz1

D2
(x ′2 + y ′2) + a2 cos(

πλz2

D2
(x ′2 + y ′2)

+ i

[
a1 sin(

πλz1

D2
(x ′2 + y ′2) + a2 sin(

πλz2

D2
(x ′2 + y ′2)

]
, (14)

where z1 and z2 are the distances of each DM to the pupil plane,
and a1 and a2 represent the contribution of each DM via the Fourier
transform of their complex amplitude. In the following, we as-
sume that the two contributions are of the same order of magnitude
and thus that we can add the cosine and sine contributions to deter-
mine the optimum DM distance.

Figure 4. Efficiency within 0.8 to 4 λ = D as a function of DM2 location
for several DM1 locations, from the pupil plane to 2.5 m. The triangles
correspond to the optimum cases where the sine and cosine contributions
are equal whereas the diamonds correspond to cases where the cosine and
the sine contributions are not identical for any deformable mirror location.
In that case, the optimum distance and the efficiency are defined at the
maximum sine contribution.

In order to determine the optimum DM locations that correct for
small frequencies, we (1) compute the absolute value of the overall
sine contribution (sum of the two DMs), (2) compute the absolute
value of the overall cosine contribution, and (3) find the optimum
distance at the intersection of the two contributions. The results
are shown in Fig. 4, which gives the efficiency for different DM
locations. Diamonds correspond to the worst case, as the cosine and
the sine contributions never intersect. The sine contribution is thus
the efficiency criterion as, at small separations, the sine contribution
is always smaller than the cosine contribution and thus limits the
performance. A DM at the pupil plane or near the pupil plane is thus
not optimum for high-contrast imaging between 0.8 and 4 λ/D. As
for the case with one DM, large setups provide better efficiency for
the performance at small separations. The optimum DM locations
are for z1 and z2 at 1.5 and ∼1.3 m, with similar performance
between 1 and 2 m.

3.2 DM actuator number

Because of the Nyquist criterion, the number of actuators N limits
the DM overall performance: we can correct up to a radius of
λN/2D (DM correction range) at the image plane. Furthermore, the
number of actuators also impacts high-contrast imaging inside the
DM correction range: performance depends on the DM capability
to reproduce a phase pattern well, even for spatial frequencies less
than λN/2D. To illustrate this point, we simulate a setup with a
single DM located at the pupil plane. The relationship between
pupil and image planes is a Fourier transform, and we assume a
perfect coronagraph/setup that removes the real part of the electric
field Ef such that

Ef = iÂϕ. (15)

The initial complex amplitude at the pupil plane is defined by the
phase aberrations ϕ(u, v) and the pupil shape A(u,v). The phase
pattern is a radial cosine (cos(2πrν) with r as the radial distance
and ν the frequency), creating an annulus of speckles at a given
frequency at the image plane (see Section 3.3 for an illustration
of the annulus of speckles). We assume an aberration amount of
10 nm rms. We can thus assess the system response depending
on the defined initial phase frequency. The dark hole algorithm
minimizes the energy at the focal plane using equation (5) within a
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High-contrast imaging with deformable mirrors 223

Figure 5. Gain in contrast (γ ) when increasing the actuator number from
500 (red) to 1000 (black), for a dark hole size of 10 λ/D.

Figure 6. Gain in contrast owing to doubling the actuator number (
) for
dark hole sizes of 10 λ/D (black) and 5 λ/D (red).

dark hole of width 10 λ/D. In order to illustrate the DM capability to
correct for aberration frequencies inside the DM correction range,
we define the following terms. The contrast ratio C is the 5σ contrast
ratio (detection threshold) computed inside the dark hole of the
PSF divided by the maximum value of the initial PSF without a
coronagraph or wavefront shaping. We also define what we call
the wavefront shaping gain γ , which is the ratio of the contrast C
before and after the wavefront shaping algorithm. This definition
comes from the fact that, as the speckle annulus frequency increases,
its contribution inside the dark hole decreases (diffraction pattern
which is, in this case, the Airy pattern), leading to a better contrast
ratio not correlated with the wavefront shaping performance. The
wavefront shaping gain is thus

γ = Cbefore

Cafter
. (16)

Fig. 5 illustrates the DM capability to correct for aberration frequen-
cies inside the DM correction range for ∼500 and 1000 actuators
(DM correction range respectively to 11 and 16 λ/D): it shows the
wavefront shaping gain as a function of the initial speckle annulus
frequency in λ/D for 1000 (black curve) and 500 (red curve) ac-
tuators. We see in Fig. 5, a large performance improvement when
increasing the number of actuators, illustrating the impact of DM
actuator number inside the DM correction range.

