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A Short Contribution to the Theory of Regular Chains

François Boulier, François Lemaire, Marc Moreno Maza and Adrien Poteaux

Abstract. This paper contains short contributions to the theory of regular chains which follow a
recent JSC paper by the same authors. These contributions apply to both the nondifferential and
the differential context. They deal with the computation of normal forms and with the membership
problem to ideals defined by regular chains.

1. Introduction

This paper investigates consequences of the recent [5] which contains important characterizations of
regular chains in the nondifferential case [5, Theorem 21] and in the differential one [5, Theorem 37].
This paper: 1) improves an algorithm for computing the normal form of a differential fraction f/g (f
and g being two differential polynomials) modulo a regular differential chain A, which was presented
in [4, Figure 2]; 2) provides a new proof of the well-known fact that regular chains decide membership
to the ideals that they define, which highlights the main theoretical argument underlying this result;
3) extend some results of [5].

Our new normal form algorithms are better than the former versions for two reasons: 1) they
succeed in computing normal forms whenever these ones exist (see Section 2.2.1 for examples); and
2) they are conceptually simpler, though their simplicities hide subtleties (see Section 2.2.2).

The main computational tool involved in this paper is the resultant of a polynomial w.r.t. a reg-
ular chain (which is a triangular set of polynomials with good properties). The main recent theoretical
argument involved in our proofs is the implication 1 ⇒ 4 of [5, Theorem 21] (recalled as Theorem 1
in this paper):

Let A be a regular chain, a the ideal that it defines and f be a polynomial of some polynomial
ring R. Then, f is regular in R/a if and only if the resultant of f w.r.t. A is not zero.

Non expert readers may wonder about the novelty of the above quotation since seemingly similar
statements can be found in earlier papers. Indeed, the above statement already appears in [6, Theorem
1]. It was formerly proved, in the zerodimensional case, in [7, Lemma 4]. As far as we know, the first
occurrence of a similar statement is [13, Corollary 4, page 150] but its exact relationship with more
recent works is difficult to clarify since it is formulated in terms of proper ascending chains. Deciding
the regularity of a polynomial w.r.t. a regular chain is also a much studied problem. A careful survey
on this question can be found in [5, Section 8].

Non expert readers may also wonder about the relevance of the above quotation. Indeed, the
membership test to the ideal a defined by a triangular set A, by means of the pseudoremainder
algorithm, seems much more important. Actually, this membership test was established by Ritt in
[11], in the easy case of a prime ideal a. In the case of an ideal a which is not prime, this membership
test only holds for regular chains — not for general triangular sets (Proposition 11). We believe
that any proof for this membership test to a first requires to secure a nontrivial regularity property
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equivalent to the above quotation. In particular, we believe that many formerly published proofs are
— if not flawed — at least implicitly using a nontrivial argument. For more details on this point, we
refer to [5, Section 8]. Our new proof of Proposition 9 aims at highlighting the key role of the above
quotation.

The paper is organized as follows. The nondifferential case is addressed in Section 2. Classical
results are recalled in Section 2.1. Then the new normal form algorithms are presented in Section 2.2.
In particular, Algorithms 1 and 2 as well as Propositions 4 and 7 are new results. The new proof of
the membership test is given in Section 2.3. The differential case is addressed in Section 3. Classical
results are recalled in Section 3.1. Then the new normal form algorithms are presented in Section 3.2.
In particular, Algorithms 3, 4 and 5 as well as Propositions 16 and 18 are new results. Proposition 16
is notably important since it completes [5, Theorem 37].

2. The Nondifferential Case

2.1. Classical Results

In this section, A = {p1, . . . , pn} denotes a subset of the polynomial ring R = K[t1, . . . , tm, x1, . . . , xn]
which is triangular in the sense that deg(pk, xk) > 0 and deg(pk, x`) = 0 for all indices 1 ≤ k ≤ n and
k < ` ≤ n. Denote ik the initial of pk i.e. the leading coefficient of pk w.r.t. xk, for 1 ≤ k ≤ n. Let f
and g be two polynomials of S[x], where S is a unitary ring of characteristic zero:

f = am x
m + · · ·+ a1 x+ a0 , g = bn x

n + · · ·+ b1 x+ b0 .

If f or g is zero, then the resultant of f and g is taken to be zero. Assume that f and g are nonzero
and that at least one of them has positive degree. Then, the resultant of f and g is the determinant
of the Sylvester matrix S(f, g) of f and g, which has dimensions (m + n) × (m + n) and rows, from
top down xn−1 f, . . . , x f, f, xm−1 g, . . . , x g, g. See [2, 4.2, page 105].

