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Abstract. We investigate a time-harmonic wave problem in a waveguide. We work at low fre-
quency so that only one mode can propagate. It is known that the scattering matrix exhibits a
rapid variation for real frequencies in a vicinity of a complex resonance located close to the real
axis. This is the so-called Fano resonance phenomenon. And when the geometry presents certain
properties of symmetry, there are two different real frequencies such that we have either R = 0 or
T = 0, where R and T denote the reflection and transmission coefficients. In this work, we prove
that without the assumption of symmetry of the geometry, quite surprisingly, there is always one
real frequency for which we have T = 0. In this situation, all the energy sent in the waveguide is
backscattered. However in general, we do not have R = 0 in the process. We provide numerical
results to illustrate our theorems.

Key words. Waveguides, Fano resonance, zero transmission, scattering matrix.

1 Introduction
The Fano resonance is a universal phenomenon in physics which appears in many areas. For a gen-
eral presentation, we refer the reader to [18] for the seminal paper and to [27, 26] for recent reviews.
In this work, we consider its expression on a model problem of propagation of time-harmonic waves
in a waveguide, which is unbounded in one direction. This problem appears naturally for instance
in acoustics, in water-waves theory or in electromagnetism. In this context, the Fano resonance
mechanism can be described as follows. Assume that the Neumann Laplacian (for the problem we
consider below) has a real eigenvalue λ0 embedded in the continuous spectrum. In this case, the
corresponding eigenfunctions are the so-called trapped modes which are exponentially decaying at
infinity. Then perturbing slightly the setting, for example the geometry or the material index, in
general this real eigenvalue will turn into a complex resonance [2, 45, 36]. And for real spectral
parameters λ (proportional to the square of the frequency) varying in a neighbourhood of λ0, the
scattering matrix will exhibit a rapid variation. This variation is even quicker as the imaginary
part of the complex resonance is small. When λ0 is between the first and the second thresholds in
the continuous spectrum, so that only two conjugated waves can propagate in the waveguide, the
symmetric scattering matrix is composed of two reflection coefficients R, R̃ and one transmission
coefficient T (see the notation in (3)). In this case, under certain properties of symmetry of the
configuration, one can show that the scattering coefficients take zero values for some real λ around
λ0. Such particular values for R, R̃ are studied in particular in the context of Perfect Transmission
Resonances (PTRs), see e.g. [39, 38, 24, 44, 28]. For the presentation of simple models in optics
explaining the Fano resonance phenomenon, we refer the reader to [16, 17]. For more mathemat-
ical approaches, one can consult [41, 40, 42, 1, 7]. For computations of complex resonances and
numerical investigations of the Fano resonance phenomenon in waveguides, we refer the reader to
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[12, 6, 13, 19, 21, 20]. For results concerning the existence of trapped modes associated with eigen-
values embedded in the continuous spectrum, see e.g. [43, 14, 15, 11, 25, 29, 34, 35]. Finally, note
that another approach to get rigorously a zero transmission coefficient can be found in [8, 9, 10]. It
relies on asymptotic results of the usual scattering matrix in geometries with long branches and is
not related to the Fano resonance phenomenon considered in this work.

The goal of this note is to show that without assumption of symmetry of the configuration, the
transmission coefficient T still takes the zero value throughout the Fano resonance phenomenon.
This was intuited in [23] using a continuation idea from a symmetric setting. In the present work,
we prove rigorously the result using a different approach which does not require to start from a
symmetric setting. The outline of the article is as follows. First we present the setting in Section 2.
Then we perturb the geometry and the frequency of the configuration supporting trapped modes
via a small parameter ε > 0 and we recall the results of [7] providing an asymptotic expansion of
the scattering matrix with respect to ε tending to zero. In Section 4, we show that miraculously
(we have no physical explanation for that), the main asymptotic term in the expansion of the trans-
mission coefficient passes through zero for real λ around λ0. Then in Section 5, working as in [10],
we demonstrate that the unitary structure of the scattering matrix is enough to deduce that the
transmission coefficient itself passes through zero for real λ around λ0. We provide some numerical
results to illustrate this analysis in Section 6. Finally, we give short concluding remarks. The main
result of this work is Theorem 5.1.

