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 Graphene and its derivatives play an important role in today’s electrochemical based 

technologies as outlined in this article 

 Examples are given for energy driven applications and electrocatalytic processes with 

the aim to replace Pt/C bench mark electrode 

 The high performance of graphene-based electrodes in biosensing and biomedical 

driven applications is presented 
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Introduction 

Electrochemical science has become a discipline of wide scientific and technological interest 

due to the important role in present-day technologies. Batteries, fuel cells, supercapacitors, 

electrochromic devices, gas separation membranes, and sensors are some examples of 

applications of electrode materials. The success in electrochemical technology is largely due 

to the continued design and development of novel material electrodes that meet the needs of 

modern society. Emerging two-dimensional nanomaterials, including next to graphene, h-BN, 

MoS2, NbSe2, TiS2, TaS2, WS2, WSe2, TaSe2, etc., metal-organic frameworks (MOFs) and 

many more, are at the forefront of interest because of their superior potential for 

electrochemically driven applications in many different fields [1-4]. The success of graphene-

based electrode materials, such as chemical vapor deposition produced graphene as well as 

chemically derived graphene derivatives, in numerous electrochemical based technologies 

(Figure 1) is due to a number of factors, which are key to most of the applications [4-7].  
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Figure 1: Graphene interfaces for innovative electrochemical based applications. 

 

Indeed, graphene exhibits a large surface area, which can be further tuned through the 

generation of porous structured graphene and incorporation of dopants. Additionally, 

graphene as a highly conjugated network (-conjugation) bears hydrophobic properties 

providing an ideal platform for immobilizing organic and inorganic molecules in an easy 

manner. Graphene exhibits also high conductivity and mediates electron transfer mostly at its 

edge planes [8]. Those properties have made graphene of potential interest for electrochemical 

and biosensing oriented applications. To evaluate graphene’s performance as an electrode 
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material, the heterogeneous electron transfer (ET) rate between graphene and a redox 

mediator has to be determined and compared with its naturally occurring counterpart 3-D 

graphite.[9,10] The literature offers some contrasting views on the reactivity of mono and 

multilayered graphene. Accelerated kinetics data are reported on mechanically exfoliated 

monolayer graphene compared to bilayer graphene and graphite.[11,12] Guell et al. observed 

increased ET kinetics with increasing number of CVD stacked graphene flakes (from 1 to 7) 

using a ferrocene derivative as a mediator. However, no increased ET was observed at the 

edges or steps in comparison to the basal plane.[13] To shed more light into the 

electrochemistry of graphene, Velicky et al. determined the electron transfer rates of three 

redox mediators on mechanically exfoliated graphene layers (1-100) supported on insulating 

Si/SiO2 substrates. A large variation in kinetics is observed across the basal plane of the same 

flake, indicating that local surface conditions affect the electron transfer kinetics. While the 

growing number of commercial sources of graphene represents certainly an important step 

towards the commercialization of graphene-based materials in the near future, for a large 

number of electrochemical applications, it is not graphene but chemically derived reduced 

graphene oxide (rGO) which is used. In contrast to pristine graphene, rGO contains lattice 

defects and residual oxygen-containing groups. While these defects impact on the electrical 

readout, they are actually beneficial to achieve fast heterogeneous electron transfer. 

Additionally, the presence of oxygen-containing groups offers plenty of opportunities for 

covalent immobilization of surface ligands to target specific sensing or drug delivery 

applications [8,14]. The promising electrochemical characteristics such as large potential 

window, fast electron transfer kinetics and increased capacitance of rGO based materials 

together with their low cost of production make them ideal materials for electrochemical-

driven applications [14,15].  

This article is not aiming to discuss in details all the different recent examples of rGO based 

electrochemical applications ranging from energy to electroanalytical and biosensing driven 

applications. It should be seen as a general review to a broad audience interested in graphene 

based electrochemistry and its different aspects. The review will thus highlight some 

important works with details to be found in the respective articles. It will also address certain 

aspects to further enhance the use of graphene nanomaterials in innovative electrochemical 

designs.  