Definition 1. Let A be a possibly empty triangular set and f ∈ R. The resultant of f by A, denoted
res(f,A), is defined as follows:

1. if A = ∅ then res(f,A) = f ;
2. if A = {p1, . . . , pn} then res(f,A) = res(res(f, pn, xn), {p1, . . . , pn−1}).

We could not find any reference for the following Proposition, which is an easy consequence
of basic properties of resultants. Observe that this Proposition is algorithmic, thanks to extended
versions of algorithms for computing pseudoremainder subresultant sequences. See [8].

Proposition 1. Let f be a polynomial and A be a triangular set of R. Then there exist polynomials
u, v1, v2, . . . , vn of R such that

u f = res(f,A) + v1 p1 + v2 p2 + · · ·+ vn pn . (1)

Moreover, if f does not depend on xk, . . . , xn for some 1 ≤ k ≤ n, then there exists a formula (1)
such that u, v1, . . . , vk−1 do not depend on xk, . . . , xn and vk = · · · = vn = 0.

Proof. Apply n times the fact that the resultant of two polynomials is in the ideal generated by these
polynomials. See [2, Proposition 4.18] or [5, Lemma 3]. For the second statement, it is sufficient to
notice that, if f does not depend on xk, . . . , xn, then res(f,A) is a power of res(f, {p1, . . . , pk−1}). �

To each (non necessarily triangular) set A of polynomials of R \ K, one associates the ideal
a = sat (A) = (A) : (i1 · · · in)∞.

Definition 2. A triangular set is said to be a regular chain if the initial ik of pk is regular in
R/ sat (p1, . . . , pk−1) for 2 ≤ k ≤ n.

The following characterization is [5, Theorem 21].

Theorem 1. Let A be a triangular set. The following conditions are equivalent:
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1. A is a regular chain;
2. for each 2 ≤ ` ≤ n and each 1 ≤ k ≤ n we have res(i`, {pk, . . . , pn}) regular in R/a;
3. for each 2 ≤ ` ≤ n we have res(i`, A) 6= 0;
4. for each f ∈ R, f is regular in R/a if and only if res(f,A) 6= 0;
5. for each f ∈ R,

f is regular in R/a
m

for each 1 ≤ k ≤ n, res(f, {pk, . . . , pn}) is regular in R/a.

Normal forms of rational fractions modulo regular chains are defined and studied in [4, Definition
5.1, Proposition 5.2], in the framework of differential algebra. In the nondifferential context, these
results can be restated as follows.

Proposition 2. Let A be a regular chain and f/g be a rational fraction with g regular in R/a. The
normal form of f/g modulo A exists: it is the unique rational fraction p/q such that

1. deg(p, xk) < deg(pk, xk) for 1 ≤ k ≤ n;
2. q ∈ K[t1, . . . , tm];
3. f/g and p/q are equal in the total ring of fractions of R/a.

An algorithm for computing the normal form of a rational fraction is given in [4, Figure 2].
This algorithm relies on the computation of the inverse of a polynomial modulo a regular chain. The
following definition and proposition restate [4, Definition 4.1 and Proposition 4.3].

Definition 3. Let A be a regular chain and g be a nonzero polynomial of R. An inverse of g modulo A
is any rational fraction p/q such that q 6= 0, q ∈ K[t1, . . . , tm] and g p = q in R/a.

Proposition 3. Let A be a regular chain and g be a nonzero polynomial of R. The polynomial g is
regular in R/a if and only if it admits an inverse modulo A.

2.2. A New Normal Form Algorithm

Algorithm 1, respectively 2, computes the normal form of a polynomial, respectively a rational frac-
tion, modulo a regular chain A. These algorithms are new. Their proofs essentially rely on the following
Proposition, which actually provides an algorithm for computing inverses, since it relies on Proposi-
tion 1, which is itself of algorithmic nature.

Proposition 4. Let A be a regular chain and g be a regular element of R/a. Let u be a polynomial such
that u g = res(g,A) in R/a. Then u/ res(g,A) is an inverse of g modulo A.

