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Abstract

We show that compressive sensing (CS) calculations are very e�cient to reconstruct in 3D sparse objects whose
2D hologram has been recorded by digital holographic microscopy. The method is well adapted to image small
scattering objects moving within a larger motionless object. This situation corresponds to red blood cells (RBCs)
circulating in the vascular system of a zebra�sh (Danio rerio) larva. RBCs positions are imaged in 3D from a single
hologram, while the RBCs trajectories, i.e. the perfused blood vessels, are imaged from a sequence of holograms.
With respect to previous work (Donnarumma et al., Opt. express, 24, 26887, 2016 ), we get a gain of ∼ 500 in
calculation speed.
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Digital holography (DH) captures the complex �eld
scattered by an object, rather than its intensity, giv-
ing in this way 3D information on amplitude and phase.
The recording of a hologram involves a semiconductor-
based 2D imager (camera), while the reconstruction is
performed numerically by a computer [19]. Most of the
time, the �eld retrieval is done by retropropagating the
hologram recorded on the 2D sensor within a series of
planes adjacent to the object. In this way a 3D image is
obtained.

It should be noted that this image corresponds to the
�eld scattered by the object and is thus di�erent from the
object itself (i.e. from the 3D scattering density of the
object). Indeed, as shown by Atlan et al. [1], the recon-
structed image of a point object (ex: a gold bead of 100
nm diameter) obtained by digital holographic microscopy
(DHM) is a cone whose apex corresponds to the position
of the bead and whose opening angle corresponds to the
numerical aperture of the microscope objective.

It is however possible to reconstruct a 3D image of the
object by recording a series of holograms for di�erent
directions of illumination, and by performing a tomo-
graphic reconstruction that calculates in 3D the optical
index distribution of the object [8, 21]. However, be-
cause it requires to record a large number of holograms
(≥ 100), tomography only applies to immobile objects.

In the case where there is a basis in which the 3D
scattering density is sparse enough, it is also possible to
reconstruct a 3D image of the object from a single holo-
gram by compressive sensing (CS) [11, 3]. This point
has been demonstrated by Brady et al. [2] who have
imaged by holography an immobile object whose repre-
sentation is sparse in the wavelet basis. Since this work,
DH coupled to the CS has given rise to many develop-
ments. We can mention in particular compressive in-line
holography [9], compressive Fresnel holography [17], o�-
axis frequency shifting holography [15], millimeter wave
compressive holography [7], o�-axis holography of di�use
objects [4], recovery of an image in low illumination con-
ditions [14] or video-rate microscopic tomography [12].

In this letter, we show that CS digital holography is
well adapted to image small scattering objects moving
within a larger motionless object. Indeed, in the basis
of the direct 3D space (i.e. x, y, z), the 3D scattering
density of the moving objects is often sparse. This situa-
tion corresponds for example to the case of red blood cells
(RBCs) circulating in a zebra�sh (Danio rerio) larva, im-
aged by digital holographic microscopy (DHM) [10]. By
performing CS reconstruction from a single hologram,
we obtained an instantaneous 3D image of the objects

(the RBCs). By performing a series of reconstructions
from a hologram sequence, we obtained a 3D image of
the trajectories of the objects (i.e. the blood vessels).

Figure 1: (a) Typical holographic microscopy setup. L: laser, C':
camera, BS: beam splitter, M: mirror, MO: microscope objective,
C: conjugate plane of plane C' by objective MO, V: imaged volume,
S: a di�user, E: object �eld, ER: reference �eld.

To illustrate the relationship between 3D holographic
reconstruction and CS, let us consider an experiment in
which small moving objects are imaged with a typical
transmission DHM setup (see Fig. 1). The objects mov-
ing in a volume V, are illuminated by a laser L and scat-
ter light in all the directions. The light is collected by
the microscope objective MO and imaged on the cam-
era, in plane C ′. Here, the �eld E scattered by the ob-
ject, interferes with the reference �eld ER. The cam-
era records the resulting interferogram I = |E + ER|2.
Moving objects were selected by considering sequences
of interferograms Im with m = 0, 1, 2... and by cal-
culating the hologram HC′ in plane C' by combining
the Im with coe�cients whose sum is zero (for exam-
ple HC′ = (Im + Im−1)− (Im−2 + Im−3) ). By this way,
we subtracted the immobile background. This approach
is very similar to the one of Schwerte et al. [20] who
highlighted blood circulation in zebra�sh larvae by cal-
culating di�erences of successive frames in white light
video movies.
The experiment is carried out in o�-axis geometry. By

