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Abstract: Starting with a locally Lipschitz (patchy) Lyapunov function for a given switched
system, we provide the construction of a continuously differentiable (smooth) Lyapunov
function, obtained via a convolution-based approach. This smooth function approximates the
patchy function when working with Clarke’s generalized gradient. The convergence rate inherited
by the smooth approximations, as a by-product of our construction, is useful in establishing
the robustness with respect to additive inputs. With the help of an example, we address the
limitations of our approach for other notions of directional derivatives, which generally provide
less conservative conditions for stability of switched systems than the conditions based on
Clarke’s generalized gradient.
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1. INTRODUCTION

State-dependent switching systems can be used to model
and analyze a large number of physical setups. These sys-
tems are defined by a family of vector field {f1, . . . , fM} ⊂
C1(Rn,Rn) and a switching signal σ : Rn → {1, . . . ,M},
via an ordinary differential equation of the form

ẋ = fσ(x)(x). (1)

For studying generalized solutions of such systems, it turns
out to be useful to introduce the Filippov regularization of
the system (1), that leads us to the differential inclusion

ẋ ∈ F sw(x), (2)

where F sw : Rn ⇒ Rn is upper semi-continuous with
nonempty, compact and convex values for each x ∈ Rn. To
analyze the stability of an equilibrium of system (2) using
Lyapunov-based methods, the search for almost every-
where differentiable Lyapunov functions fits well with the
structure of the problem: the system (1) is an autonomous
differential equation with discontinuous right-hand side,
but that is continuous in some open sets whose closure
covers the state space Rn. For this reason, the choice of
locally Lipschitz functions that are smooth in some open
sets is quite intuitive and well-studied in literature. As
a particular example, we refer the reader to (Della Rossa
et al., 2018) to see the utility of functions obtained by max-
min composition over a finite family of smooth functions
in the context of stability of switched systems.

For the differential inclusion (2), the study of smooth
Lyapunov functions has attracted some attention as well.
A converse Lyapunov theorem has been proved for (2), see
(Teel and Praly, 2000) or (Clarke et al., 1998) for the for-
mal statement and (Kellett, 2015) for a thorough review.
More precisely, we have the following result: If the origin of
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differential inclusion (2) is globally asymptotically stable
(GAS), then there exists a smooth Lyapunov function.
From a theoretical point of view, there are many advan-
tages in having a smooth Lyapunov function: in particular
the existence of such function also gives us information
about the robustness of the stability for the considered
dynamical system. Indeed, for general hybrid systems, it
is shown in (Cai et al., 2007) that if a smooth Lyapunov
function exists then the asymptotic stability is robust to
small perturbations of the data.

In this paper, we want to fill the gap between these two sets
of results concerning the construction of Lyapunov func-
tions (almost everywhere differentiable, and the smooth
ones) in the case of state dependent switching systems (1).
In particular, we address the following question:

Given a locally Lipschitz GAS-Lyapunov function
V : Rn → R for system (1), is it possible to approximate

V with another smooth Lyapunov function?

To answer this question, it will be crucial to define the
concept of “derivatives along the system’s trajectories” for
locally Lipschitz functions (which are not C1 in general).
Following the intuitions of (Ceragioli, 2000), we will focus
on two different notions of “derivatives along trajectories”
that we call Clarke and Lie derivatives, each of them being
a set-valued map from the state space Rn to the real
numbers. Results generalizing Lyapunov’s direct method
using these concepts can be found in (Baier et al., 2012),
(Bacciotti and Ceragioli, 1999). We shall show that, among
these two different concepts, Clarke notion leads to a pos-
itive answer to our question of obtaining “smooth approx-
imations” of a given locally Lipschitz Lyapunov function.
We shall also prove that, under certain conditions, such lo-
cally Lipschitz Lyapunov functions imply robustness with
respect to perturbations in the dynamics, and this later
property is formalized using the notion of input-to-state



stability (ISS). Obtaining the same result for Lyapunov
functions that satisfy conditions based on the concept of
Lie derivative is not straightforward, and in this paper we
will only scratch the surface of this problem.