Proof. The existence of u is guaranteed by Proposition 1. The fact that res(g,A) ∈ K[t1, . . . , tm] is
an easy property of the iterated resultant. The fact that res(g,A) 6= 0 follows from the regularity of g
and the implication 1⇒ 4 of Theorem 1. �

Algorithm 1: NFpoly(f,A)

input : a polynomial f , and A = {p1, . . . , pn} a regular chain
output: the normal form of f modulo A

1 if A is empty then
2 return f

3 else
4 compute iαn f = f̄ + vn pn ; /* by computing f̄ = prem(f, pn, xn) */

5 compute u/r an inverse of in modulo A ; /* Proposition 4 */

6 return (1/rα)× NFpoly(uαf̄ , {p1, . . . , pn−1});
7 end
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Algorithm 2: NF(f/g,A)

input : a fraction f/g, and a regular chain A = {p1, . . . , pn} with g regular in R/a
output: the normal form of f/g modulo A

1 compute u/r an inverse of g modulo A ; /* Proposition 4 */

2 return (1/r)× NFpoly(uf,A)

2.2.1. Improvement Compared to the Former Version. As pointed out in [4, Appendix A] the normal
form algorithm may fail to compute the normal form because of the failure of the function used for
computing inverses modulo regular chains. Consider the regular chain

A = {p3 := x3 − x2 − x1 , p2 := x22 − x31 , p1 := (x1 − 1) (x1 + 1) (x21 − 2)}
from [4, Appendix A, Example 4] and consider the polynomial g = (x1 − 1)x2 + 1. The polynomial
g is invertible in R/a since res(g, {p2, p1}) = 45. Moreover, the inverse of g in R/a is easily deduced
from the following formula:

−3 (2x1 + 3) (2x21 + 1) (x1 x2 − x2 − 1) g = 45− (12x31 + 18x21 + 6x1 + 9) (x1 − 1)2 p2

− (12x41 − 6x31 + 18x21 − 3x1 + 18) p1.

Thus, using our new algorithm, we have

NF(1/g,A) = − (2x1 + 3) (2x21 + 1) (x1 x2 − x2 − 1)

15
·

However, calling [4, NF](1/g,A) yields an error for the following reason: a call to Algorithm [4,
Inverse](g,A) triggers a call to Algorithm [4, AlgebraicInverseNonZero](g,A), which itself triggers a
call to Algorithm [4, ExtendedEuclideanAlgorithm](g, p2, x2, A) which fails since the initial of g (which
is x1 − 1) is not invertible in R/a.

2.2.2. Caveats. The simplicity of the new algorithms hide subtleties, detailed below. The following
proposition is [5, Proposition 23].

Proposition 5. Let A be a regular chain and A′ ⊂ A be nonempty. Then A′ is a regular chain. Moreover,
every f ∈ R which is regular in R/a is regular in R′/a′.

It is tempting to try to generalize this proposition as follows: “Let f/g be a fraction with g
regular in R/a. Then NF(f/g,A) = NF(NF(f/g,A′), A)”. Unfortunately, this generalization is false.
A counterexample is suggested by the Remark following [5, Proposition 17]. Take

p1 = (x1 − 1)(x1 − 3) , p2 = x2 − 10x1 , p = x1 + x2 − 31 .

Take A = {p1, p2}, A′ = {p1} and f/g = 1/p. Both A and A′ are regular chains. We have

NF

(
f

g
,A

)
=

11x1 − 13

40
and NF

(
f

g
,A′
)

=
x2 − x1 − 27

(x2 − 28) (x2 − 30)
·

However, res((x2 − 28) (x2 − 30), A) = 0, proving that this polynomial is a zerodivisor in R/a by the
implication 1 ⇒ 4 of Theorem 1. Thus NF(NF(f/g,A′), A) is not defined. In this example, the fact
that deg(p1, x1) > 1 is important, the next propositions (the second one is new) show.

Proposition 6. Let g be a polynomial and f be a polynomial such that deg(f, x) = 1. Denote n =
deg(g, x) and r = prem(g, f, x). Then res(g, f, x) = (−1)n r.

Proof. By [2, Lemma 4.17, page 107] we have res(g, f, x) = (−1)n res(f, r, x). Since deg(f, x) = 1 we
have deg(r, x) = 0. Thus the Sylvester matrix defined by f and r has dimension 1× 1 and involves r
as single element. Thus res(g, f, x) = r and the Proposition is proved. �

Proposition 7. Let A be a regular chain, pk ∈ A be such that deg(pk, xk) = 1 and g be a differential
polynomial of R. Then g is regular in R/a if and only if res(g, pk, xk) is regular in R/a.
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Proof. Let r = prem(g, pk, xk) denote the pseudoremainder of g by pk and n = deg(g, xk). By Propo-
sition 6, we have res(g, pk, xk) = (−1)n r.