Restraining the dark hole size and thus the needed correction
range is a way to be less sensitive to this limitation, as illustrated
in Fig. 6, which shows the gain when doubling the actuator number
for a dark hole size of 10 λ/D (black curve) and 5 λ/D (red curve).
The gain when doubling the actuator number is defined as


 = γ1000

γ500
, (17)

Figure 7. Initial annulus of speckles at a frequency outside the deformable
mirror correction range (left), after the dark hole algorithm (middle), and
the dark hole algorithm result when applied with an annulus of speckle
at a frequency inside the deformable mirror correction range. The scale is
logarithmic.

where γ N is the wavefront shaping gain (defined in equation 16)
with N actuators. We see that doubling the actuator number has less
of an impact on the gain in performance for the smallest dark hole.

3.3 Aliased speckles

Aliased speckles are speckles that are present in the dark hole owing
to the diffraction pattern convolution. Those aliased speckles can
be evidenced by assuming a small phase and approximating the
complex amplitude at the pupil plane with a Taylor series, up to the
first order, as

Ep = Aeiϕ ≈ A(1 + iϕ). (18)

We then introduce a perfect coronagraph, which removes the con-
stant term in the pupil plane (derived from Cavarroc et al. 2006)
such that Ep = iAϕ. If we assume a Fourier transform relationship
between the pupil and image planes, the electric field at the focal
plane can be written as

Ef = iÂϕ, (19)

and the corresponding intensity as

If = EfE
∗
f = |Âϕ|2. (20)

The image plane intensity is the power spectrum of Aϕ and de-
grades the high-contrast performance as it creates structures in the
dark hole under the form of Airy rings. For instance, a pupil plane
cosine phase pattern ϕ at a frequency defined outside the dark hole
creates at the focal plane a wide lobe outside the dark hole but
secondary halo lobes within the dark hole, as the result of the con-
volution of the high-frequency peak with the Airy diffraction pattern
(more generally, a combination of random frequencies will appear
as a speckled halo). The characteristic size of these aliased speck-
les is less than 1 λ/D, as they originate from the combination of
multiple halo ring structures. Therefore they can only be partially
corrected with energy minimization. This impact is reduced when
using an apodized coronagraph as, in this case, Â decreases rapidly
with frequency and limits the aliased speckle intensities (Give’On
et al. 2006).

In order to estimate the degradation resulting from these aliased
speckles, we apply the dark hole algorithm to different initial
phase patterns (radial cosine at different frequencies as described in
Section 3.2), when assuming the focal plane electric field as defined
in equation (19). Fig. 7 shows, at the same logarithmic scale, the
initial annulus of speckles at a frequency outside the DM correction
range (left), its corresponding pattern after the dark hole algorithm
(middle), and the dark hole algorithm result with an annulus of
speckles at a frequency inside the DM correction range (right). We
illustrate here the DM limitation to correct for speckles outside the
DM correction range (residual energy inside the dark hole in the

MNRAS 469, 218–230 (2017)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/469/1/218/3813336 by guest on 08 D
ecem

ber 2023



224 M. Beaulieu et al.

Figure 8. Gain in contrast with 500 actuators (γ 500) when computing the
wavefront shaping algorithm for speckle frequencies inside and outside a
dark hole of size 10 λ/D (black) and 5 λ/D (red).

middle of the figure) that is not present when the initial aberration
frequency is inside the correction range (right in figure).