The paper is organized as follows: In Section 2 we in-
troduce some nonsmooth analysis prerequisites, while in
Section 3, we give the definitions and the stability results
for the state-dependent switching systems. In Section 4, we
present our main result on smooth approximations, with
some open-ended discussions for future research.

2. PRELIMINARIES

Let F : Rn ⇒ Rn be an upper semi-continuous mapping
with nonempty, compact, convex values, and consider the
differential inclusion (DI)

ẋ(t) ∈ F (x(t)). (3)

In this section, we give sufficient conditions under which
the origin of (3) is globally asymptotically stable, consid-
ering non-smooth (but locally Lipschitz) Lyapunov func-
tions. Thus, in the following, we collect various notions of
generalized derivatives and gradients. It can be seen that if
V is locally Lipschitz continuous (Clarke, 1990, Theorem
2.5.1, page 63) we have the following characterization of
the Clarke’s generalized gradient that, given the aim of
this paper, can be seen as a definition:

∂V (x) := co

{
lim
k→∞

∇V (xk) |xk → x, xk /∈ NV
}

(4)

is the Clarke’s generalized gradient of V at x, where NV ⊂
Rn is the set of zero measure where ∇V is not defined.
We now introduce two different notions of generalized
directional derivatives for locally Lipschitz functions with
respect to differential inclusion (3), which appeared firstly
in (Bacciotti and Ceragioli, 1999).

Definition 1. (Set-valued directional derivatives). Consider
the differential inclusion (3); given a locally Lipschitz func-
tion V : Rn → R, the Clarke generalized derivative of V
along F , denoted V̇F (x), is defined as

V̇F (x) := {〈p, f〉 | p ∈ ∂V (x), f ∈ F (x) }. (5)

Additionally, we define the Lie generalized derivative of V

with respect to F , denoted V̇ F , as

V̇ F (x) := {a ∈ R | ∃f ∈ F (x) : 〈p, f〉 = a, ∀p ∈ ∂V (x)}.
(6)

Due to continuity of the scalar product, it can be proved

that V̇F (x) and V̇ F (x) are closed and bounded intervals
(possibly empty) of the real line, for each x ∈ Rn.
Adopting the convention max ∅ = −∞, it follows that

max V̇F (x) and max V̇ F (x) are well-defined, for each x ∈
Rm. In the case where V is continuously differentiable at

x, one has V̇ F (x) = V̇F (x) = {〈∇V (x), f〉 | f ∈ F (x)}. It
is clear that, in general

V̇ F (x) ⊂ V̇F (x). (7)

We also consider a proper subclass of locally Lipschitz
functions, introduced firstly in (Valadier, 1989): a locally
Lipschitz function V : Rn → R is said to be non-
pathological if, given any absolutely continuous function

ϕ ∈ AC(R+,Rn), it holds that, for almost every t ∈ R+,
there exists an at ∈ R such that

〈v, ϕ̇(t)〉 = at, ∀v ∈ ∂V (ϕ(t)).

The usefulness of non-pathological functions in this con-
text is mainly given by the following result:

Proposition 2. ((Ceragioli, 2000)). If V : Rn → R is a non-
pathological function and ϕ : R+ → Rn is a solution of the
differential inclusion (3) then

d

dt
V (ϕ(t)) ∈ V̇ F (ϕ(t))

for almost every t ∈ R+.

Now we are in the position to recall two main adaptations
of the classical Lyapunov direct theorem in the context of
differential inclusions and locally Lipschitz functions:

Proposition 3. (Clarke Sufficient Conditions). Let V : Rn
→ R be a locally Lipschitz function such that there exist 1

α1, α2 ∈ K∞ and α3 ∈ PD, satisfying

α1(|x|) ≤ V (x) ≤ α2(|x|), ∀x ∈ Rn, (8)

max V̇F (x) ≤ −α3(|x|), ∀x ∈ Rn (9)

then the origin of system (3) is GAS and we say that V is
Clarke GAS-Lyapunov function for the system (3).