We claim that g is regular in R/a if and only if r is so. Let p be any associated prime ideal of a.
There exists a power h of the initial of pk such that h g = r (mod p). Since a is saturated by the
initials of A, we have h /∈ p hence g ∈ p if and only if r ∈ p. By [14, IV, 7, Corollary 3 to Theorem
10], the claim and the proposition are proved. �

2.3. The Membership Problem

All propositions stated in this section are well-known: the only difficult one is Proposition 9, which
already appears in [1, (i)⇒ (iii)]. The originality of this section is the proof of that Proposition which
involves a single nontrivial argument: the implication 1⇒ 4 of Theorem 1.

Proposition 8. Let A be a triangular set and f be any polynomial of R. Denote g = prem(f,A). Then

deg(g, xk) < deg(pk, xk) (1 ≤ k ≤ n) . (2)

Moreover, there exist polynomials v1, v2, . . . , vn and a power product h of initials of A and such that

h f = g + v1 p1 + v2 p2 + · · ·+ vn pn . (3)

Proposition 9. Assume A is a regular chain and f is any polynomial of R. If f ∈ a then prem(f,A) = 0.

Proof. Observe that if a = (0) then the proposition holds so that we only need to consider the case
a 6= (0). Observe also that, if f ∈ a then prem(f,A) ∈ a. Thus, if f ∈ a is such that prem(f,A) 6= 0
then there exists such a f reduced w.r.t. A i.e. such that deg(f, xk) < deg(pk, xk) for all 1 ≤ k ≤ n.
We thus assume that there exists a nonzero polynomial f ∈ a which is reduced w.r.t. A and seek a
contradiction.

Since f ∈ a, there exists nonnegative integers α1, . . . , αn and polynomials v1, . . . , vn such that

iα1
1 · · · iαn

n f = v1 p1 + v2 p2 + · · ·+ vn pn . (4)

For 1 ≤ k ≤ n, denote rk = res(ik, A) and uk a polynomial such that uk ik = rk (mod a), according
to Proposition 1. Multiply both sides of (4) by uα1

1 uα2
2 · · ·uαn

n and denote hf = rα1
1 · · · rαn

n . Since the
initials ik are regular in R/a, their resultants rk are different from zero by the implication 1 ⇒ 4
of Theorem 1. Thus there exists a nonzero element h ∈ K[t1, . . . , tm] (one may take h = hf ) and
polynomials w1, . . . , wn not all zero, such that

h f = w1 p1 + w2 p2 + · · ·+ wn pn︸ ︷︷ ︸
F

. (5)

To any such formula F , one associates the index j(F ) defined as

j(F ) = max{` ∈ N | ∃ k ∈ [1, n] , deg(wk pk, x`) > 0} . (6)

The index j is well defined since the polynomials wk are not all zero. The definition of j implies that
wj+1 = · · · = wn = 0. Moreover, since xj+1, . . . , xn appear nowhere in the right hand side of (5), they
cannot appear either in the left hand side so that f is free of xj+1, . . . , xn. Last observe that j > 1
since, otherwise, deg(f, x1) would be greater than or equal to deg(p1, x1), which would contradict the
assumption that f is reduced w.r.t. A.

Denote E the set of all possible pairs (f,F ), where f ∈ a is a nonzero polynomial reduced
w.r.t. A and there exists some nonzero h ∈ K[t1, . . . , tm] such that (5) holds. Our assumptions imply
that E is not empty. Among all possible pairs (f,F ) ∈ E , fix one such that j = j(F ) is minimal and
denote d = deg(pj , xj).

Denote w′k = prem(wk, pj , xj) for 1 ≤ k < j. There exist nonnegative integers βk and polynomi-
als qk such that

iβk

j wk = w′k + qk pj , (1 ≤ k < j) . (7)
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Denote % = max(β1, . . . , βj−1). Multiply both sides of (5) by i%j and recall that wj+1 = · · · = wn = 0.
One gets a formula:

i%j h f = i%j w1 p1 + · · ·+ i%j wj−1 pj−1 + i%j wj pj . (8)

Denote %k = %− βk for 1 ≤ k < j. From (7) and (8) one gets:

i%j h f = i%1j (iβ1

j w1) p1 + · · ·+ i
%j−1

j (i
βj−1

j wj−1) pj−1 + i%j wj pj , (9)

= i%1j (w′1 + q1 pj) p1 + · · ·+ i
%j−1

j (w′j−1 + qj−1 pj) pj−1 + i%j wj pj , (10)