The black curve in Fig. 8 shows the algorithm capability to cor-
rect for frequencies inside and outside the dark hole. It is the gain
owing to wavefront shaping (from equation 16) with a DM with
∼500 actuators (DM correction range up to 11 λ/D) within a dark
hole of width 10 λ/D. The algorithm performance decreases as the
phase pattern frequency increases (1) inside the dark hole owing to
the DM inability to reproduce higher-frequency patterns well (see
Section 3.2) and (2) outside the dark hole owing to aliased speckles.

One way to minimize this effect is to decrease the dark hole size
(Bordé & Traub 2006), such that the algorithm is able to mimic
similar pattern speckles with a central frequency outside the dark
hole area but inside the DM correction range. The red curve in Fig. 8
shows the gain owing to wavefront shaping when the dark hole size
is decreased to 5 λ/D. Decreasing the dark hole size improves the
high-contrast performance (1) for frequencies outside the dark hole,
as the algorithm mimics aliased speckles by putting more energy at
frequencies outside the dark hole area, but also (2) for frequencies
inside the dark hole: as the dark hole size decreases, the needed DM
frequencies decrease such that the DM better reproduces the phase
pattern at those frequencies (which is equivalent to increasing the
number of actuators, as in Section 3.2).

3.4 Summary

In this section, we analytically or semi-analytically studied some
limitations to high-contrast imaging. The actuator number and fre-
quency folding significantly impact the performance, but this impact
can be minimized by narrowing the dark hole. Furthermore, an ana-
lytical approach of the impact of the DM location with simplifying
assumptions showed that high-contrast imaging at small separation
requires a large setup and a small dark hole size. We now use a more
realistic model to validate the impact of these limitations.

4 MO D E L D E F I N I T I O N

This section defines the model we use to simulate high-contrast
imaging at a small separation with two DMs. In the following we
do not treat (1) quasi-static aberrations, as we assume a correction
with a time-scale shorter than structural or thermal changes, or
(2) dynamical aberrations. The second assumption can be realized
with a spatial instrument or by assuming that atmospheric turbulence
has been corrected by an ExAO system (see further comments in
the Discussion section).

4.1 Numerical assumption

We assume a perfect coronagraph that removes all the coherent
light without aberration. The light is propagated along a setup free
of aberration, up to a coronagraphic pupil plane, where the complex
amplitude is recorded and subtracted when running simulations with
aberrations. We thus assume that our perfect coronagraph is not able
to correct any term owing to aberration. For small aberration, the
pupil electric field is defined as

Ep = 1 + iAϕ − 1

2
Aϕ2. (21)

The perfect coronagraph removes the deterministic (constant) term
but cannot correct for the linear term iAϕ nor for the quadratic ampli-
tude term ϕ2/2 (the perfect coronagraph defined here is sensitive to
the aberrations and thus cannot correct for the phase contribution).
Some perfect coronagraph definitions in the literature (Cavarroc
et al. 2006; Sauvage et al. 2010) minimize the integrated energy
after a coronagraph (by subtracting the mean of this quadratic term

ϕ̂2/2) and thus better reflect a coronagraph that removes the central
pattern (e.g. a four-quadrant phase mask or vortex). Because our
simulation attempts to define the ability to correct for amplitude
and phase aberrations with two DMs when using different phase
patterns, we choose to define a coronagraph sensitive to aberra-
tions.

Furthermore, we focus in this paper on the linear approach of
the algorithm that minimizes the overall energy inside the dark
hole (Section 2.1.2). The DM coefficients are computed using
equation (5). We do not restrain the DM stroke (EFC or stroke
minimization) because we want to assess the impact of setup param-
eters, especially the DM distances, on high-contrast performance
regardless of the stroke values. In practice, the DM strokes in our
simulation are within the algorithm linear regime. We finally as-
sume a perfect estimation of the complex amplitude at the focal
plane.

4.2 Numerical implementation

4.2.1 Optical model

An end-to-end model is defined based on a generic setup for high-
contrast imaging. The setup consists of ∼25 optics (which is typical
of current high-contrast imaging instruments) containing, amongst
other items, a pupil simulator, two DMs and a perfect coronagraph.
Paraxial lenses ensure the transition between the image and pupil
planes. The setup is monochromatic at 1.65 μm, and the pupil is
assumed to be circular with a diameter of 7.7 mm.

