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Motion Control for Steerable Wheeled Mobile Manipulation

Mohamed Sorour1, Andrea Cherubini2, and Philippe Fraisse2

Abstract— In this paper, we address the problem of long
travel mobile manipulation for steerable wheeled mobile robots
(SWMR) operating in human shared environment. On one
hand, a small footprint is required while maintaining a fixed
arm configuration, to make robot motion predictable for near
individuals during the long traverse. On the other hand,
redundancy resolution poses a challenge since there is no
direct kinematic mapping between the task and joint spaces for
SWMR. Hence, we propose a redundancy resolution algorithm
that enables switching between 3 modes of operation based on
the Euclidean norm of the motion task error. In particular,
we employ a floating base model for the mobile platform, and
enhance the end effector motion performance by predicting
the error between such model and the actual (SWMR) one.
Such error is then compensated using the highly responsive
arm manipulator. The proposed methodology is successfully
validated in simulations on a Neobotix-MPO700 SWMR with
a Kuka LWR-IV manipulator mounted on it.

Index Terms— mobile manipulation, pseudo-omni mobile
robot, steerable mobile robot, long travel manipulation.

I. INTRODUCTION

Mobile manipulators employing steerable wheeled mobile
robots (SWMR) have better workspace reachability than
most other types of mobile robots. The SWMR structure is
able to perform complex 2D planar trajectories despite its
non-holonomic constraints. However, redundancy resolution
and motion control approaches commonly used in the liter-
ature [1]–[3] comprising extended (or augmented) Jacobian
matrices for the mobile base and the arm manipulator will not
result in acceptable end-tip motion performance. The reason
is that for SWMR, there is no direct kinematics relation
(the Jacobian) between actuation commands and operational
space velocities. This is in fact the case for all mobile
robot structures with 1 or more degrees of steerability, and
was only treated in [4] via input-output/dynamic feedback
linearization. However, such method is only suitable for
differential drive systems, for which task space velocities can
be mapped to joint rates. In addition, the kinematic models
used in the literature are either too generic (assuming a fully
omni-directional mobile base) [5]–[7], or only specific for
one particular mobile robot structure, most commonly: dif-
ferential drive [8], [9], unicycle [10], four-wheel drive [11]–
[13], or car-like [1]. None exist for steerable wheeled mobile
robots.

Moreover, motion control based on the extended mobile
manipulation Jacobian matrix will result in mobile-base/arm
motion at all times. Such behavior is non desirable in plenty
of applications due to the different tasks assigned to the
mobile base and/or to the manipulator. Usually, the mobile
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base gives extended workspace at low accuracy due to wheel
slippage and lack of absolute position sensing capabilities
[14], whereas the arm enables high accuracy manipulation,
in a limited workspace. In practice, these two tasks are
performed one at a time due to their very different nature.
To this end, motion control techniques capable of activating
each/both systems according to the task in hand would be
more realistic and useful.

On the other hand, maintaining the arm in a folded,
dexterous configuration is advantageous during long travel,
especially in applications where the robot/human share the
same workspace. Usually, this can be done by maximizing
the manipulability measure [15] as has been done, for
different purposes in [14], [16]–[18]. However such approach
does not guarantee a fixed arm configuration (or a range of
close configurations), especially if such task is implemented
as one of the secondary, lower priority hierarchical tasks
[19]. This makes the arm motion, although characterized by a
high manipulability index, unpredictable [20] to an individual
sharing the same workspace.

In this work, we propose a redundancy resolution formula-
tion that organizes the sharing of the required end-tip motion
(pose control application) task among the mobile base and/or
the arm. The formulation based on the weighted pseudo-
inverse [21], employing a variation of the approach used in
[22], allows switching between 3 modes of operation:
• Gross Motion: only the base is responsible for per-

forming end-tip motion task, while the arm maintains a
predefined arbitrary dexterous configuration. This mode
is active if long workspace travel is necessary.

• Mobile Manipulation: both the arm and mobile base
participate in the motion task, when the end-tip is
reasonably close to its target.