2 Setting

Ω
x

y

d −d

Figure 1: Example of geometry Ω.

Let Ω ⊂ R2 be a domain, that is a connected open set, with Lipschitz boundary ∂Ω which coincides
with the reference strip

{(x, y) ∈ R× (0; 1)}

for |x| ≥ d where d > 0 is fixed (see Figure 1). We assume that the propagation of time-harmonic
waves in Ω is governed by the Helmholtz equation with Neumann boundary conditions

∆u+ λu = 0 in Ω
∂νu = 0 on ∂Ω.

(1)

In this problem, u is the quantity of interest (acoustic pressure, velocity potential, component of the
electromagnetic field,...), ∆ denotes the 2D Laplace operator, λ is a parameter which is proportional
to the square of the frequency and ν stands for the normal unit vector to ∂Ω directed to the exterior
of Ω. Note that from time to time, abusively we will call λ the frequency. We emphasize that we
consider an academic 2D problem only to simplify the presentation. Other configurations can be
dealt with in a completely similar way. In particular, the analysis is the same in higher dimension
and in waveguides for which the two unbounded branches are not aligned. Moreover, we can also
impose Dirichlet or periodic boundary conditions in (1) to study quantum waveguides or gratings.
For λ ∈ (0;π2), only the plane waves w± defined by

w±(x, y) = e±ix
√
λ (2)

2



can propagate in Ω. For λ ∈ (0;π2), the problem (1) has solutions u± admitting the decompositions

u+ = w+ +R+w− + . . . , for x < −d
T w+ + . . . , for x > d,

u− = T w− + . . . , for x < −d
w− +R−w+ + . . . , for x > d.

(3)

Here R± ∈ C are reflection coefficients and T ∈ C, which is the same both for u+ and u− due to
the reciprocity relation, is the transmission coefficient. Moreover, the dots stand for remainders
in H1(Ω) which decay as O(e−|x|

√
π2−λ) when |x| → +∞. Physically, u+ (resp. u−) models the

scattering of the incident rightgoing wave w+ (resp. leftgoing wave w−) by the perturbation in the
geometry with respect to the reference strip R× (0; 1). We define the scattering matrix

s :=
(
R+ T
T R−

)
∈ C2×2.

It is a classical exercise to show that s is unitary (ss> = Id) and symmetric (s = s>). The functions
u± are uniquely defined if and only if trapped modes (non-zero solutions of (1) which are in L2(Ω))
do not exist at the chosen λ. If trapped modes exist, we define uniquely u± as the functions admit-
ting the expansions (3) and which are orthogonal to the linear space of trapped modes (which is of
finite dimension) in L2(Ω).

We assume that the geometry Ω is such that λ = λ0 ∈ (0;π2) is a simple eigenvalue of the Neumann
Laplacian. In other words, we assume there is a non zero utr ∈ L2(Ω) satisfying ∆utr + λ0utr = 0
in Ω, ∂νutr = 0 on ∂Ω and that any L2 solution of (1) is proportional to utr. Note that since the
continuous spectrum of the Neumann Laplacian in Ω is σc = [0; +∞), the eigenvalue is embedded
in σc. To set ideas, we impose that ‖utr‖L2(Ω) = 1. Using decomposition in Fourier series, we obtain
the expansion

utr = K e−x
√
π2−λ0 cos(πy) + ũtr for x ≥ d, (4)

where K is a constant and ũtr is a remainder which decays as O(e−x
√

4π2−λ0) when x → +∞. We
assume that utr has a slow decay as x→ +∞, i.e. K 6= 0. In case K = 0, the analysis below must
be adapted but can be done. Without lost of generality, we can impose that K > 0. Note that
the choice of making an assumption on the decay of utr as x → +∞ is arbitrary. Considering the
change x 7→ −x, the analysis below can be developed completely similarly imposing the behaviour
as x→ −∞.

3 Perturbation of the frequency and of the geometry

Ωε

d −d

∂Ωε = (x, 1 + εH(x))

Figure 2: Example of perturbed waveguide Ωε.