 

Recent examples from the literature 

1.  Energy driven applications: Energy storage and energy conversion 
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The development of novel materials for energy storage is of great importance to fulfill the 

increasing demand of energy. Lithium ion batteries are highly promising devices for powering 

portable electronics and also electrical vehicles. Currently, the use of graphite anodes with a 

theoretical capacity of 372 mAh g
-1

 has become insufficient to satisfy the increasing energy 

and power densities demand, making the search for efficient and stable anode materials 

possessing high lithium capacity of high importance. Mullins and co-workers developed a 

composite of N-doped rGO and nanocrystalline tin sulfides and tested it as anode in lithium 

batteries [16]. When cycling at a specific rate of 0.2 A g
-1

, a Coulombic capacity of 562 mAh 

g
-1

 was retained after the 200
th

 cycle, which is believed to be due to the presence of 

conductive rGO cushioning the stress associated with the expansion of lithiation of Sn. Lin et 

al. reported a composite lithium metal anode composed of 7 wt.% layered rGO with nanoscale 

gaps that can host metal lithium. The composite exhibited low dimensional variations (20%) 

during cycling, good mechanical flexibility next to retaining up to 3.390 mA g
-1

 of capacity in 

a carbonate electrolyte [17]. Graphene encapsulated Si microparticles were proposed by Li as 

anode in lithium ion batteries, where the graphene cage acts as a flexible and mechanically 

strong buffer during deep galvanostatic cycling, allowing the microparticles to expand and 

fracture within the cage while retaining electrical connectivity on both the particle and 

electrode levels.  

Among the new battery chemistries being developed, sodium-ion batteries are considered to 

be the most promising ones due to similar intercalation chemistry to Li-ion ones and natural 

abundance of sodium resources. Anodes of rGO, with uniformly anchored Fe2O3 single 

crystallites with a particle size of ≈300 nm displayed a reversible capacity of 610 mAh
 
g

-1
 at 

50 mA g
-1

, high coulombic efficiency (71% for the first cycle) and a good cyclability with 

82% capacity retention after 100 cycles, suggesting a potential feasibility for sodium-ion 

battery [18]. The Na
+
 intercalation/de-intercalation properties of mesoporous WO3-x 

encapsulated in N-doped macroporous graphene, formed by heat treatment of a co-assembly 

of amine-functionalized mesoporous silica/metal oxide and GO with subsequent silica 

removal, were recently demonstrated by Kim et al. [19]. 

 

To tackle the challenge in the preparation of high-capacity electrode materials with good 

structural stability and flexibility, Mo et al. proposed a 3D interconnected porous nitrogen-

doped graphene foam (NGF) with encapsulated Ge quantum dots@nitrogen-doped graphene 

(Ge-QD@NG), exhibiting high specific capacity of 1.220 mAh g
-1

 and long cycling capability 

[20]. It is well recognized that the ever-growing demands in future flexible electronics such as 
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wearable devices, portable implants, biomedical products, have aroused a worldwide research 

interest in the development of electrodes that maintain their conductivities under repeated 

stretching deformation. A solid-state electrochemical capacitor was recently developed using 

wavy rGO displaying a specific capacitance of 67.25 mF cm
-2

 at a current density of 1 mA 

cm
-2

, and excellent stability [21]. 

 

Next to batteries, supercapacitors (SC) are the key devices for energy storage due to their high 

specific capacitance, high power density, ultrafast charging/discharging rate, extremely low 

internal discharge, long cycle life (300.000 cycles) and low cost [22,23]. We reported recently 

on an all solid-state SC using N-doped porous rGO with a specific capacity of 230 F g
-1

 at 1 A 

g
-1

 current density and good capacitance retention up to 88% even after 10.000 galvanostic 

charge/discharge cycles recorded at 5A g
-1

 (Figure 2A) [23]. While symmetric SC have many 

reported outstanding properties, asymmetric designs using graphene-based materials as 

negative electrode materials allowed widening the negative working potential range. A high 

performance asymmetric SC using  MnCo2O4 nanofibers as anode and N-doped rGO aerogels 

as cathode was proposed [24]. The MnCo2O4 nanofibers store negative charges such as 

solvated OH
-
, while the N-doped rGO aerogel stores positive charges, providing an operating 

potential of 1.8 V with energy and power densities of 54 Wh kg
-1

 and 9851 W kg
-1

, 

respectively and 85.2 % capacity retention over 3.000 cycles. The charge storage mechanism 

of the spinel-type oxide materials remains however unclear, even though synchrotron-based 

X-ray absorption spectroscopy (XAS) was used to determine the oxidation states of Co and 

Mn at the MnCo2O4 electrode after being electrochemically tested.  