• Fine Manipulation: the motion task is mainly done by
the arm. Meanwhile, the mobile base motion is kept
minimal except for achieving/maintaining the dexterous
configuration. This mode is activated if the end-tip is
very close to its target.

To accommodate for the steerable mobile robot com-
plex structure, we compensate the expected error in the
mobile robot motion by the highly accurate/dynamic arm
manipulator. Such compensation is possible thanks to the
SWMR controller developed in previous work [23], [24].
There, the feasible “next sample period” robot velocity
can be computed based on the joint performance limits of
the SWMR hardware, while taking into account its non-
holonomic constraints. We summarize the contributions of
this work as follows:

1) Redundancy resolution formulation most convenient
for long travel mobile manipulation in human shared
environment.



2) Such formulation takes into account steerable wheeled
mobile robot performance limits, predicts and compen-
sates its motion errors.

In the following, section II introduces the general formu-
lation of the problem in hand. The proposed redundancy res-
olution method is detailed in section III. A brief description
of the steerable mobile base controller is presented in section
IV. Simulations are depicted in section V. Conclusions are
finally given in section VI.

II. PROBLEM FORMULATION

Let the configuration space coordinates of the mobile
manipulator be q̄ =

[
q̄>b q>a

]>
, where qa ∈ Rna are the

generalized coordinates of the arm manipulator, and q̄b ∈
Rnb is a reduced order representation of the configuration
space of the SWMR, constituted of only the 6D robot pose.
Despite assuming the mobile robot treated in this work is a
floating base operating in the 2D planar workspace, we use
nb = 6 for the purpose of proper mathematical development.
The links and joints of the mobile manipulator are assumed
perfectly rigid, and the arm is a fully actuated open serial
chain. The respective configuration vectors are detailed as:

qa =
[
q1 . . . qna

]>
,

q̄b =
[
x y 01×3 α

]>
,

where α is the rotation angle about z axis.

A. End-Tip Velocity Control

Let the pose bpE =
[
r> θ>

]>∈ R6 of the manipulator’s
end tip frame FE expressed in the base frame Fb define the
task space coordinates (the respective frames are depicted in
Fig. 1), with r =

[
x y z

]>
being the position vector,

and θ =
[
γ β α

]>
denoting a minimal representation of

orientation (roll, pitch, yaw RPY variation of Euler angles).

The physical velocity vector is given by bẋE =
[
ṙ> ω>

]>
∈

R6. In practice, the readily available kinematic mapping (the
Jacobian) from the configuration space to the task space for
the arm is given by:

na ẋ0na
= Jna q̇a,

relating the velocity of the final link frame Fna
w.r.t the

initial link frame F0 expressed in Fna
with the joint space

velocity vector q̇a. Note that from the task definition above,
Jna

is the 6 × na geometric Jacobian matrix. The end tip
frame is related to the last frame by a constant homogeneous
transformation matrix naTE , and so is the initial frame to the
mobile base frame bT0. Then, the contribution of the arm
manipulator to the velocity of the end tip, expressed in the
base frame, can be obtained using:

bẋE(a) = Jaq̇a,

Ja = bTE
ETna

Jna
,

(1)

with bTE , and ETna the spatial transformation matrices:

ETna
=

[
naR>E naR>E × narE

03
naR>E

]
,

Fig. 1: Mobile manipulator frames used in our development, x, y,
and z axes colored in red, green, and blue respectively.

bTE =

[
bRE 03

03
bRE

]
,

naRE ∈ SO(3), and narE being the 3 × 3 rotation matrix
and 3× 1 position vectors respectively obtained from naTE .
Similarly, bRE is obtained from bTE = bT0

0Tna
naTE .