Now, we perturb slightly the original setting supporting trapped modes. First, the spectral param-
eter λ0 is changed for

λε = λ0 + ελ′ (5)

where λ′ ∈ R is given and ε > 0 is small. Second, we make a perturbation of amplitude ε of the
geometry to change Ω into some new waveguide Ωε. More precisely, consider γ ⊂ ∂Ω a smooth
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arc. In a neighbourhood V of γ, we introduce natural curvilinear coordinates (n, s) where n is the
oriented distance to γ such that n > 0 outside Ω and s is the arc length on γ. Additionally, let
H ∈ C∞0 (γ) be a smooth profile function which vanishes in a neighbourhood of the two endpoints of
γ. Outside V , we assume that ∂Ωε coincides with ∂Ω and inside V , ∂Ωε is defined by the equation

n(s) = εH(s). (6)

In other words if γ is parametrized as γ = {P (s) ∈ R2 | s ∈ I} where I is a given interval of R, then
γε := {P (s) + εH(s)ν(s) | s ∈ I}. Here ν(s) is the unit vector normal to γ at point P (s) directed to
the exterior of Ω. Finally we consider the perturbed problem

∆uε + λεuε = 0 in Ωε

∂νεuε = 0 on ∂Ωε,
(7)

where νε stands for the normal unit vector to ∂Ωε directed to the exterior of Ωε. We denote by

s(ε, λ), T (ε, λ), R+(ε, λ), R−(ε, λ)

the scattering parameters introduced in the previous section in the geometry Ωε at frequency λ.
And for short, we set

s0 := s(0, λ0), T 0 := T (0, λ0), R0
+ := R+(0, λ0), R0

− := R−(0, λ0).

To recall the Theorem 5.1 of [7] describing the behaviour of the scattering matrix s(ε, λ0 + ελ′)
as ε goes to zero, and which will be the basis of our analysis below, we need to introduce a few
quantities. Set U := (u+, u−) where u± are the functions introduced in (3) for λ = λ0. Set also

κ(H) :=
∫
I
H(s)(|∂sutr(0, s)|2 − λ0 |utr(0, s)|2) ds ∈ R, (8)

α :=
∫

Ω
utr(x, y)U(x, y) dxdy ∈ C× C, (9)

β(H) :=
∫
I
H(s)(∂sutr(0, s)∂sU(0, s)− λ0 utr(0, s)U(0, s)) ds ∈ C× C. (10)

Theorem 3.1. ? Assume that λ′ 6= κ(H). Then we have

lim
ε→0

s(ε, λ0 + ελ′) = s0.

? Assume that H is such that κ(H)α 6= β(H) ∈ C× C. Then we have

lim
ε→0

s(ε, λ0 + εκ(H) + ε2µ) = s0 +
τ>τ

iµ̃− |τ |2/2,

with τ := (κ(H)α−β(H)) s and µ̃ := Aµ+B for some unimportant real constants A, B with A 6= 0.
We emphasize that A, B are independent of ε, µ.

Let us comment this result. To be precise, we should mention that the Theorem 5.1 of [7] is stated
in a geometry which is symmetric with respect to the (Oy) axis. Therefore the Theorem 3.1 is
a bit different. However the proof is completely similar and is as follows. First, we compute an
asymptotic expansion of an auxiliary object called the augmented scattering matrix, which has been
introduced in [37, 22] and [30, 32] as ε→ 0. The essential property is that this augmented scattering
matrix considered as a function of (ε, λ) is smooth at (0, λ0). The procedure and the proof of error
estimates are detailed in [31, 32, 33]. Then using the relation existing between the usual scattering
matrix and the augmented scattering matrix, we can get the statement of the theorem.
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Figure 3: The limit of s(ε, λ0 + εκ(H) + ε2µ) as ε → 0 depends on the parabolic curve chosen for
the frequency.