= i%1j w′1︸ ︷︷ ︸
w′′1

p1 + · · ·+ i
%j−1

j w′j−1︸ ︷︷ ︸
w′′j−1

pj−1 + (i%j wj + i%1j q1 p1 + · · ·+ i
%j−1

j qj−1 pj−1)︸ ︷︷ ︸
w′′j

pj . (11)

We have deg(w′′k , xj) < d for 1 ≤ k < j and deg(i%j h f) < d. Thus w′′j = 0.
The initial ij does not depend on xj , . . . , xn. Thus Proposition 1 permits us to express the

resultant rj as

uj ij = rj + z1 p1 + · · ·+ zj−1 pj−1 , (12)

where uj , z1, . . . , zj−1 are polynomials which do not depend on xj , . . . , xn. Multiplying both sides
of (11) by u%j , one gets

(uj ij)
% h f = u%j w

′′
1 p1 + · · ·+ u%j w

′′
j−1 pj−1 . (13)

Plugging (12), one gets

(rj + z1 p1 + · · ·+ zj−1 pj−1)% h f = u%j w
′′
1 p1 + · · ·+ u%j w

′′
j−1 pj−1 . (14)

The polynomials uj , z1, . . . , zj−1 are free of xj . The polynomials f, w′′1 , . . . , w
′′
j−1 have degree in xj less

than d. The polynomials rj , h are nonzero elements of K[t1, . . . , tm]. Denote h′ = r%j h. Expanding the

left hand side of (14) and distributing over the right hand side (there may be many different ways to
perform this operation), one eventually gets a formula

h′ f = w′′′1 p1 + · · ·+ w′′′j−1 pj−1 (15)

where h′ is a nonzero element of K[t1, . . . , tm] and the w′′′k are polynomials such that deg(w′′′k , xj) < d
for 1 ≤ k < j. All polynomials occurring in (15) are free of xj+1, . . . , xn.

Let now e be some degree (0 ≤ e < d). Denote fe the coefficient of xej in f and w′′′k,e the coefficient

of xej in w′′′k , for 1 ≤ k < j. Since the polynomials p1, . . . , pj−1 are free of xj , the following formula
holds for each degree 0 ≤ e < d. Since f is nonzero, the formula holds for some e such that fe is
nonzero.

h′ fe = w′′′1,e p1 + · · ·+ w′′′j−1,e pj−1︸ ︷︷ ︸
F ′

. (16)

Formula (16) implies in particular that h′ fe ∈ a. Since h′ is a nonzero element of K[t1, . . . , tm], it is
a regular element of R/a, by the implication 1 ⇒ 4 of Theorem 1 and the fact that res(h′, A) = h′.
Thus fe ∈ a. Since fe is a coefficient of a polynomial f reduced w.r.t. A, it is reduced w.r.t. A also.
The pair (fe,F ′) thus belongs to E and is such that j(F ′) < j(F ). This contradiction with the
minimality of j(F ) proves that E must be empty and concludes the proof of the proposition. �

The two following Propositions already appear in [1, Theorem 6.1]. Their proofs are elementary.

Proposition 10. Let A be a triangular set and f be a polynomial of R. Assume that prem(f,A) = 0 if
f ∈ a. Then A is a regular chain.

Proof. Since prem(f,A) = 0 for each f ∈ a and prem(1, A) 6= 0, the ideal a is proper.
Denote R` = K[t1, . . . , tm, x1, . . . , x`] and a` = sat (p1, . . . , p`) for each 1 ≤ ` ≤ n.
We assume the regular chain condition is satisfied up to index k < n but not at index k+1 i.e. i`

is regular in R/a`−1 for each 2 ≤ ` ≤ k and ik+1 is a zerodivisor in R/ak. We prove that there exists
some f ∈ a such that prem(f,A) 6= 0.
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Denote bk = ak : i∞k+1 = (p1, . . . , pk) : (i1 · · · ik+1)∞. Since ik+1 is a zerodivisor in R/ak we have
ak ( bk. Thus there exists some f ∈ bk, f /∈ ak. Since the defining polynomials of ak and bk belong
to Rk, we may assume f ∈ Rk.

Since f /∈ ak, we have prem(f,Ak) 6= 0 (Proposition 8). Since f ∈ Rk, we have prem(f,Ak) =
prem(f,A). Since f ∈ bk ⊂ a, the Proposition is proved. �

The following proposition completes [5, Theorem 21].