Active optics (DMs) have 32 × 32 actuators with a 300-μm pitch,
corresponding to 22 × 22 active actuators in the pupil. The optical
baseline allows the testing of DM distances up to 2.5 m.

Passive optics have a circular shape amplitude, assumed to be
larger than the pupil diameter (four times the pupil diameter). Each
optic is computed with random static aberrations defined by their
total amount of aberration (in nm rms) and their frequency distribu-
tion (power law of the power spectral density, PSD). For statistical
analysis, 128 phase realizations are defined per optic. We do not
add amplitude error on optics, such that the amplitude error present
in the setup results from the Fresnel propagation of phase errors.

4.2.2 Dark hole algorithm implementation

The interaction matrix M0 from equation (5) defines the system re-
sponse to each DM actuator and is numerically computed by poking
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Figure 9. Flow diagram of the dark hole algorithm.

each DM actuator (with phase 1 rad to maintain the linear ap-
proximation), then propagating all along the setup and recording the
complex amplitude at the image plane. We note that the computa-
tion of M0 assumes no aberration on the optics, which is equivalent,
for a setup with low noise level, to poking the actuator by posi-
tive/negative values to remove the aberration contribution. The real
part of the matrix is inverted using singular value decomposition
(SVD), and the singular value vector is sorted from the highest to
the lowest values. In order to avoid divergence and optimize the al-
gorithm, we use a two-level iterative process, as illustrated in Fig. 9.
The first iterative process impacts the singular value vector, which is
built up by taking the n first singular values and zeroing the remain-
ing. The dark hole solution (DM coefficients) is then computed in
a second iterative process, until the obtained contrast is close to the
theoretical one (by a factor of 1 + ε, with ε typically of the order
of 10 per cent). The algorithm then adds the next n singular value
(that was zeroed in the previous step) to the singular vector, and this
process is repeated until an overall best contrast is obtained. If a
better contrast cannot be reached, the previous DM shapes are used

as a starting point to the process: this prevents the algorithm from
stopping when close singular values give similar performance and
thus prevent a local minimum solution.

The singular value threshold n at each iteration is empirically de-
termined as a compromise between the performance and the com-
putational time and depends mainly on the setup aberration level.

High-contrast imaging around 1 λ/D requires a large setup (DM
distances of a few metres) and a small dark hole as described in
Section 3.1. We thus define for the simulation a dark hole from 0.8
to 4 λ/D to emphasize performance at very small separations.

4.2.3 Numerical code

The code we use for the Fresnel propagation between each optical
element is PROPER (Krist 2007). This code uses the angular spectrum
and Fresnel approximation as propagation algorithms; the procedure
automatically determines which is the best algorithm to implement.
PROPER and the dark hole algorithm were written in IDL but ported
to C++, such that the computation of several configurations can be
performed simultaneously in a data centre available at Observatoire
de la Côte d’Azur to speed up the computational time (from one day
to several hours). The numerical pupil diameter size is 400 pixels
for a grid size of 2048 pixels.

5 N U M E R I C A L R E S U LT S

5.1 Illustration of simulated dark holes

For illustration purposes, this section describes the high-contrast
capability of our numerical dark hole implementation and the met-
ric used to estimate performance. We focus on the case where DM1

is in the pupil plane and DM2 is 0.5 m from the pupil plane. This
case is not the DM location that provides the best performance,
but solely represents an example of achievable contrast. Fig. 10
shows the image contrast ratio (logarithmic scale) before the coron-
agraph (left), after the coronagraph (middle) and after the wavefront
shaping (right). The contrast ratio used in the following is the one
defined in Section 3.2. The setup optic aberrations are set to 5 nm
rms per optic (overall setup aberration level of about 20 nm rms),
with the aberration PSD in f−3, where f is the spatial frequency. The
metric used in the following to estimate the high-contrast imaging
performance is the 5σ contrast ratio C .