As explained in [7], Theorem 3.1 shows that the scattering matrix s(·, ·) is not continuous at the
point (0, λ0) (setting where trapped modes exist). Indeed, the function s(·, ·) valued on different
parabolic paths {(ε, λ0 + εκ(H) + ε2µ), ε ∈ (0; ε0)} (see Figure 3) have different limits when ε tends
to zero. And for ε0 6= 0 small fixed, the usual scattering matrix λ 7→ s(ε0, λ) exhibits a quick change
in a neighbourhood of λ0 + ε0κ(H). Indeed, the map µ 7→ s(ε0, λ

0 + ε0κ(H) + ε2
0µ) has a large

variation for µ ∈ [−Cε−1
0 ;Cε−1

0 ] for some arbitrary C > 0 (which is only a small change for λε0).
Said differently, a change of order ε of the frequency leads to a change of order one of the scattering
matrix. This is nothing but the Fano resonance phenomenon. For a given C > 0, outside an interval
of length Cε0 centred at λ0 + ε0κ(H), s(ε0, ·) is approximately equal to s0.

Remark 3.1. When H is such that κ(H)α = β(H) ∈ C × C, in general a fast Fano resonance
phenomenon appears. More precisely, for a given ε0 6= 0 small, the variation of s(ε0, ·) of order one
occurs on a range of frequencies of length O(ε2

0) (instead of O(ε0) when κ(H)α 6= β(H)). We write
“in general” because we can also show that for well-chosen geometric perturbations, obtained solving
a fixed-point problem, no Fano resonance phenomenon happens and the real eigenvalue embedded in
the continuous spectrum keeps this property instead of becoming a complex resonance. In particular,
this latter result allows one to construct non symmetric waveguides with eigenvalues embedded in
the continuous spectrum (see [32, 33]).

From now, we denote by τ1, τ2 ∈ C the two components of τ , so that τ = (τ1, τ2), and we set

sε(µ) := s(ε, λ0 + εκ(H) + ε2µ)
T ε(µ) := T (ε, λ0 + εκ(H) + ε2µ)
Rε+(µ) := R+(ε, λ0 + εκ(H) + ε2µ)
Rε−(µ) := R−(ε, λ0 + εκ(H) + ε2µ).

With this notation, the analysis developed in [7] provides the estimate

|sε(µ)− sasy(µ)| ≤ Cε with sasy(µ) = s0 +
τ>τ

iµ̃− |τ |2/2, (11)

where in (11), for any compact set I ⊂ R, the constant C > 0 can be chosen independent of µ ∈ I.
In particular, we have

|T ε(µ)− T asy(µ)| ≤ Cε with T asy(µ) = T 0 +
τ1τ2

iµ̃− (|τ1|2 + |τ2|2)/2. (12)

In order to prove that we have T ε(µ) = 0 for some µ ∈ R for ε small enough, we first show that the
map µ 7→ T asy(µ) vanishes in R. This is the object of the next section.

4 Asymptotic behaviour of the transmission coefficient

Proposition 4.1. Assume that T 0 6= 0. Then we have

{T asy(µ), µ ∈ R} = C asy \ {T 0}
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where C asy is a circle passing through T 0 and zero.
Proof. Using the expression (12) for T asy(µ) and classical results concerning the Möbius transform,
one can show that {T asy(µ), µ ∈ R} coincides with C asy \ {T 0}, where C asy is a circle passing
through T 0. Let us show that C asy also passes through zero. From (12), one finds that T asy(µ) = 0
for some µ ∈ R if and only if there holds

|τ1|2 + |τ2|2

2 = <e
(
τ1τ2

T 0

)
. (13)

In order to establish (13), we need to derive some relations between T 0 and τ = (τ1, τ2). To proceed,
first we notice that U = (u+, u−) satisfies

Us0 = U. (14)

Indeed, the first component of Us0 is equal to R0
+ u+ + T 0 u− and using (3), one finds that this

function admits the expansion

R0
+ u+ + T 0 u− = R0

+ (w− +R0
+w+) + T 0 (T 0w+) + . . . , for x < −d

R0
+ (T 0w−) + T 0 (w+ +R0

−w−) + . . . , for x > d.

From the unitarity of s0, we infer that R0
+ u+ + T 0 u− has the same expansion as u+ at infinity.

Using that u± are orthogonal to utr in L2(Ω), we deduce that R0
+ u+ + T 0 u− = u+. Similarly,

we show that T 0 u+ + R0
− u− = u−, which allows us to conclude to (14). Now we exploit (14) to

establish the identity
τs0 = τ. (15)

From the expressions (8)-(10) of κ(H), α, β(H) and the properties of s0, we obtain

τs0 = (κ(H)α− β(H)) s0s0 = κ(H)α− β(H).