Proposition 11. Let A be a triangular set. The following conditions are equivalent:

1. A is a regular chain;
6. for each f ∈ R, f ∈ a if and only if prem(f,A) = 0.

Proof. First observe that, for any set A, if prem(f,A) = 0 then f ∈ a (Proposition 8). The implication
1⇒ 6 is then Proposition 9. The converse implication is Proposition 10. �

3. The Differential Case

3.1. Classical Results

Reference books are the ones of Ritt and Kolchin [11, 9].
Let R = K{U} be a differential polynomial ring where K is a differential field of characteristic

zero, U is a finite set of differential indeterminates uk, endowed with a finite set of derivations. Let Θ
denote the multiplicative monoid of derivation operators, generated by the derivations and Θ∗ ⊂ Θ
the set of proper derivation operators. Assume the infinite set of derivatives ΘU is ordered w.r.t. a
ranking [9, I, 8, page 75] so that, given any differential polynomial f ∈ R \K, its leading derivative
ld f (called leader by Kolchin), its initial and its separant, which is the partial derivative of f w.r.t.
its leading derivative, are well defined.

In the sequel, we will have to consider sets of differential polynomials as particular cases of sets
of plain polynomials, in order to apply the results of Section 2. By a triangular set of differential
polynomials {p1, . . . , pn} we mean a set of differential polynomials of R \K having pairwise distinct
leading derivatives. In order to apply the results of the former sections and fit to their notations, we
assume moreover that ld p1 < ld p2 < · · · < ld pn. These leading derivatives then correspond to the
variables x1, x2, . . . , xn. In particular, the numbering of the x is imposed by the ranking. The other
derivatives occurring in the differential polynomials correspond to t1, . . . , tm.

This being understood, there is no ambiguity in a statement such as “the triangular set A of
differential polynomials is a regular chain”. Similarly, if f is any differential polynomial, the differential
polynomial res(f,A) is well defined, by means of the iterated resultant.

A differential polynomial f is said to be partially reduced w.r.t. a differential polynomial p /∈ K
if f does not depend on any proper derivative of the leading derivative v of p [9, I, 9, page 77]. It is said
to be fully reduced w.r.t. p if, in addition, deg(f, v) < deg(p, v). If f is any element and A is any subset
of R \K, thanks to the pseudo-remainder algorithm, it is easy to compute a differential polynomial g,
partially reduced w.r.t. A (i.e. w.r.t. each element of A) and such that h f = g (mod [A]) where [A]
denotes the differential ideal generated by A in R and h is some power product of separants of A.
The differential polynomial g is called a partial remainder of f by A. It is as well easy to compute
a differential polynomial g, fully reduced w.r.t. A and such that h f = g (mod [A]) where h is some
power product of initials and separants of A. The differential polynomial g is called a full remainder
of f by A. See [9, I, 9] or [11, I, 6].

Consider a triangular set A of differential polynomials of R. Let L denote the set of leading
derivatives of A and N = ΘU \ ΘL the possibly infinite set of the elements of ΘU which are not
derivatives of any element of L (the derivatives “under the stairs” of A). Then K[N ∪ L] ⊂ R is the
ring of the differential polynomials partially reduced w.r.t. A.

Uppercase gothic letters denote differential ideals while lowercase ones denote nondifferential
ones. In particular, we denote A the differential ideal [A] :h∞ of R where h denotes the product of the
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initials and separants of A. We denote a = sat (A) the nondifferential ideal of R defined by A, viewed
as a plain triangular set.

Definition 4. A regular chain A is said to be squarefree if, for each 1 ≤ k ≤ n, the separant sk of pk
is regular in R/a.

Definition 5. A triangular set A of pairwise partially reduced differential polynomials is said to be
coherent if, for each pair {p1, p2} of polynomials of A whose leading derivatives θ1u, θ2u are the
derivatives of some common differential indeterminate u ∈ U , we have ∆(p1, p2) ∈ sat (A′) where
θ12 = lcm(θ1, θ2), A′ = {p ∈ ΘA | ld p < θ12u} and, denoting s1 and s2 the separants of p1 and p2,

∆(p1, p2) = s2
θ12
θ1

p1 − s1
θ12
θ2

p2 .

The pairs considered in the above definition may exist only if the number of derivations is greater
than or equal to 2. Thus, in the ordinary differential case, every triangular set A of pairwise partially
reduced differential polynomials is coherent.

Definition 6. A triangular set A of pairwise partially reduced differential polynomials is said to be a
regular differential chain if it is a coherent squarefree regular chain.

The following characterization is [5, Theorem 37].