5.2 Impact of DM location on high-contrast performance

We assume that each optic contains an aberration of 5 nm rms and
a PSD power law in f−3, which is typical of current manufacturing

Figure 10. Contrast ratio image (logarithmic scale) before (left) and after (middle) the coronagraph and after the wavefront shaping with the two deformable
mirrors (right)

MNRAS 469, 218–230 (2017)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/469/1/218/3813336 by guest on 08 D
ecem

ber 2023



226 M. Beaulieu et al.

Figure 11. 5σ contrast ratio within a dark hole (from 0.8 to 4 λ/D) as a
function of the phase realization number for DM1 in the pupil plane and
DM2 situated (from top to bottom) 0.5, 1, 1.5, 2 and 2.5 m from the pupil
plane.

processes. For statistical analysis, we computed 128 different ran-
dom aberration realizations for each optic in the setup.

Fig. 11 is an illustration of the typical output that will be used in
the forthcoming sections. Each asterisk represents the 5σ contrast
ratio median computed within the dark hole (defined from 0.8 to
4 λ/D), when DM1 is in the pupil plane and DM2 is at various
distances from the pupil plane. As z2 increases, the overall contrast
ratio decreases, reaching a minimum of about 10−13 when DM2

is ∼2 m from the pupil plane and increasing for the largest distance
(2.5 m). This result is consistent with the semi-analytical analysis
of Section 3.1 with an optimum z2 around 1.8 m when the first DM
is in the pupil plane. We note a large dispersion in phase realization
when the DM distance is not optimum (z2 of 1 m for instance). The
algorithm achieves a very low contrast ratio (10−13) because the
coronagraph is assumed to remove all the light without aberration
and because we take into account only amplitude errors from the

propagation of static phase errors, so that the fundamental limitation
at small separation can be assessed.

The DM distances are tested in several cases: with DM1 in the
pupil plane, at 0.5, 1, 1.5 and 2 m from the pupil plane, and with
DM2 at 0.5, 1, 1.5, 2 and 2.5 m from the pupil plane. The contrast
ratio histograms for each DM location (when varying z1 and z2) are
presented in Fig. 12. Each plot represents the number of realizations
(ordinate) that reaches a given 5σ contrast (abscissa, in logarithm
scale). Black and red histograms represent simulations with respec-
tively 5 and 10 nm rms per optic and with PSD in f−3 (overall setup
amount of ∼20 and ∼40 nm rms)2. The dotted line is the median of
the achieved contrast ratio for each case. For illustration, the plot in
Fig. 11 is represented by the first row in Fig. 12. As each DM location
increases, histograms are sharper (less dispersion) and the medians
(dotted lines) are lower (better contrast). Optimum performance
with 20 nm rms is obtained for z2 between 1.5 and 2 m when z1={0,
0.5, 1 m}, for z2 = 1.5 m when z1 = 1.5 m, and for z2 = 1 m when
z1 = 2 m, with a slightly higher contrast at z1 = z2 = 1.5 m. These
results are in agreement with the analytical approach (see Fig. 4),
illustrating the fact that the approximation used in Section 3.1 is
valid to estimate the optimum DM distances. Increasing the amount
of aberration degrades the overall performance (because the setup
is outside of the linear assumption used in the energy minimization
algorithm) but does not impact the optimum DM location. Plots on
Fig. 4 also shows large bimodal histograms in several cases (for
instance when z1 = 0.5 m and z2 = 1.5 m), illustrating when the
algorithm is out of the linear assumption but also the fact that our
dark hole numerical computation could be optimized with a more
complex algorithm.