�ltering in the Fourier space [6], we can select the +1
order component of the hologram, corresponding to the
EE∗R term of I = |E + ER|2 (where E is the �eld scat-
tered by the moving objects in the camera plane C ′). By
considering that the reference �eld is �at �eld (|ER| ' 1),
we thus calculate the �eld E. By eliminating the phase
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e�ects related to the aberrations of the MO objective
[5], to the o�-axis con�guration and to the curvature
of the reference wave [22], we get the �eld EC(x, y) in
the plane C, conjugate of the plane C ′ by the objective
MO. We get as well the �eld ẼC in the Fourier space:
ẼC(kx, ky) = FT [ EC(x, y) ] (where FT is the discrete
Fourier transform operator).
The moving objects, that scatter the laser light,

act like sources of �eld S(x, y, z) located in vol-
ume V. According to angular spectrum propaga-
tion equations [24], the �eld EC(x, y) radiated
by the sources S in the plane C at z=0 are:
EC(x, y) =

∑
z FT

−1 exp(+ikz.z) FT [ S(x, y, z) ],
(where FT−1 is the inverse Fourier transform operator).
We have thus:

ẼC(kx, ky) =
∑
z

exp(+ikz.z) FT [ S(x, y, z) ] (1)

where kz is the z component of the wavevector k i.e.

kz =
√
k2 − k2x − k2y with k = |k| = 2πnm/λ, where λ is

the wavelength in vacuum and nm the refractive index
of the medium. Equation (1) can be written as a linear
system of equations:

u = Av (2)

where v ≡ S(x, y, z) and u ≡ ẼC(kx, ky) are vectors of
dimensions 128450560 (i.e. 896 × 896 × 160 and 802816
(i.e. 896 × 896), and where A is a matrix of dimension
128450560× 802816 (see Fig. 2 (a) ).
This system is strongly underdetermined since the di-

mensions of vectors u and v correspond to the number of
pixels of the calculation grid in plane C, (i.e. 896× 896
for u) and the number of voxels of the volume V, respec-
tively. The ratio between these two dimensions that we
call the compression ratio (CR) is large, since it corre-
sponds to the number of planes z considered for the 3D
reconstruction (i.e. 160). In the case where the moving
di�users represent a very small part of the 3D volume,
vector v is highly sparse in the basis of the positions
x, y, z. It is then possible to solve (2) using CS.
We should note that the matrix A is too large to be

calculated. To compute u = Av, (1) must be used. Sim-
ilarly, to compute v = A†u, we must use (3):

S(x, y, z) = FT−1
[
exp(−ikz.z) ẼC(kx, ky)

]
(3)

The CS method we used here is based on the orthogo-
nal matching pursuit [16]. The algorithm can be schema-
tized by the equation:

u(n+1) = u(n) − anAT(n)A†u(n) (4)

where n is the iteration index. It starts with u(1) = u ≡
ẼC .
The algorithm calculates iteratively the 3D sources

v(n) = A†u(n), and the 2D �eld Av(n) radiated by the
sources, by selecting within the sources v(n) the bright-
est ones with the operator T(n). The 2D �eld radiated
by the selected sources (i.e. AT(n)A†u(n)) is substracted
from the 2D �eld u(n) in order to get the 2D �eld for the
next iteration, i.e. u(n+1). By this way the 2D �eld is
cleaned.

Figure 2: (a) Schematic representation of the transformations.
Matrix A describes the emission by the 3D sources v ≡ S resulting
in a 2D �eld in Fourier space u ≡ ẼC . The matrix A† represents
the 3D �eld reconstruction from the 2D �eld in the camera con-
jugate plane. (b) Normalization procedure diagram : u(n) is the
hologram at the iteration n, un the �eld radiated by the sources
selected at iteration n, an the normalization coe�cient and u(n+1)

the hologram at the iteration n+1, orthogonal to un.

In order to optimize and stabilize this cleaning pro-
cedure, the weight of the selected sources must by ad-
justed. The selected sources T(n)v(n) are thus multiplied
by a normalisation factor an, which is adjusted in order
to minimize the 2D �eld energy |u(n+1)|2 remaining af-
ter cleaning. To achieve this condition, the orthogonal
matching method adjusts an so that the vector u(n+1)

becomes orthogonal to the vector un = AT(n)A†y(n) ra-
diated by the selected sources (see Fig. 2 (b)). We have
thus (u(n)−anun) �un = 0 where � is the scalar product.
We get:

an =
un � u(n)

|un|2
(5)

At each iteration step n, the total energy (summed over
all pixels) remaining in the 2D �eld |u(n)|2 decreases.
When this energy becomes su�ciently low, for example
when it represents only 20 % of the initial energy, the
iterative process stops. The �nal 3D distribution v of
the sources is then:

v =
∑
n

anT
(n)A†u(n) (6)
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Let us give here more details on our calculations. The
algorithm begins with u(1) = u :
1. Each iteration n starts with the Fourier hologram

u(n) ≡ Ẽ(n)
C (kx, ky).