Theorem 2. Let A be a triangular set of differential polynomials pairwise partially reduced. The fol-
lowing conditions are equivalent:

1. A is a regular differential chain;
2. A is coherent and, for each 1 ≤ ` ≤ n and each 1 ≤ k ≤ n we have res(i`, {pk, . . . , pn}) and

res(s`, {pk, . . . , pn}) regular in R/a;
3. A is coherent and res(i`, A) 6= 0 and res(s`, A) 6= 0 for each 1 ≤ ` ≤ n;
4. for each f ∈ R,

f is regular in R/A
m

for any triangular finite subset A′ ⊂ ΘA such that res(f,A′) ∈ K[N ∪ L], res(f,A′) 6= 0.

The next proposition is [5, Proposition 35]. It is an easy corollary to Rosenfeld’s Lemma [12].

Proposition 12. Let A be a regular differential chain. Then A ∩K[N ∪ L] = a ∩K[N ∪ L].

The following proposition is well known. Its first statement is a particular case of a result proved
in [3, 10]. The second statement goes back to [11, I, 16; and IX, page 166].

Proposition 13. Let A be a regular differential chain. Then A is a radical differential ideal. In partic-
ular, it is a finite intersection of differential prime ideals A = P1 ∩ · · · ∩Pr, which is unique if it is
minimal.

The remaining part of this section is dedicated to normal forms. The following proposition restates
[4, Definition 5.1 and Proposition 5.2].

Proposition 14. Let A be a regular differential chain and f/g be a fraction of differential polynomials
with g regular in R/A. The normal form of f/g modulo A exists: it is the unique fraction of differential
polynomials p/q such that

1. p is fully reduced w.r.t. A;
2. q ∈ K[N ];
3. f/g and p/q are equal in the total ring of fractions of R/A.

The next definition and proposition are [4, Definition 4.1, Proposition 4.3 and Proposition 5.1].

Definition 7. Let A be a regular differential chain and g be a nonzero differential polynomial of R. An
inverse of g modulo A is any fraction p/q of differential polynomials such that p ∈ K[N ∪ L], q is a
nonzero element of K[N ] and g p = q in R/A.
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Proposition 15. Let A be a regular differential chain and g be a differential polynomial of R. Then g
admits an inverse modulo A if and only if it is regular in R/A.

3.2. A New Normal Form Algorithm

The following proposition is new and completes Theorem 2.

Proposition 16. Let A be a regular differential chain. Then,

5. for each f ∈ R,

f is a zerodivisor in R/A
m

for any triangular finite subset A′ ⊂ ΘA such that res(f,A′) ∈ K[N ], res(f,A′) = 0.

Proof. First observe that there exists a triangular finite subset A′ of ΘA such that res(f,A′) ∈ K[N ].
Its finiteness follows from the fact that rankings are well-orderings [9, I, 8].

The bottom-up implication. Assume that, for any triangular finite subset A′ ⊂ ΘA such that
res(f,A′) ∈ K[N ] we have res(f,A′) = 0. Then f is a zerodivisor in R/A by the implication 1⇒ 4 of
Theorem 2.

The top-down implication. Let A′ be a triangular finite subset of ΘA such that res(f,A′) ∈ K[N ].
Assume f is a zerodivisor in R/A. Then there exists some differential polynomial g /∈ A such that
f g ∈ A.

Since A is radical, it is a finite, minimal, intersection of differential prime ideals A = P1∩· · ·∩Pr

by Proposition 13. Since f is a zerodivisor in R/A, renumbering the Pi if needed, there exists some
index 1 ≤ s ≤ r such that f ∈ Pi if and only if 1 ≤ i ≤ s. The differential polynomial g thus satisfies:
1) g ∈ Pj for all s < j ≤ r; and 2) g /∈ Pi for some 1 ≤ i ≤ s.

Let ḡ denote a full remainder of g by A (one may take ḡ = prem(g,A′)). For each 1 ≤ i ≤ r, we
have g ∈ Pi if and only if ḡ ∈ Pi. In particular, ḡ /∈ A hence is nonzero. Consider now the resultant
r = res(f,A′). We have r ∈ Pi for 1 ≤ i ≤ s by Proposition 1.

The product r ḡ ∈ Pi for each 1 ≤ i ≤ r hence it belongs to A. Since ḡ ∈ K[N ∪L] and r ∈ K[N ],
we have r ḡ ∈ A ∩K[N ∪ L]. Thus, by Proposition 12, r ḡ ∈ a, in some finitely generated polynomial
subring of K[N ∪L]. Since A is a regular chain, we have prem(r ḡ, A) = 0, by Proposition 9. Since r ∈
K[N ] and ḡ is reduced w.r.t. A, the product r ḡ is reduced w.r.t. A i.e. prem(r ḡ, A) = r ḡ. Since ḡ 6= 0,
we must have r = 0. �

Proposition 17. Let g be a differential polynomial of R and f be a differential polynomial of R \ K
with leading derivative v.