 

Last but not least, microbial fuel cells are perceived as a promising renewable power source 

harvesting electricity from organic matter by microorganisms. Their practical application is 

still greatly impeded by their lower power density compared to conventional fuel cells, mainly 

due to the sluggish extracellular electron transfer and low bacteria loading. 3D hierarchically 

structured porous MWCNTs/rGO nanohybrids were found to be useful anode materials for 

the growth of rich bacterial biofilms, displaying  a power density of 789 mW m
-2

 in 

Shewanella putrefaciens CN32 microbial fuel cells (Figure 2B), being 6-fold higher than that 

of conventional carbon cloth [25]. 

 

2.  Catalytic driven reaction 
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Metal nanoparticle-rGO composites have been largely investigated as advanced electrode 

materials due to their interesting electrocatalytic features. Introduction of rGO to the catalytic 

system enhances the catalytic activity not only due to its large surface area, high conductivity 

and excellent electrochemical properties, but also as rGO stabilizes efficiently the catalytic 

nanostructures from aggregation. Such nanocomposites have found widespread applications 

for green and renewable sources of energy, including electrochemical water splitting reaction, 

putting oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) at the 

forefront of interest. Similarly, the oxygen reduction reaction (ORR) is important to 

renewable energy technologies, including fuel cells and metal-air batteries. Platinum based 

catalysts have long been used for ORR and HER, and carbon supported platinum (Pt/C) is still 

one of the bench mark catalysts [26]. Indeed, based on its adsorption energetics of the H atom, 

platinum is the optimal material for fuel cell electrocatalysis. The high cost of platinum and 

low catalytic efficiency due to CO poisoning along with thermal instability remain 

nevertheless the major limiting factors for enhancing the energy-conversion efficiency in fuel 

cells and other energy driven devices. Non-Pt group electrocatalysts and even metal-free 

catalysts have shown their efficiency towards the different electrocatalytic processes [3]. For 

example, CoMn oxide nanoparticles (Co:Mn ratio of 2:1) supported over N-doped porous 

reduced graphene displayed ORR activity under basic conditions comparable to that of 

commercial Pt/C catalyst (Figure 2C), where the high activity was attributed to the 

cooperative effect arising from the metal entities and the defects in N-doped porous rGO [27]. 

PdAg particles embedded on ZrO2/porous carbon/rGO nanocomposites resulted in electrodes 

with excellent activity for the dehydrogenation of formic acid with 100% hydrogen selectivity 

[28]. Zheng et al. demonstrated that g-C3N4@N-doped reduced graphene oxide was a highly 

efficient metal-free HER catalyst [29]. Tri-doped rGO (nitrogen, phosphorus, fluorine), 

obtained by thermal activation of a mixture of polyaniline-coated GO and ammonium 

hexafluorophosphate, was found to exhibit excellent electrocatalytic activities for ORR, OER 

and HER and could be used as an OER-HER bifunctional catalyst for oxygen and hydrogen 

gas production in an electrochemical water-splitting unit, which was powered by an integrated 

Zn-air battery based on an air electrode made from the same electrocatalyst for ORR (Figure 

2D) [30]. 
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Figure 2:  Selected examples for energy and electrocatalytic driven applications: (A) 

Electrochemical testing of an all solid-state supercapacitor device fabricated with N-doped 

porous rGO: (a) Plots of the energy density and power density as a function of charge–

discharge current density and (b) demonstration of flexibility of the device with different 

bending states (reprint with permission from Ref.[31]); (B) Mechanism of anodic biofilm on 

enhanced bioelectrocatalysis; (C) (left) ORR using CoMn/N-doped prGO (2:1) as cathode 

catalyst, (right) power density of a primary Zn-air battery using this cathode catalyst [27]; (D) 

(left) Schematic of electrochemical water splitting, (right) O2 and H2 production volume as a 

function of water splitting time (reprint permission from Ref.[30]). 