The proof of this well-known result can be found for exam-
ple in (Clarke, 1990) or in (Baier et al., 2012), but in the
context of non-pathological functions, recalling inclusion
(7), it can be deduced from the following proposition.

Proposition 4. (Lie Sufficient Conditions). Let V : Rn →
R be a locally Lipschitz and non-pathological function such
that there exist α1, α2 ∈ K∞ and α3 ∈ PD, satisfying

α1(|x|) ≤ V (x) ≤ α2(|x|), ∀x ∈ Rn, (10)

max V̇ F (x) ≤ −α3(|x|), ∀x ∈ Rn (11)

then the origin of system (3) is GAS and we say that V is
a Lie GAS-Lyapunov function for the system (3).

Proposition 4 is proven, e.g., in (Ceragioli, 2000, Prop. 8).

3. SWITCHING SYSTEMS

In this section, we provide a formal description of the
switched systems considered in this article and in partic-
ular, the partition of the state space that describes the
switching rule. Then, we introduce the notion of patchy
Lyapunov functions for such systems, and rewrite Propo-
sitions 3 and 4 in this setting.

Definition 5. A finite collection X := {X1, . . . ,XM}, with
Xi ⊂ Rn, i ∈ I := {1, . . . ,M}, is said to be a proper
partition of the state space Rn if

(1) Rn =
⋃M
i=1 Xi ;

(2) (int(Xi)) = Xi ;
(3) Xi ∩ Xj = bd(Xi) ∩ bd(Xj), ∀(i, j) ∈ I2, i 6= j ;
(4) For each compact set K ⊂ Rn \ {0}, there exists a

scalar κ0 > 0 such that, for every x ∈ K and i, j ∈ I
x ∈ Xi andXj∩B(x, κ0) 6= ∅ ⇒ Xi∩Xj∩B(x, κ0) 6= ∅,

1 A function α : Rn → R is called positive definite, denoted by
α ∈ PD, if it is continuous, µ(0) = 0 and µ(x) > 0 if x 6= 0. We say
that α ∈ K if α ∈ PD and α is increasing. Also, α ∈ K∞ if α ∈ K
and unbounded.



where bd(A) denotes the boundary of a set A and
B(x, r) := {y ∈ Rn | |x− y| < r}. A similar definition can
be found in (Ahmadi et al., 2017, Definition 1). To provide
an interpretation, (2) is equivalent to saying that Xi are
closures of some open sets X ◦i = int(Xi). Clearly (1) can
be equivalently stated as

⋃
i X ◦i = Rn and, perhaps not so

obviously, (3) is equivalent to X ◦i ∩ X ◦j = ∅, ∀i 6= j. Item
(4) intuitively means that the regions of the partition are
not “too close” to each other. Finally, let us define the
set-valued map

IX (x) := {i ∈ I | x ∈ Xi},
that represents the indices of the set containing x; by
Definition 5, IX is almost everywhere single valued.

Given a proper partition X = {X1, . . . ,XM} and a family
F = {f1, . . . , fM} ⊂ C1(Rn,Rn), we consider the system

ẋ = fσ(x)(x), (12)

where σ : Rn → {1, . . . ,M} is the switching signal
associated to the proper partition, that is

σ(x) = i, ∀x ∈ int(Xi),
and σ(x) is arbitrarily defined on ∂X :=

⋃M
i=1 bd(Xi),

that is the set where the function fσ(·)(·) is (possibly) not
continuous, also called the switching surface. Due to this
discontinuous behavior, we need to define an appropriate
notion of solution of (12), conventionally arising from
Filippov regularization, (Filippov, 1988).