Then replacing U by Us0 (identity (14)) in κ(H)α − β(H), we get τs0 = (κ(H)α − β(H))s0 = τ .
This proves (15) or equivalently

R0
+ τ1 + T 0 τ2 = a

T 0 τ1 +R0
− τ2 = b.

(16)

Finally, we use (16) to establish (13). The unitarity of s0 imposes R0
− = −R0

+T
0/T 0. Inserting this

relation in the second line of (16) gives

T 0 τ1 −
R0

+T
0

T 0
τ2 = τ2. (17)

The first line of (16) implies

R0
+ = τ1 − T 0τ2

τ1
. (18)

Inserting (18) in (17) and multiplying by τ1 leads to

T 0 (|τ1|2 + |τ2|2)−
T 0

T 0
τ1τ2 = τ1τ2 ⇔ |τ1|2 + |τ2|2 = 2<e

(
τ1τ2

T 0

)
.

This is identity (13).

Remark 4.1. The reason why C asy passes through zero is quite mysterious. When Ω, Ωε are sym-
metric with respect to the (Oy) axis, this can be shown quite simply working with half-waveguides
problems (see e.g. [7]). But without assumption of symmetry, we cannot provide a physical inter-
pretation of this fact.
Denote µ? the value of µ such that T asy(µ?) = 0 and for ε > 0, define the interval Iε := (µ? −√
ε;µ? +

√
ε). From (12), for ε > 0 small, we know that the curve

Cε = {T ε(µ), µ ∈ Iε}

passes close to zero. It remains to show that Cε passes exactly through zero for ε small enough.
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5 Exact zero transmission
Now, we state and prove the main result of the article. Its proof relies on Proposition 4.1 and an
argument presented in [10] (see also [23]).

Theorem 5.1. Assume that T 0 6= 0. Then there is ε0 > 0 such that for all ε ∈ (0; ε0], there exists
µ ∈ R (depending on ε) such that T ε(µ) = 0.

Proof. Let us first give the general idea of the proof. Assume by contradiction that for all ε > 0,
µ 7→ T ε(µ) does not pass through zero in Iε. Since sε(µ) is unitary, there holds Rε+(µ)T ε(µ) +
T ε(µ)Rε−(µ) = 0 and so

−Rε+(µ)/Rε−(µ) = T ε(µ)/T ε(µ) ∀µ ∈ Iε. (19)

But if µ 7→ T ε(µ) does not pass through zero on Iε, using Proposition 4.1 one can verify that the
point T ε(µ)/T ε(µ) = e2iarg(T ε(µ)) must run rapidly on the unit circle for µ ∈ Iε as ε → 0. On the
other hand, Rε+(µ)/Rε−(µ) tends to a constant in Iε as ε→ 0. This way we obtain a contradiction.
We emphasize that the unitary structure of sε(µ) is the key ingredient of this step of the proof.
Now we make this discussion more rigorous.

C asy

T ε(aε)

T ε(bε) µ 7→ T ε(µ)

Q1

Q2

{ρ eiη ∈ C, ρ ∈ R}

Figure 4: Notation used in the proof of Theorem 5.1.

Since the circle C asy passes through zero, there is η ∈ (−π/2;π/2] such that C asy is tangent to the
line {ρ eiη ∈ C, ρ ∈ R}. Define the quadrants

Q1 := {ρ eiθ ∈ C | ρ > 0, η − π/4 < θ < η + π/4}
Q2 := {ρ eiθ ∈ C | ρ < 0, η − π/4 < θ < η + π/4},

see Figure 4. The graph of the map µ 7→ T asy(µ) crosses both quadrants Q1 and Q2 in Iε. On the
other hand, we have |T ε(µ)−T asy(µ)| ≤ Cε where C > 0 is independent of µ ∈ Iε for all ε ∈ (0; ε0].
As a consequence, there is ε0 such that for all ε ∈ (0; ε0], the graph of the map µ 7→ T ε(µ) intersects
both Q1 and Q2 on Iε.