 

3.  Sensing and biomedical applications 

The attractive properties of rGO based nanomaterials have paved more recently the way for 

the fabrication of a wide range of electrochemical based biosensors with improved analytical 

performance [32-34]. The underlying principle of an electrochemical sensor is to convert a 

biological binding event into a measurable electrical signal. This approach is represented by 

electron transfer between the rGO coated interfaces and an electroactive species, which can be 

either the molecule to be analyzed or a species, whose electrochemical signal correlates with 

the presence of the target analyte. Aspects governing electron transfer on graphene coated 

electrodes become of importance to obtain large output signals, allowing to reach low 

detection limits needed when analyzing clinical samples. Impressive electrocatalytic 

performance was obtained on multi-layered graphene flakes coated Si wafers in response to 

biomolecules such as dopamine and ascorbic acid due to the large area of edge planes that are 

available on such an interface to allow rapid heterogeneous electron transfer [35]. The other 

advantages of rGO in the electroanalytical context is the high surface area of rGO supporting 



8 

 

the integration of a high density of analyte specific ligand. Nickel [36] and copper oxide [37] 

supported on rGO or ammonia-doped porous rGO allowed non-enzymatic glucose sensing 

due to the electro-catalytic properties of the nanostructures for glucose under alkaline 

conditions with a 0.25 µM detection limit in the case of using N-doped prGO/CuO modified 

electrodes (Figure 3A) [37]. In a similar manner, non-enzymatic sensing of hydrogen 

peroxide can be achieved using Pt NPs modified rGO-chitosan-ferrocene carboxylic acid 

structures,[38] hollow TiO2-rGO microspheres encapsulating hemoglobin,[39] or 

Au@Prussian blue core-shell structures embedded onto rGO,[40] with detection limits in the 

nanomolar range.  

Real-time quantitative monitoring of biomarkers, a specific class of biological substances 

whose expression in serum and saliva correlates with a certain illness, has become essential 

for early detection of the disease, directing personalized treatments and analysis of treatment 

efficacy.  An immunosensing platform for the electrochemical detection of oral cancer, based 

on anti-IL8/Au NPs-rGO coating, was recently proposed [41]. Porous rGO electrodes 

modified with anti-gliadin antibodies using 1-pyrenecarboxylic acid as linker molecule to 

porous reduced graphene oxide (prGO) allowed for sensitive sensing of gliadin in food 

samples (Figure 3B) [42]. We have also demonstrated that an rGO modified electrode can 

analyze the level of folic acid protein in human serum with a picomolar detection limit,[43] 

while molybdenum disulfide-rGO hybrid electrode allowed the direct detection of folic acid 

in human serum with a limit of detection 10 nM [44]. rGO and/or porous rGO modified 

electrodes are also highly adapted as general platforms for the efficient on-demand delivery of 

a variety of drugs using electrochemical triggered approach (Figure 3C), as shown for the 

controlled delivery of a therapeutic protein such as insulin,[45] an anticancer drug like 

doxorubicin,[46] ondansetron, an antagonist to prevent nausea and vomiting caused by 

chemotherapy,[47]  as well antibiotics such as ampicillin [47].  Porous rGO (prGO) has, in 

addition, found its interest for the analysis of protein aggregation in pharmaceutical 

formulations (Figure 3D) [48].  



9 

 

(C) Electrochemical triggered on-demand delivery of therapeutics

0

4

8

12

0 40 80 120 160

j 
/ 
µ

A
 c

m
-2

time / h

pH 2.0

pH 7.4

(D) Analysis of protein aggregation

aged lysozyme

Fresh lysozyme

aged lysozyme

Fresh lysozyme

0.6 µm

CuC  

-2

0

2

4

-1 -0.5 0 0.5 1

j 
/ 

m
A

  
c

m
-2

E /V

0 µM glucose

+800 µM glucose

(A) Non-enzymatic glucose sensing on N-doped prGO/CuO

0

2

4

6

8

0 2 4 6 8 10

j 
/ 

m
A

 c
m

-2

 time / min

G
lu

c
o

s
e

A
A

U
A

D
A

fr
u

c
to

s
e

g
a

la
c
to

s
e

G
lu

c
o

s
e

C
y
s

(B) Immunosensor:  analysis of gluten in food

prGO +
pyrene-anti-gliadin

gluten-free

gluten

 