For the mobile robot, we propose a general formulation
since the SWMR does not have a usable kinematic (velocity)
mapping from the joint space to the task space (in contrast
with differential drive systems, for instance). We assume a
3DOF, 3DOM (floating base) mobile robot constituted of
2 prismatic joints along the base frame x and y axes, plus
1 revolute joint about the z axis. In such case, the readily
available kinematic mapping is given as:

bẋw
b = Jbq̇b,

Jb = I6,
(2)

relating the mobile base velocity w.r.t the fixed world frame
Fw expressed in Fb, where I6 is the 6D identity matrix.
Note that:

q̇b =
[
ẋ ẏ 01×3 ωz

]>
, (3)

is not the derivative of q̄b. Using (2), we compute the
contribution of the mobile base velocity to that of the end
effector as:

bẋE(b) = H Jbq̇b, (4)

H =


1 0 0 0 0
0 1 0 0 0

03×5
0 0 0 0 0

−byE
bxE
03×1

1


B. Pose Control

For pose control applications, we need the analytic Ja-
cobian (orientation representation specific) rather than the
Geometric Jacobian in (1). This is computed as:

bṗE(a) = MRPYJaq̇a, (5)

bṗE(b) = MRPYHJbq̇b, (6)

for the arm and base respectively (i.e., from (1), (4)). Here
MRPY is the transformation matrix for RPY angles:

MRPY =

[
I3 03

03 ΩRPY

]
,



Fine Manipulation:
mobile base motion should 
be kept minimal to allow for
high accuracy manipulation.

Mobile Manipulation:
end tip is sufficiently near 
to its target pose. Arm and
base are both activated.

Gross Motion:
large area need to be
covered. Only mobile
base is activated.

Fig. 2: Mobile manipulation motion control based on pose error.

ΩRPY =

cos(α) cos(β) − sin(α) 0
sin(α) cos(β) cos(α) 0
− sin(β) 0 1

 .
Since the inverse of MRPY is singular at β = π/2, we use the
damped pseudo-inverse [25], [26] of the analytic Jacobian in
(5) and (6) for redundancy resolution in the sequel.

III. REDUNDANCY RESOLUTION

From (5) and (6), we can construct the augmented kine-
matic mapping:

bṗE = Jmm q̇, (7)

relating the velocity of the proposed joint space coordinates
to the end tip velocity expressed in the base frame with:

Jmm = MRPY
[
H Jb Ja

]
,

the 6× (na + nb) augmented mobile manipulator Jacobian
matrix, and the augmented joint velocity vector given by:

q̇ =

[
q̇b

q̇a

]
.

One possible solution to obtain the joint space velocity
q̇ref corresponding to a given reference task space velocity
(e.g., output by a motion planner) bṗref

E , referred to hereafter
as ṗref to lighten the notation, is to invert (7):

q̇ref = J+
mm ṗref . (8)

Here, J+
mm is the Moore-Penrose pseudoinverse of matrix

Jmm. However, the solution of (8) will always result in
moving the arm and the base simultaneously. In practice,
such behavior is undesirable. Consider for instance cases
where the arm is performing a delicate object manipulation:
it is preferable to block the less accurate mobile base. On the
other hand, for a gross movement from one pose to another
one several meters apart, there is no interest in moving the
arm towards such faraway target. On the contrary, it might be
desirable to have an arm folded configuration, that is static so
that the end tip motion can be “to a large extent” predictable
by humans sharing the workspace. To this end, we propose
a task sharing redundancy resolution formulated as:

q̇ref = J+W
mm(d) ṗref + λdex (I6+na − J+

mmJmm)zdex, (9)

where zdex is arbitrary optimization term, J+W
mm(d) is the

weighted [21], damped pseudoinverse of Jmm, given by:

J+W
mm(d) = W−1 J>mm [Jmm W−1J>mm + ρ2 I6]−1,

with ρ the damping factor, and W the (6 + na)× (6 + na)
symmetric, positive definite weight matrix:

W =

[
(1− ψ)I6 06×na

0na×6 ψ Ina

]
. (10)

The parameter ψ ∈ [0, 1] in (10) is the task sharing factor. If
ψ = 1, only the arm is responsible for performing the pose
control task, whereas if ψ = 0, only the base is activated. The
value of ψ is computed based on the pose error as depicted
in Fig. 2 using:

ψ =


1, if ‖epos‖2 ≤ rfm
0.5, if rfm < ‖epos‖2 ≤ rmm

0, if ‖epos‖2 > rmm

, (11)

where ‖epos‖2 is the Euclidean norm of the end-tip position
error

[
I3 03

]
ep, rfm, rmm ∈ R+ denote the fine and

mobile manipulation ranges respectively. In (9), ṗref is the
output of the proportional pose controller:

ṗref = λp
bTwep,

ep = wp∗ − wp,
(12)

bTw =

[
bRw 03

03
bRw

]
,

with λp a positive scalar gain, ep the 6D pose error, and
wp,wp∗ respectively the current and desired poses both
expressed in the world frame.