2. The sources v(n) ≡ S(n) are calculated in the whole
imaged volume by (3) :

S(n)(x, y, z) = FT−1
[
exp(−ikz.z) Ẽ(n)

C (kx, ky)
]

(7)

3. The energy of the sources |S(n)(x, y, z)|2 is calcu-
lated for each voxel (x, y, z), the maximum of energy

E(n)max is determined, and a threshold of energy E(n)th is

chosen (for example E(n)th = 0.9 E(n)max).
4. Operator T (n) selects the voxels x′, y′, z′ whose en-

ergy is above the threshold E(n)th , and add to these vox-
els, the voxels located within a prede�ned radius (e.g.
rRBC = 3) in the same z = z′ plane. The selected sources

T(n)A†u(n) ≡ Sn(x, y, z) are thus:

• Sn(x, y, z) = S(n)(x, y, z) with |S(n)(x′, y′, z′)|2 >

E(n)th ,
√
(x′ − x)2 + (y′ − y)2 ≤ rRBC and z = z′,

• and Sn(x, y, z) = 0 otherwise.

5. The �eld un ≡ ẼC,n(kx, ky) radiated by the sources
Sn in the plane z = 0 is calculated according to (1) :

ẼC,n(kx, ky) =
∑
z

exp(−ikz.z) FT [ Sn(x, y, z) ] (8)

6. The normalisation coe�cient an is calculated by
(5).

7. The cleaned 2D �eld u(n+1) ≡ Ẽ
(n+1)
C (kx, ky),

which will be used to start the next iteration, is cal-
culated by:

Ẽ
(n+1)
C (kx, ky) = Ẽ

(n)
C (kx, ky)− anẼC,n(kx, ky)(9)

When the total energy of the 2D �eld becomes suf-

�ciently low (for example if E(n)max < 0.2 E(1)max), the 3D
sources v ≡ S(x, y, z) are obtained:

S(x, y, z) =
∑
n

anSn(x, y, z) (10)

We have validated our CS calculation by imaging the
microcirculation in zebra�sh (Danio rerio) larvae. Ani-
mals were handled according to standard procedures [23]
following the National and European ethic guidelines for

Figure 3: (a,b) Representation of di�users (RBCs) considering
a single 3D reconstruction. View at 0◦ and +50◦. (c,d,e,f) Rep-
resentation of the vascular system considering a summation of a
sequence of 100 holograms. View at 0◦, +44◦, −48◦ and −90◦.
For a 360◦ rotation see Visualizations in supplementary. (c) DA:
dorsal aorta. CV: caudal vein. ISV: intersegmental vessels. DLAV:
dorsal longitudinal anastomotic vessels. Scale bar is 100 µm.

animal well-being and the European Convention for the
Protection of Animals used for Experimental and Scien-
ti�c Purposes. Unpigmented larvae were obtained from
spontaneous spawning of casper young adult �sh pairs
and grown at 28.5◦C. They were anesthetized with tri-
caine at 5 days and mounted in lateral view in 1 % low
melting point agarose in a 35 mm glass ibidi R© bottom
petri dish and the trunk blood �ow was imaged immedi-
ately.

The experimental setup was similar to the one of previ-
ous work [10]. To increase the angular diversity of illumi-
nation, the sample was imaged with a higher NA micro-
scope objective (20x/NA=0.5 water immersion Zeiss mi-
croscope objective), and with three illumination beams
(in place of NA=0.3 and 2 illuminations in [10]). The
holographic signal was acquired by an Andor Zyla sC-
MOS camera (2560× 2160 pixels, 12 Bits, 50 frames/s),
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and the frames Im recorded by the camera were stored
on a 2560 × 2560 numerical grid. To select the moving
RBCs, holograms are calculated by HC′ = Im − Im−2.
According to Verrier et al. [22], the +1 grating order sig-
nal (which corresponds to Ẽ(kx, ky) and ẼC(kx, ky)) was
selected by cutting a disk of diameter 820 pixels within
the Fourier space hologram (2560× 2560 pixels), and by
copying this disk on a 896×896 calculation grid. CS cal-
culations were made on a 3D grid with 896 × 896 × 160
voxels. Voxel size was 0.6 µm in x and y, and 1.8 µm
in z. The 3D view of Fig. 3, and Visualization 1 and
Visualization 3 videos were obtained with ImageJ (plu-
gin 3D Viewer). Visualization 2 and Visualization 4

videos were obtained with a home made CUDA program
based on an NVidia code example (VolumeRender).