If µ 7→ T ε(µ) does not vanish in Iε, since µ 7→ T ε(µ) is continuous, we deduce that for all ε ∈ (0; ε0],

7



there are aε, bε ∈ Iε such that T ε(aε) = tε e
i(η−π/4) and T ε(bε) = t̃ε e

i(η+π/4), with tε, t̃ε ∈ R \ {0}.
Taking successively µ = aε, µ = bε in the relation preceding (19), we obtain

Rε+(aε) = −ie2iηRε−(aε) and Rε+(bε) = ie2iηRε−(bε). (20)

Introduce the functions Rasy
± such that

Rasy
+ (µ) = R0

+ +
a2

iµ̃− (|a|2 + |b|2)/2 and Rasy
− (µ) = R0

− +
b2

iµ̃− (|a|2 + |b|2)/2.

From (11), we know that there is ε0 > 0 such that, for all ε ∈ (0; ε0], we have

Rε+(aε), Rε+(bε) ∈ B(Rasy
+ (µ?), ε1/4) and Rε−(aε), Rε−(bε) ∈ B(Rasy

− (µ?), ε1/4),

where for z0 ∈ C, B(z0, r) denotes the open disk of C of radius r > 0 centred at z0. From (20), we
deduce that we must have both

B(Rasy
+ (µ?), ε1/4)∩B(ie2iηRasy

− (µ?), ε1/4) 6= ∅ and B(Rasy
+ (µ?), ε1/4)∩B(−ie2iηRasy

− (µ?), ε1/4) 6= ∅.

This is impossible for ε small enough because |Rasy
− (µ?)| = 1 (remember that T asy(µ?) = 0). Thus,

we deduce that for all ε ∈ (0; ε0], µ 7→ T ε(µ) cancels in Iε.

Concerning the zeros of µ 7→ Rε+(µ), we can make the following comments. When ε tends to zero,
from (11), we know that the curve {Rε+(µ), µ ∈ R} gets closer and closer to {Rasy

+ (µ), µ ∈ R}. The
set {Rasy

+ (µ), µ ∈ R} is a circle. It passes through zero if and only if we have

|a|2 + |b|2

2 = <e
(
a2

R0
+

)
. (21)

Dividing the first line of (16) by R0
+ and computing the square of the modulus, we obtain the

identity

|a|2
(

1 +
1
|R0

+|2

)
− 2<e

(
a2

R0
+

)
=
|T 0|2

|R0
+|2
|b|2.

Using the above equality, we obtain that (21) is satisfied if and only if there holds

|a| = |b|. (22)

As a consequence, if |a| 6= |b|, for ε small enough, µ 7→ Rε+(µ) does not pass through zero. Using
the definition of τ in Theorem 3.1, we observe that we have |a| = |b| if Ω and H are symmetric
with respect to the (Oy) axis. However, surely it is not necessary to consider symmetric geometries
to have (22). But we emphasize that if (22) holds in a non symmetric setting, then we cannot
work as in the proof of Theorem 5.1 to get exactly Rε+(µ) = 0 for some µ ∈ R. Everything lies in
the fact that the identity (19) cannot be exploited similarly for the reflection and the transmission
coefficients. Therefore, a priori nothing guarantees that exact zero reflection occurs during the Fano
resonance phenomenon in a non symmetric waveguide, even when (22) is satisfied.

6 Numerical results
In this section, we illustrate the results obtained above. In the first series of experiments, we work
in the geometry

Ωε := R× (0; 1) \ ([−0.5; 0.5]× [0.35 + ε; 0.65 + ε] ∪ [0; 0.5]× [0.15 + ε; 0.85 + ε])

pictured in Figure 5 left. In Ω := Ω0 the obstacle is symmetric with respect to the line R× {1/2}.
According to the results of the literature (see e.g. [15]), we know that there are trapped modes for
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0.5 + ε

Figure 5: Left: geometry of Ωε. Right: real part of a trapped mode for ε = 0 and
√
λ0 ≈ 1.9939.

certain real frequencies in this geometry. Using Perfectly Matched Layers [4, 3, 5], we find that they
exist for

√
λ0 ≈ 1.9939. Figure 5 right represents such a trapped mode in Ω.