The particular solution in (9), will result in the behavior
depicted in Fig. 2, where the base/arm contribution to the
pose control task is decided based on the end-tip position
error. Parameters rfm, rmm defining the different regions can
be tuned based on the application. The homogeneous solution
(secondary task) proposed in (9) is defined as:

zdex =

[
06×1

−(qa − qa(dex))

]
. (13)

The arbitrary vector formulation in (13), when injected in (9)
yields a proportional controller that will force the current arm
configuration vector qa towards a predefined dexterous one
qa(dex) depending on the positive scalar gain λdex.



To enhance the overall response to the commands resolved
using (9), we propose a corrective action to the base velocity
error, to be performed by the usually faster, more accurate

and dynamic arm, recall q̇ref =
[
q̇>ref(a) q̇>ref(b)

]>
:

q̇ref(a) = q̇ref(a) + J+a [MRPYH Jb(q̇ref(b) − q̇bf )], (14)

where q̇bf is the feasible next sample time base velocity
vector depending on the base controller:

q̇bf = h(β,φ)q̇ref(b). (15)

Here h(β,φ) represents the controller for the mobile robot,
and vectors β, φ denote the steering and wheel positions,
respectively. A brief description of the SWMR controller
h(β,φ) will be presented in next section.

IV. STEERABLE MOBILE ROBOT CONTROLLER

In this section, we briefly recall the motion-discontinuity
robust controller developed in our previous work [?], [23].
The schematic of a SWMR is shown in Fig. 3 for a 4 wheeled
robot. Frames FI = (oI | xI ,yI , zI), Fb denote the inertial
and mobile base frames respectively, with origin ob located
at the robot geometric center. Frames Fhi, and Fsi represent
the ith hip and steer frames with i = 1, . . . , N (N being the
number of wheels). The hip and steer frames share the same
origin, with relative orientation βi (the steering angle). Frame
Fwi is attached to (but not rotating with) the ith wheel,
assigned such that xwi points along the heading of the wheel,
which rotates about ywi by the driving angle φi. In Fig. 3, the
task space velocity components are: q̇ref(b) =

[
v> ωz

]>
,

where v =
[
ẋ ẏ

]>
, ωz the mobile base linear and angular

velocities respectively.
The objective of the framework, whose block diagram is

shown in Fig. 4 is to fulfill the reference mobile base veloc-
ity: q̇ref(b) (as input) as much as possible, while respecting
the maximum steer joint performance limits β̇max, β̈max

as well as avoiding singularities. This is quite a challenging
objective given the complexity of such mobile robot structure
[27], [28]. The output is the steer and drive joint velocity,
corresponding to the feasible mobile base velocity vector
q̇bf . The framework in Fig. 4 consists of two decoupled
controllers, one for steering (highlighted in red), and the
other for driving (in blue). The former is responsible for
achieving the direction of the desired robot velocity vector
ξ̇∗ by acting on the steer joint configuration β, and the latter
is in turn responsible for the magnitude of ξ̇∗, by acting on
the wheel velocity vector φ̇.

The controller uses the 3D desired Cartesian robot ve-
locity vector as input. This can be easily obtained from
(3) by removing the zero vector 03×1 in the ”6D to 3D
Cartesian Space Velocity Conversion” block in Fig. 4. The
steering controller starts by mapping ξ̇∗ to the 2D ICR
space ICR∗ =

[
X∗ Y ∗

]>
, where X∗ = −ẏ∗/ω∗z , and

Y ∗ = ẋ∗/ω∗z . The desired ICR point ICR∗ is then modified
based on the complementary route algorithm introduced in
[?], which simply decides whether to move the current
ICR point ICRcurr (corresponding to the current steer
joint configuration) to the ICR∗ following a direct or a

Fig. 3: Steerable wheeled mobile robot modeling schematic.

complementary route. The former is the direct straight line
connecting the current and desired ICR points, while the
latter is the shortest straight line connecting them, but moving
in the opposite direction through the borders of the 2D
Cartesian ICR space. For more details, the reader is referred
to [?].