Figure 3: Selected examples of the use of rGO and prGO modified electrodes for 

biomedical applications: (A) Non-enzymatic glucose sensing: (left) CV of N-doped 

prGO/CuO electrode in the absence and presence of glucose (800 µM) in 0.1 M NaOH, 

(middle) EDX analysis of N-doped prGO/CuO electrodes, (right) Amperometric response to 1 

mM glucose and 10 mM interfering species such as ascorbic acid (AA), uric acid (UA), 

dopamine (DA), cysteine (Cys), fructose, galactose in 0.1 M NaOH [37]; (B) (left) 

Differential pulse voltammograms of anti-gliadin modified prGO electrodes in the absence 

and presence of gliadin using Fe(CN)6
3-

 (5 mM)/PBS (0.1 M) as a redox couple, (right) SEM 

image of prGO based immunosensor [42]; (C) Schematic illustration of formation of drug 

loaded graphene based electrodes and electrochemically triggered on demand release; (D) 

(left) Change in oxidation current density of a lysozyme solution (700 µM) submitted to 

forced degradation at pH 2 and pH 7.7, (right) AFM image of a fresh lysozyme solution and 

an aged one [48]. 

 

4.  Opinion for potential users of graphene in electrochemical methods 

The rich electrochemistry of graphene is due to its intrinsic favorable properties to molecules 

of aromatic structure, where  stacking interactions can result in  enhanced and better 

defined electrochemical signals [35],  and the ease by which catalytic sites in form of 

nanoparticles and others can be irreversible anchored onto graphene-based materials. While 

there has been tremendous progress in the development of graphene based materials, there is 

still room for further research on the determination of underlying reasons for the activity of 

graphene, such as the insight which established that ORR catalysis on N-doped graphene 

stems from the electron-deficient carbon neighboring pyridine nitrogen. In the case of 

electrochemical sensors, even though a large amount of graphene based sensors are reported 

in the literature exhibiting good sensing characteristics, the performance in real biological 

samples, where next to a variety of other proteins high salt concentrations are present, is often 
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not considered and information is largely lacking. These are only one of the different 

challenges to overcome, in order to bring some of the current sensors into real biomedical 

applications. The realization of graphene-based, next-generation electrochemical guided 

applications, depends in addition essentially on a reproducible, large-scale production of 

graphene. The large scale production of monolayer graphene films by of chemical vapor 

deposition (CVD) in uniform and homogenous manner remains a key challenge. The limited 

mechanical properties and stability of CVD graphene in solution are one of the most 

significant obstacles for its use in graphene-based flexible devices. The mass production of 

high-quality GO and rGO, achieved by chemical oxidation/reduction and exfoliation of low-

cost graphite, is on the other hand a promising way to connect to real-world applications and 

commercialized products. Much effort has thus been more lately devoted into assembling well 

dispersed multifunctional chemically reduced graphene oxide nanosheetes onto and into 

ordered macrostructures without loss of their electrochemical properties and keeping 

mechanical strength and conductivity. Such flexible light-weight and functional materials are 

of interest for classical energy driven applications (fuel cells, Li-ion batteries, 

supercapacitors) as well as wearable energy systems and sensors.   

 

CONCLUSION AND OUTLOOK 

The above examples are not an exhaustive list of applications where graphene based materials 

have resulted in innovative electrochemical applications. It is rather a collection of relevant 

examples from the literature from different research teams with different perspectives and 

should serve as triggering further interest in graphene-based electrochemistry. They were 

chosen as they underline important advancements where graphene was the core of the 

improvement.  It is with no doubt, that this field is currently advancing mainly by developing 

and finding the miracle material. Basic electrochemical concepts remain mainly untouched, 

but are essential in understanding mechanistic aspects and potential limitations/advantages of 

different graphene nanostructures. With the rapid progress that has been made in the last two 

years on the synthetic aspects of graphene related materials together with advances in in situ 

spectroscopic methods and powerful theoretical modeling, it is certain that the next five years 

will be fruitful for advancing graphene-based electrochemical technological inventions. One 

of the limitations of graphene-based materials remains certainly the variation of the chemical 

composition and metal contamination, depending on the origin of the graphite precursor and 

oxidation process conditions. Although for certain applications, this would not affect much 

their performance, for catalytic and electrocatalytic applications, the nature and concentration 
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of metal contaminant can have a huge impact on the performance and reproducibility of the 

electrode material. 
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