5.3 Impact of aliased speckle (aberration PSD)

Section 3.3 showed for a simple case that speckles with frequencies
outside the dark hole create aliased speckles inside the dark hole.
In order to estimate the impact of these aliased speckles on the
performance, we simulate an aberration pattern with a greater PSD
power-law exponent than in the previous section. The PSD power
law impacts the aberration frequency distribution: the amount of
aberration at large frequencies increases when the power law in-
creases. We test two power-law realizations: with less aberration at
high frequencies, and thus less aliased speckles (PSD in f−3), and
with more aberration at high frequencies (PSD in f−2.5). The simu-
lation is realized in a representative case: with DM2 at 1.5 m from
the pupil plane and with DM1 at the pupil plane and at 0.5, 1, 1.5
and 2 m from the pupil plane. This case is representative because
the contrast increases as z1 increases, with good performance for z1

between 0.5 and 1.5 m (see column 4 in Fig. 12). The results are pre-
sented in Fig. 13, where the 5σ contrast ratio within the dark hole is
shown as a function of z1 for a z2 of 1.5 m. Each plus sign is a phase
realization, and black and red plus signs represent the computation
with the PSD in f−3 and f−2.5, respectively. We note a significant
performance degradation when increasing the PSD power law (red
curve), with larger dispersion in phase realization and a worse con-
trast ratio. This is consistent with Section 3.3, which shows the large
impact of aliased speckles in high-contrast imaging. The optimum
DM1 location is unchanged for the two simulations (1.5 m).

2 The 128 realizations for each distance use the same 128 sets of aberrations
(same 128 seeds).

MNRAS 469, 218–230 (2017)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/469/1/218/3813336 by guest on 08 D
ecem

ber 2023



High-contrast imaging with deformable mirrors 227

Figure 12. 5σ contrast ratio histogram for each DM location. The histogram is the number of realizations that achieve the contrast ratio defined on the abscissa
(scale in powers of ten). The black and red histograms correspond to setup aberrations of 20 and 40 nm rms. The dotted lines are the contrast median for each
case.

Figure 13. 5σ contrast ratio within the dark hole (from 0.8 to 4 λ/D) as
a function of z1 for z2 = 1.5 m. Each plus sign corresponds to a random
phase realization. Black and red plus signs represent the realization with the
power spectral density in respectively f−3 and f−2.5.

5.4 Impact of actuator number

This subsection illustrates the impact of actuator number on high-
contrast imaging in a representative case (same as Section 5.3), with
a z2 of 1.5 m and z1 = {0, 0.5, 1, 1.5 and 2 m}. The number of
actuators is tested with 24 × 24 (∼600), 32 × 32 (∼1 000) and
40 × 40 (∼1 600) actuators per DM. The obtained 5σ contrast ratio
for z1 from 0 to 2 m from the pupil plane is shown in Fig. 14 (from
top to bottom).The contrast with 600 actuators (black plus signs)

Figure 14. 5σ contrast ratio within the dark hole (from 0.8 to 4 λ/D) as a
function of z1 for z2 = 1.5 m. Each plus sign corresponds to a random phase
realization. Black, red and blue plus signs correspond to the simulation with
respectively 1600, 1000 and 600 actuators.

is slightly worse than the contrast with 1000 and 1600 actuators,
showing that the dark hole is sufficiently small (from 0.8 to 4 λ/D)
to be negiglibly impacted by the actuator number (see Section 3.2).

5.5 Impact of optical design architecture

The impact of the optical design architecture is determined with
DM2 at 1.5 m from the pupil plane and DM1 at the pupil plane
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Figure 15. 5σ contrast ratio within the dark hole (from 0.8 to 4 λ/D) as
a function of z1 for z2 = 1.5 m. Each plus sign corresponds to a random
phase realization. Black and red plus signs correspond to the simulation in
collimated and convergent beams, respectively.

Figure 16. 5σ contrast ratio as a function of the phase realization number
for DM1 and DM2 at 1.5 m from the pupil plane. Black, red and blue
asterisks correspond to the simulation for dark holes defined respectively
from 0.8 to 4 λ/D, from 0.8 to 6 λ/D and from 0.8 to 8 λ/D.

and at 0.5, 1, 1.5 and 2 m from the pupil plane (same as in the
previous subsections). We test two architectures: with DM2 in a
collimated or a convergent beam (see Section 2.2). The size of the
beam at DM2 is 0.9 times the size of the corresponding collimated
beam, leading to a small loss in DM actuators (∼20 per cent loss
in a given area). The results are presented in Fig. 15: each plot is
the 5σ contrast ratio as a function of z1 for the setup in collimated
(black plus signs) and convergent (red plus signs) beams. We see
no significant impact (slight performance degradation) on the high-
contrast performance with the two architectures, because the dark
hole size is small and thus less sensitive to the actuator number.
The two architectures are thus almost equivalent in terms of perfor-
mance, as long as the loss in actuator number does not impact the
performance.