The desired ICR motion ICR∗, along with the current
one, are fed to the ICR velocity controller which can be a
simple proportional controller of gain λ:

˙ICRref = λ(ICR∗ − ICRcurr).

The reference signal (output by numeric integration of the
above) ICRref is then used by a quadratic programming
(QP) optimization algorithm to decide the ”next sample
time” ICR coordinates ICRnext that will minimize the
quadratic cost error: ‖ICRref −ICRnext‖22 while respect-
ing the joint performance limits formulated as linear con-
straints. For each steer joint, two straight lines are defined,
the slopes of which are the maximum and minimum change
in the steer joint variable in one sample period. These are
related to β̇max, β̈max. In the quadratic cost, ICRref is
used instead of ICR∗ to obtain a smooth behavior since
the former is error dependent. The corresponding steer joint
vector βref =

[
β1(ref) . . . β4(ref)

]>
is then evaluated

using:

βi(ref) = arctan 2(Ynext − hyi, Xnext − hxi)− π/2,

where i = 1 . . . 4 for a 4 wheeled SWMR, and hxi and hyi
denote the position of the ith steer axis in the base frame.
This is numerically differentiated, to obtain the β̇ref that is
sent to the robot low level controller.

The decoupled 3D Cartesian space robot velocity con-
troller produces an initial output ξ̇ref(init), computed by

integrating ξ̈ref(init) = Kp(ξ̇∗ − ˆ̇
ξ), where Kp is a positive

scalar gain. The controller output is then projected onto the
null space of the ”next sample time” kinematic constraint
matrix to obtain the feasible control signal ξ̇ref that is
compatible with the ”next sample time” robot configuration.
This is then converted to the 6D vector q̇bf that is used by
the motion controller in (15). The reference wheel rate φ̇ref
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Fig. 4: Framework of the motion-discontinuity robust controller for steerable wheeled mobile robots.

is then obtained using the inverse actuation model:

φ̇i(ref) =
1

rw
f(βi(ref))ξ̇ref +

d

rw
β̇i(ref),

f(β) =
[
cos(β) sin(β) d− hyi cos(β) + hxi sin(β)

]
,

where d and rw denote the wheel offset and radius re-
spectively. For more details about the framework and the
kinematic model, the reader is referred to [23], [24], [29].

V. SIMULATIONS

To highlight the advantage of the proposed redundancy
resolution in (9) and (14), we perform 3 simulations1 em-
ploying first the whole body damped pseudo-inverse in (8),
then method (9) without (second simulation) and with (third
simulation) arm compensation (14).

A. Setup

All simulations are performed on the Vrep model of a mo-
bile manipulator employing the Neobotix-MPO700 steerable
wheeled mobile robot with a 7DOF KUKA LWR-IV arm,
more details on the hardware setup can be found in [30], [31].
Simulation and controller parameters are provided in Table I
where ts is the sampling period. In each simulation, the end-
tip is required to toggle between 5 different desired poses
at distinct time instances. Details are provided in Table II
where wpi is the initial end-tip pose, the first 3 entries denote
the position vector, measured in meters, and the remaining
represent the RPY angles in radians. The first desired pose
applied during the time period t = [0, 20[ s is at relatively
large distance from the initial end-tip state, requiring long
travel in the workspace. Using the proposed controller,
with or without arm compensation results in (as seen in
Fig. 5-right) compact, predictable robot configuration while
traversing towards such pose, a behavior highly favorable
in human shared applications. On the contrary, using only
the pseudo-inverse solution in (8) results in large mobile
manipulation footprint (see Fig. 5-left) occupying much of
space during such vast workspace travel. In Fig. 5, we can
also observe that the proposed solution (9) results in more
dextrous arm configuration as compared to (8).