The domain Ωε is obtained from Ω by shifting by ε the obstacle along the (Oy) axis. Admittedly,
this kind of perturbation is not exactly the one considered in (6). However, since there exists an
almost identical mapping from Ω to Ωε, results are similar. We emphasize that for ε > 0, Ωε has
no symmetry property. In Figure 6, we display the values of the complex scattering coefficients
R+(ε, λ), T (ε, λ) appearing in the decomposition (3) of u+ for ε = 0.05 and for

√
λ ∈ (1.97; 2.03)

(note that this interval contains the value
√
λ0). To proceed, we use a P2 finite element method in a

truncated geometry. On the artificial boundary created by the truncation, a Dirichlet-to-Neumann
operator with 20 terms serves as a transparent condition. As expected, we observe that λ 7→ T (ε, λ)
passes through zero.

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

Figure 6: Scattering coefficients T (ε, λ) (×) and R+(ε, λ) ( ) for ε = 0.05 and
√
λ ∈ (1.97; 2.03).

As predicted, λ 7→ T (ε, λ) passes through zero around λ0. According to the conservation of energy,
we have |R+(·, ·)|2 + |T (·, ·)|2 = 1 and so the scattering coefficients are located inside the unit disk
delimited by the black bold line.

In Figure 7, we display the curves λ 7→ |T (ε, λ)| for several ε and a range of values of λ. The right
picture is a zoom of the left picture around λ0. As expected we observe that for the different ε,
we have T (ε, λ) = 0 for one λ close to λ0. We also note that the smaller ε > 0 is, the faster the
Fano resonance phenomenon occurs. This is also expected. Finally, in Figure 8, we display the real
part of u+ (see (3)) in Ωε for ε = 0.05 and

√
λ = 2.0072. In this setting, there holds T (ε, λ) ≈ 0.

And indeed we observe that the incident rightgoing wave w+ is completely backscattered, this is
the mirror effect.
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Figure 7: Curves λ 7→ |T (ε, λ)| for several ε and
√
λ ∈ (0;π) (left),

√
λ ∈ (1.9; 2.1) (right). The

vertical dotted line represents the value of
√
λ

0.

Figure 8: Real part of u+ in Ωε for ε = 0.05 and
√
λ = 2.0072. In this setting, we have T (ε, λ) ≈ 0.

In the second series of experiments, we work in the geometry of Figure 10. Using Perfectly Matched
Layers, we find a complex resonance λc such that

√
λc ≈ 2.49 − 0.15i. In Figure 9, we display the

values of the complex scattering coefficients R+(λ), T (λ) appearing in the decomposition (3) of u+
for
√
λ ∈ (2.1; 2.8) (note that this interval contains the value <e

√
λc). Though this experiment

does not strictly enter the framework presented in this note (we do not start from a situation
where trapped modes exist), we observe that the curve λ 7→ T (λ) passes through zero for λ in a
neighbourhood of <e λc. In Figure 10, we display the real part of u+ for

√
λ = 2.4016. In this

setting, we have T (λ) ≈ 0.
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Figure 9: Scattering coefficients T (λ) (×) and R+(λ) ( ) for
√
λ ∈ (2.1; 2.8) in the geometry of

Figure 10.
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Figure 10: Real part of u+ for
√
λ = 2.4016. In this setting, we have T (λ) ≈ 0.

7 Concluding remarks
In this note, we proved that during the Fano resonance phenomenon in monomode regime, without
assumption of symmetry of the geometry, the transmission coefficient passes through zero. Physi-
cally, when the transmission coefficient is null, the energy of an incident wave propagating through
the structure is completely backscattered. As already mentioned, everything presented here is also
valid in higher dimensions and with Dirichlet or periodic boundary conditions instead of Neumann
ones. We considered a geometrical perturbation of the walls of the waveguide. We could also
have worked with a penetrable inclusion placed in the waveguide. Then perturbing the material
parameter, we would have obtained similar results. Importantly, the above analysis applies only in
monomode regime, that is for our geometry when λ0 belongs to (0;π2). It is not clear what happens
in multimodal regime (λ0 > π2). Moreover, we assumed that λ0 is a simple eigenvalue embedded
in the continuous spectrum of the Neumann Laplacian. When λ0 is not simple, the analysis has to
be done.
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