Definition 6. Given a switching system defined by (12),
we define its Filippov regularization as

F sw(x) := co{fi(x) | i ∈ IX (x)}. (13)

We say that ϕ : R+ → Rn is a Filippov solution of system
(12) starting at x0 ∈ Rn if

• ϕ is absolutely continuous, with ϕ(0) = x0,
• ϕ̇(t) ∈ F sw(ϕ(t)) for almost all t > 0.

It is well known that F sw : Rn ⇒ Rn is an upper semi-
continuous map with nonempty, compact, convex values.
We finally introduce a class of locally Lipschitz functions,
obtained by “gluing” together a finite set of C1 functions
that are well-defined on a proper partition of Rn.

Definition 7. (Patchy Functions). A function V : Rn →
R is a Patchy Function (PF) associated to the proper
partition X = {X1, . . . ,XM} if

• V is locally Lipschitz continuous;
• There exists a family {V1, . . . , VM}, Vi ∈ C1(Xi,R)

for all i ∈ I, such that

V (x) = Vi(x), if x ∈ Xi.

A slightly different definition of “patchy functions” can be
found in (Goebel et al., 2009) in the context of control
Lyapunov functions and hybrid feedback. Even if the two
definitions differ, the main idea behind them is the same:
we consider a family of functions that are smooth in some
regions of the space, with the additional requirement that
they “glue” together.

Remark 8. We collect here some properties of the PF.
First of all, let us underline that under the condition (2) of
Definition 5 the boundary of each Xi has Lebesgue measure
zero. Thus by Definition 7 a patchy function is C1 almost
everywhere, in particular, for any i, for every x ∈ int(Xi),
we have ∇V (x) = ∇Vi(x). Moreover, from (4), we have

∂V (x) = co {∇Vi(x) | i ∈ IX (x)} , (14)

and, given F sw : Rn ⇒ Rn in (13), the sets in (5) and (6)
are
V̇F sw (x) = co{〈∇Vi(x), f〉 | i ∈ IX (x), f ∈ F sw(x) },
˙
V F sw (x) = {a ∈ R | ∃f ∈ F sw(x) : a = 〈∇Vi(x), f〉, ∀i ∈ IX (x)}.

(15)
The proofs of these equalities and of the fact that every
patchy function is in particular non-pathological are quite
technical, and thus they have been removed from this
paper due to space constraints. It is also useful to introduce
the following notation:

F sw
L (x) :=

{
f ∈ F sw(x)

∣∣∣ 〈∇Vi(x)−∇Vj(x), f〉 = 0,

∀(i, j) ∈ IX (x)2

}
(16)

that represents the subset of F sw(x) composed by vectors
f for which the scalar product with all the generalized
gradients is constant, as introduced in the definition of

V̇ F sw(x). With (16), the set in (15) becomes

V̇ F sw(x) = {〈∇Vi(x), f〉 | i ∈ IX (x), f ∈ F sw
L (x)}.

We can now rewrite the stability conditions in Prop. 3 and
Prop. 4 for switched system (13) using patchy functions.

Corollary 9. (Stability of Switched Systems). Consider the
system (13) with proper partition X = {X1, . . . ,XM}.
Suppose that there exist a patchy function V : Rn → R,
α1, α2 ∈ K∞, and α3 ∈ PD satisfying

α1(|x|) ≤ V (x) ≤ α2(|x|), ∀x ∈ Rn, (17)

〈∇Vi(x), fi(x)〉 ≤ −α3(|x|) ∀x ∈ int(Xi)∀i ∈ I. (18)

Let us also suppose that at least one of the following holds
for each x ∈ ∂X :

〈∇Vj(x), fi(x)〉 ≤ −α3(|x|) ∀(j, i) ∈ IX (x)× IX (x) (19)

〈∇Vj(x), f〉 ≤ −α3(|x|)∀j ∈ IX (x),∀f ∈ F sw
L (x), (20)

then the origin of system (13) is GAS.