1https://www.youtube.com/watch?v=FicvhIOIs7w&feature=youtu.be

The second, third, and fourth poses applied during the
periods t = [20, 25[ s, t = [25, 35[ s, and t = [35, 45[
s respectively, feature small pose variation simulating a
delicate manipulation task. Finally a relatively far desired
pose is applied during t = [45, 65[ s to verify the robustness
of the mode switching (task sharing) function (11).

B. Results
The Euclidean norm of the pose error in (12) for the 3

simulations is shown in Fig. 6. The numbers on the respective

Fig. 5: Screen shots of the simulations featuring the proposed
method (right) and the pseudo-inverse redundancy resolution (left)
while moving from the initial pose to the first desired pose. It is
obvious that the pseudo-inverse solution converges faster but with
maximum footprint (base+arm) and higher error values as compared
to the proposed solution.

https://www.youtube.com/watch?v=FicvhIOIs7w&feature=youtu.be


‖ep‖2

‖ep‖2

‖ep‖2

Fig. 6: Evolution of the Euclidean norm of pose error using the
damped pseudo-inverse redundancy resolution (upper), the proposed
method without arm compensation (middle), and the proposed
with arm compensation. In all plots, the abscissa represents the
simulation time instant (in seconds).

figure denote the area under the error curve of the pose
control task for each of the desired poses. As shown in Fig. 6
(upper), the pseudo-inverse converges faster for the faraway
poses since it generates the minimum Euclidean norm of total
joint space velocities, resulting in the most time efficient
motion. However, the large mobile manipulation footprint,
along with all robot links motion, makes it less predictable
and convenient for human-shared workspaces. The desired
robot behavior is obtained using the proposed redundancy
resolution in (9), although, applying arm compensation in
(14), shown in Fig. 6 (lower), enhances the error convergence

TABLE I: Simulation and controller parameters.

λp 1.7 λdex 3.5 na 7
rfm 0.25m rmm 0.9m ρ 0.001
rw 0.09m ts 25ms Kp 2
d 0.045m hxi ±0.24m hyi ±0.19m

TABLE II: Poses and configurations used.

Pose/Configuration Time Interval
wpi =

[
0.708 0.004 1.08 π/2 0 0

]>
t < 0 s

wp∗ =
[
5 1.5 1 0 0 0

]>
t = [0, 20[ s

wp∗ =
[
5 1.3 1 0 0 0

]>
t = [20, 25[ s

wp∗ =
[
4.8 1.3 1 0 0 −π/2

]>
t = [25, 35[ s

wp∗ =
[
5 1.5 1 0 0 0

]>
t = [35, 45[ s

wp∗ =
[
4 −0.5 1 π/2 0 0

]>
t = [45, 65[ s

qa(dex) =
[π
2

π
2

π
2

−π
2

0 0 0
]>

t = [0, 65[ s

‖ep‖2

‖ep‖2

ψ

Fig. 7: A zoom in the pose error Euclidean norm for the proposed
redundancy resolution without (upper) and with (middle) arm
compensation, along with the task sharing parameter evolution for
the former case. In all plots, the abscissa represents the simulation
time instant (in seconds).

time as compared to Fig. 6 (middle).
Figure 7 gives a zoomed in view of the Euclidean norm

error in Fig. 6 (middle), (lower). This figure depicts an
additional advantage of using arm compensation, where the
magnitude of steady state error is significantly smaller with
better convergence compared to using (9) alone. Finally, Fig.
7 (lower) shows the evolution of the task sharing parameter
ψ in case of arm compensation. As expected, when reaching
each desired pose, only the arm is activated (ψ = 1) to
perform the pose control task. For the second and third
desired poses, the arm is fully responsible since the desired
change in pose is below the fine manipulation range rfm.

VI. CONCLUSION

We developed a redundancy resolution formula for steer-
able wheeled robots based mobile manipulation. The pro-
posed method takes into account the feasible mobile robot
velocity and accommodates for its inaccuracies firstly by
decreasing its motion near the target pose and secondly by
compensating its velocity error using the fast dynamics of the
arm. Such error is predicted in advance thanks to the SWMR
controller developed in our previous work. The proposed
formula has been successfully validated in simulation.
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