Then for any derivation operator θ ∈ Θ∗ we have res(g, θf, θv) = ± prem(g, θf, θv). In particular,
there exists a power h of the separant of f such that h g = ± res(g, θf, θv) (mod (θf)).

Proof. Since θ is a proper operator, θf has leading derivative θv, degree one in θv and the separant
of f as leading coefficient w.r.t. θv. The Proposition then follows from Propositions 6 and 8. �

The following proposition is new and provides an algorithm for computing the inverse of a
differential polynomial which is regular in R/A, since it relies on Proposition 1, which is itself of
algorithmic nature.

Proposition 18. Let A be a regular differential chain and g be a differential polynomial of R. Let A′

be a triangular subset of ΘA such that res(g,A′) ∈ K[N ]. Then

1. g is regular in R/A if and only if res(g,A′) 6= 0;
2. there exists a differential polynomial u ∈ K[N ∪ L] such that u g = res(g,A′) in R/A;
3. if g is regular in R/A, then u/ res(g,A′) is an inverse of g modulo A.

Proof. Assume g is regular in R/A. Then res(g,A′) 6= 0 by the implication 1 ⇒ 4 of Theorem 2.
Conversely, assume g is a zerodivisor in R/A. Then res(g,A′) = 0 by Proposition 16. The first item is
thus proved.
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The existence of a differential polynomial u such that u g = res(g,A′) in R/A follows from
Proposition 1. The fact that u ∈ K[N ∪ L] comes from the fact that the iterated resultant by A′

can be decomposed into elementary resultants, either by elements of A, or by proper derivatives of
elements of A. The polynomial u is the product of polynomials (say) ui arising from these elementary
resultant computations. In the first case, ui ∈ K[N ∪ L]; in the second case, ui is a separant of some
element of A, by Proposition 17, hence belongs also to K[N ∪ L]. The second item is thus proved.

The third item follows from Definition 7 and the two former items. �

Algorithms 3 and 4 provide algorithms for computing the normal form of a differential fraction,
which are directly derived from the theoretical construction achieved so far.

Algorithm 3: NFpoly diff (f,A)

input : a differential polynomial f and A a differential regular chain
output: the normal form of f modulo A

1 if f is fully reduced w.r.t. A then
2 return f

3 else
4 among all the derivatives of the leading derivatives of the elements of A which actually

occur in f , let w be the highest, w.r.t. the ranking ;

5 let pk ∈ A, with leading derivative vk be such that w = θvk for some θ ∈ Θ ;

6 if θ = 1 then
7 compute iαk f = f̄ + q pk ; /* f̄ = prem(f, pk, vk) */

8 compute u/r an inverse of ik modulo A ; /* Proposition 4 */

9 else
10 compute sαk f = f̄ + q (θpk) ; /* f̄ = prem(f, θpk, θvk) */

11 compute u/r an inverse of sk modulo A ; /* Proposition 4 */

12 end

13 return (1/rα)× NFpoly diff
(
uα f̄ , A

)
14 end

Algorithm 4: NF diff (f/g,A)

input : a differential fraction f/g, and A a differential regular chain with g regular in R/A
output: the normal form of f/g modulo A

1 compute u/r an inverse of g modulo A ; /* Proposition 18 */

2 return (1/r)× NFpoly diff(u f,A)

Algorithm 5 provides an alternative method for computing the normal form of a differential
fraction, which takes advantage of the fact that one can start with a partial reduction step then
proceed with Algorithm 2.

4. Conclusion

In this paper, we have provided new and conceptually simple algorithms for computing normal forms
of fractions modulo regular chains, in both the nondifferential and the differential case. We have also
provided a new proof of the membership test to ideals defined by regular chains, which highlights
the main non trivial argument underlying this well known result. However, one cannot exclude the
existence of a completely elementary proof, which would actually lead to a simplified general theory
of regular chains.
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Algorithm 5: NF diff v2 (f/g,A)

input : a differential fraction f/g, and A a differential regular chain with g regular in R/A
output: the normal form of f/g modulo A

1 compute hf f = f̄ (mod [A]) where hf denotes a power product of separants of A

; /* f̄ is a partial remainder of f by A */

2 compute hg g = ḡ (mod [A]) where hg denotes a power product of separants of A

; /* ḡ is a partial remainder of g by A */

3 return NF

(
hg f̄

hf ḡ
, A

)
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