Proof. The result follows from the fact that V is a non-
pathological function, combined with the characterizations
in (15), and statement of Prop. 3 and Prop. 4. In fact,
conditions (18) combined with (19) (respectively, (18)
combined with (20)) are the specifications of conditions
(9) (resp. (11)) in the context of Filippov regularization
(13) of a switching system. 2

4. SMOOTH APPROXIMATION OF LYAPUNOV
FUNCTIONS

In this section, we will address our main question: Given
a patchy Lyapunov function for system (12) is it possible
to construct an approximating sequence of smooth func-
tions for which the Lyapunov inequalities are (weakly) pre-
served? Our response to this question is affirmative when
working with Clarke derivatives, while for Lie derivatives
we show with the help of an example that alternative
methods need to be investigated. A primary motivation for
constructing smooth approximations is that they provide
more information about the robustness of the system.
In Section 4.2, we show a connection between the exis-
tence of smooth Lyapunov functions and the ISS property
with respect to additive inputs. It is emphasized that the
interest in such approximation is not the prove of the
existence of a smooth Lyapunov function for a globally



asymptotically stable differential inclusion: such converse
results are well-known, see (Teel and Praly, 2000), and
(Clarke et al., 1998). Here, due to the specific structure of
the problem, we carry out the construction of a smooth
Lyapunov function that inherits the decay rate from an
already-constructed locally Lipschitz (patchy) Lyapunov
function.

4.1 Approximation of Clarke Lyapunov Functions

In the following, we consider a proper partition X =
{X1, . . . ,XM}, a family of functions F = {f1, . . . , fM}
⊂ C1(Rn,Rn) and the ensuing switching system (13). We
suppose that the system is GAS and that a Clarke patchy
Lyapunov function V : Rn → R is given, that is, V satisfies
(17), (18) and (19) for some functions α1, α2 ∈ K∞ and
α3 ∈ PD. We construct below a smooth function close to
the given V . More precisely, we will prove the following

Theorem 10. (Smooth approximation). Consider a patchy
function V : Rn → R associated to the proper partition X ,
defined as in Definition 7. Given F sw : Rn ⇒ Rn defined
as in (13), let us suppose that there exists α3 ∈ PD such
that

V̇F sw(x) ≤ −α3(|x|), ∀x ∈ Rn. (21)

Then, for any given positive definite functions µ, ν, there

exists Ṽ ∈ C∞(Rn,R) such that

|Ṽ (x)− V (x)| < µ(x), ∀x ∈ Rn,
〈∇Ṽ (x), f〉 ≤ −α3(|x|) + ν(x), ∀x ∈ Rn, ∀ f ∈ F sw(x).

The proof of Theorem 10 builds on some tools that are
provided in the sequel.

Definition 11. A sequence of mollifiers {ψκ}κ>0 is any set
of functions on Rn such that ψκ ∈ C∞(Rn,R), ψκ(x) ≥ 0

for all x ∈ Rn, supp(ψκ) ⊂ B(0, κ) and
∫
Rn ψκ(x) dx = 1.

Given a locally Lipschitz function V : Rn → R, we define
the κ-regularization of V as

V κ(x) := V ? ψκ(x) :=

∫
Rn

V (x− y)ψκ(y) dy. (22)

A common way to construct an explicit sequence of mol-
lifiers is to consider the following function

ψ(x) :=

{
ae

1
|x|2−1 , if |x| < 1,

0 if |x| ≥ 1,
(23)

where a = 1/
∫
Rn ψ(y) dy; we can define the κ-mollifier as

ψκ(x) :=
1

κn
ψ
(x
κ

)
, (24)

where κ ∈ R>0. Throughout this section, we will use
this family of mollifiers, but we underline that only the
properties of Definition 11 are necessary to prove the
following result.