5.6 Impact of dark hole size

This subsection describes the impact of the dark hole size on the
overall performance. The simulation is realized for the two DMs at
1.5 m from the pupil plane. We define three dark hole sizes: from
0.8 to 4 λ/D, from 0.8 to 6 λ/D and from 0.8 to 8 λ/D. The results
are presented in Fig. 16. The figure shows the 5σ contrast ratio as
a function of phase realization number for the different dark hole

sizes. As the dark hole size increases, the performance becomes
worse and the dispersion increases, consistent with the analysis in
Section 3.1.

6 D I SCUSSI ON

We defined the potential limitations when searching for high-
contrast images at very small separations (about 1 λ/D). An an-
alytical or semi-analytical analysis with simple assumptions (Sec-
tion 3) shows that aliased speckles and actuator number significantly
limit high-contrast imaging but that the effects can be mitigated by
using small dark hole sizes. The analysis also shows that wave-
front shaping at small separations with two DMs requires large DM
locations and a small dark hole size owing to the modulation of out-
of-pupil DMs. In depth end-to-end simulation is developed to take
into account the Fresnel propagation of phase errors. The results
show a significant performance dependence on the DM location
(Section 5.2), on the aberration amount and the PSD power law ow-
ing to aliased speckles (Section 5.3), and on the dark hole size
(Section 5.6). A PSD in f−2.5 with 5 nm per optic (overall
setup amount of ∼20 nm rms) significantly degrades the con-
trast compared with a PSD in f−3. Furthermore, the architecture
and the actuator number do not significantly impact the results
because the dark hole size is small. The optimum total distance be-
tween the two DMs can be estimated by the analytical approach, by
defining the optimum distance as the one that equalizes the DM sine
and cosine contributions at the focal plane (see Section 3.1). Fig. 17
shows the optimum total DM distance for several setup parameters
(pupil size and wavelength) and dark hole frequencies. It represents
the optimum total distance between the two DMs (z1 + z2) on the
horizontal axis as a function of the wavelength (vertical axis) for
(from top to bottom) the dark hole defined from 0.8 to 4 λ/D, from
2 to 10 λ/D and from 4 to 10 λ/D. The red, dark blue, orange, yel-
low and light blue curves (plotted from left to right in all figures)
represent respectively pupil diameters of 5, 7.7, 10, 15 and 20 mm.
We see that high-contrast imaging within the dark hole at small
separations (top plot) requires a large setup compared with larger
dark holes (centre and bottom plots). The figure also shows a strong
dependence on the pupil diameter (large diameters – yellow and
light blue curves – require a larger DM distance) compared with
a weak dependence on the wavelength. When designing an optical
high-contrast bench, this figure can be useful for a baseline solu-
tion for optics typical distances, because the overall setup length
scales with the DM distances. The simulation in this paper is repre-
sented by the blue curve in the top figure, showing an optimum total
distance of 2.7 m at 1.65 μm. This is consistent with the numeri-
cal results from end-to-end simulation as shown in Fig. 18, which
represents the contrast ratio C as a function of the total distance
between the two DMs for an aberration of 20 nm (black) and 40 nm
(red). Solid lines correspond to the dispersion (number of random
realizations that reach a contrast ratio greater that 5σ of the contrast
values). The optimum DM distance (that reaches the best contrast)
is about 3 m and does not depend on the amount of aberration. We
also see a significant contrast ratio degradation when increasing the
aberration from 20 to 40 nm (contrast ratio from ∼10−14 to 10−12).
Regarding the actual achievable contrast, the best contrast value
should be computed for each specific set of parameters (according
to the optimal DM distance presented in Fig. 17), as there is no
simple analytical way to assess the achievable contrast.