Figures 3 (a,b) show the 3D image calculated from a
single hologram viewed at 0◦ (a) and 50◦ rotation angle
(b). The individual di�users (RBCs) are clearly seen in
3D. A 360◦ rotation view of the 3D image is shown in
supplementary (Visualization 1). In order to visualize
the 3D motion of the RBCs, we have calculated, from
a sequence of 100 holograms, the 4D data correspond-
ing to the sequence of 3D images. A 360◦ rotation view
of this sequence of 3D images is shown in supplemen-
tary (Visualization 2). The 3D motion of the RBCs
is clearly seen. However, the RBCs movement is slightly
jerky, because the camera frame rate seems too low.

The 3D image that is displayed in Fig. 3 (a,b) is highly
sparse since the number of voxels whose intensity in non
zero is 83268 (over the 896 × 896 × 160 grid), with a
relative intensity (with respect to the maximum) varying
from 0.064 to 1. The number of reconstructed voxels
represents thus 15.7% of the number of measurements
(i.e. of the area of the cropped disk: 528101 pixels), with
most of these voxels having a very low intensity. The
condition that guarantees that holographic compressive
sensing 3D reconstruction is doable (number of voxels
lower than ∼25% of the number of measurements [18]) is
thus ful�lled.

The 3D calculation converge after 160 iterations (in
about 2 minutes) using GPU (NVidia GTX Titan Xp)
and CUDA libraries (cuFFT, cuBlas...). This is much
faster than in [10], where convergence on a 512×512×128
voxels grid needed about 25000 iterations. Indeed, at
each iteration, both methods perform roughly the same
amount of Fourier calculations (2× 128 or 2× 160 FTs),
whereas only one voxel is extracted in [10], and about 500
voxels are extracted here. This ∼ 500× improvement of
the calculation speed is made possible by the orthogonal
nature of the CS method.

As was done in [10], we averaged a time sequence
of 100 reconstructed 3D intensity data and got a cast
of the trunk vascular system. Figures 3 (c) to (f) and
Visualization 3 in supplementary show such 3D views
of the vascular system. They compare favorably to
confocal images of endothelial labeled larvae [13] but
show only perfused blood vessels. The averaging method
works here because the zebra�sh larva does not move.
A similar averaging method has been used by Schwerte
et al. [20] to image the zebra�sh vascular system in
2D. We combined the averaged reconstructions with
the ones giving instantaneous positions of the RBCs
in order to visualize the blood �ow inside the vessels
(Visualization 4).

In this letter, we demonstrated that the 3D positions
of small scattering objects moving in a large motionless
volume can be e�ciently reconstructed by a CS-based
method combined with a DHM setup. The technique was
applied here to the in-vivo imaging of microcirculation in
a zebra�sh larva, giving the instantaneous 3D positions
of the red blood cells, and by averaging over a sequence of
frames, the shape of the perfused vascular system. This
method is however restricted to transparent animals with
fairly sparse hematocrit, and to animals which do not
move too much (to get the perfused vascular system by
averaging).

The CS method we used here, which selects multiple
sources at each iteration, is much faster (∼ 500×) than
the "cleaning" method used in [10]. Comparison with
[10] shows also that the resolution is better along z. This
improvement is mainly due to the angular diversity which
is larger (larger angles, 3 illuminations), since the depth
of focus is reduced accordingly.

In this work, we considered orthogonal matching pur-
suit which is a fairly simple CS method. More advanced
CS methods like soft thresholding could be used instead
[9]. It would be interesting to compare these two ap-
proaches since orthogonal matching pursuit starts from
zero and adds iteratively the brightest sources, while soft
thresholding removes iteratively the sources of lower en-
ergy.

We acknowledge Corinne Fournier and Laurent Daudet
for fruitful discussions, and LabEx NUMEV (ANR-10-
LABX-20 , French National Research Agency: Micro
Holo 4D) and CNRS ( Dé�: Instrumentation aux lim-
ites 2018 ) for funding.
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