The simulation in Sections 4 and 5 assumes a perfect coronagraph
and AO system, leading to resulting contrast values well below what
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Figure 17. Optimum distance between the two deformable mirrors for
different dark hole sizes, wavelengths and pupil diameters. From top to
bottom, the dark hole changes from 0.8 to 4, from 2 to 10 and from 4
to 10 λ/D. Each plot represents the setup wavelength as a function of the
optimum deformable mirror distance. The red, dark blue, orange, yellow and
light blue curves represent respectively pupil diameters of 5, 7.7, 10, 15 and
20 mm.

Figure 18. Contrast ratio (asterisks, logarithmic scale) as a function of
the total distance between the deformable mirrors for aberrations of 20 nm
(black) and 40 nm (red). Solid lines correspond to the dispersion (number
of random realizations that reaches a contrast ratio greater that 5 σ of the
contrast values).

can be achieved in realistic conditions. We nevertheless show that
an inappropriate optical configuration (not optimum DM distances
or large amount of high-frequency errors) can limit the results at the
same order of magnitude as real AO systems or coronagraphs. In
order to put these results into the context of future large telescope
extreme performances, we simulate a pseudo-corrected wavefront
corresponding to an AO system on a 40-m telescope diameter (Kol-
mogorov model) with 200 × 200 actuators (as expected for the E-
ELT, Kasper 2012). A more realistic coronagraph is not simulated,
as we do not take into account special coronagraphic mask man-
ufacturing defects, because they are specific to each coronagraph.
The uncorrected high-frequency aberrations (beyond the DM cutoff
frequency) severely degrade the achieved contrast to a level of 10−5,
largely dominated by aliased speckles, consistent with Section 5.3.
Although it is beyond the scope of this paper, we find that these
high frequencies can be removed by placing a spatial filter (a sim-
ple hole) at a focal plane after the AO correction level but before the
coronagraphic instrument. A spatial filter does not totally remove
the high frequencies, because the diffraction effect of the filter itself
creates high frequencies, but at a much lower level. This is the same
principle as for the spatially filtered wavefront sensor described in
Poyneer & Macintosh (2004) to reduce wavefront estimation errors
resulting from aliasing. In our case, the simulation shows no per-
formance impact when reducing the high-frequency errors by an
amount of 10 or more. The next step could be to perform a full and
more realistic simulation in the case of ground-based telescopes
with atmospheric turbulence using this spatial filtering method.

7 C O N C L U S I O N

In this paper, we have assessed the main limitations to high-contrast
imaging at small separations using wavefront control with two DMs.
We first analysed, analytically or semi-analytically, some limitations
to high-contrast imaging owing to DM location, actuator number
and aberration magnitude and power spectrum (aliased speckles).
This analysis showed that high-contrast imaging around 1 λ/D re-
quires large inter-DM distances and small dark hole sizes. An in-
depth simulation was developed to validate these theoretical results.
The simulated model is based on a generic high-contrast test-bed
combining a coronagraph and a wavefront control system with two
DMs. The simulation takes into account the Fresnel propagation
of static aberrations. We demonstrated that (1) the optimum DM
location can be estimated analytically, (2) the dark hole algorithm
is sensitive to the amount and the spatial distribution of optic aber-
rations (owing to aliased speckles and the linear assumption of
the algorithm), and (3) decreasing the dark hole size minimizes
the performance dependence on actuator number and thus on the
setup architecture (DM in convergent or collimated beams). We also
demonstrated that high-contrast imaging at small IWA requires a
small dark hole size to be consistent with the analytical approach of
Section 3.1. The setup optimization (DM location) depends on the
required IWA with a strong difference in setup length when target-
ing high-contrast imaging at small or large separations. Although
this work is focused on high-contrast imaging at small separations,
the analytical or semi-analytical approach can be used as a basis to
define high-contrast imaging setup at any separation. Future labo-
ratory tests in the Lagrange Laboratory will enable the validation
of these results.
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