Lemma 12. (Brezis, 2010, Proposition 4.21) Given a lo-
cally Lipschitz function V : Rn → R, the function in (22)
satisfies V κ ∈ C∞(Rn,R) for all κ > 0. Moreover, for any
compact set K ⊂ Rn and for any ε > 0, ∃ κ̃ > 0 such that

|V κ(x)− V (x)| < ε, ∀x ∈ K, ∀κ ≤ κ̃. (25)

Lemma 12 states that V κ → V uniformly on compact
subset of Rn, as κ → 0. Given the sequence of smooth
functions {V κ} that converges to V uniformly on compact

subsets of Rn, we establish that the directional derivatives
of V κ along the vector fields of (13) also converge in some
sense to the directional derivatives of V .

Lemma 13. Given a compact set K ⊂ Rn \ {0} and an
ε > 0, there exists κ̃ > 0 such that for all κ ≤ κ̃
〈∇V κ(x), f〉 ≤ −α3(|x|) + ε, ∀x ∈ K, ∀f ∈ F sw(x).

Proof. Using the definition of V κ in (22) and the
Lebesgue’s Convergence Theorem, for a given x, v ∈ Rn,
we have

〈∇V κ(x), v〉 = lim
h→0+

V κ(x+ hv)− V κ(x)

h

=

∫
B(0,κ)

〈∇V (x− y), v〉ψκ(y) dy,

where we emphasize that ∇V (·) is defined almost every-
where in B(x, κ). Let us fix K ⊂ Rn \ {0} compact, ε > 0,
x ∈ K and f ∈ F sw(x). Given a κ > 0, let us define
IX (x;κ) :=

⋃
z∈B(x,κ) IX (z). From Definition 5 we have

〈∇V κ(x), f〉 =

∫
B(0,κ)

〈∇V (x− y), f〉ψκ(y) dy

=
∑

i∈IX (x;κ)

∫
y∈B(0,κ)
x−y∈Xi

〈∇Vi(x− y), f〉ψκ(y) dy.

(26)
Let us fix κ0 > 0 given by property (4) of Definition 5,
then for all i ∈ IX (x;κ0) and for all j ∈ IX (x) there exists
z̃i,j ∈ B(x, κ0) ∩ Xi ∩ Xj . From (21), and from definition
(13) this implies

〈∇Vi(z̃i,j), fj(z̃i,j)〉 ≤ −α3(|z̃i,j |). (27)

In fact if i ∈ IX (x) then we can choose z̃i,j = x,
otherwise we can take z̃i,j ∈ bd(Xj) ∩ bd(Xi) ∩ B(x, κ0).
By continuity of f1, . . . , fM and ∇V1, . . .∇VM and by
compactness of K there exists κ1 > 0 small enough
such that |〈∇Vi(x2), fj(x2)〉 − 〈∇Vi(x1), fj(x1)〉| < ε

2 , if

x1, x2 ∈ K and |x1−x2| < 2κ1, for all (i, j) ∈ I2. Choosing
κ′ := min{κ0 , κ1}, (27) yields, for each f ∈ F sw(x),

〈∇Vi(x−y), f〉 ≤ −α3(|z̃i,j |)+
ε

2
, ∀ y ∈ B(0, κ), x−y ∈ Xi

(28)
for all κ ≤ κ′. Moreover by continuity of α3, there exists
κ̃ ≤ κ′ such that α3(|x1|) − α3(|x2|) ≤ ε

2 if |x1 − x2| ≤ κ̃.
This clearly implies

α3(|x|)− α3(|z|) ≤ ε

2
, if z ∈ B(x, κ̃). (29)

To summarize, by combining (26), (28) and (29), we get

〈∇V κ(x), f〉 ≤ −
∑

i∈IX (x;κ)

∫
y∈B(0,κ)
x−y∈Xi

α3(|x|)ψκ(y) dy

+

∫
B(0,κ)

εψκ(y) dy = −α3(|x|) + ε.

for all κ ≤ κ̃. The choice of κ̃ > 0 neither depends on
x ∈ K, nor on f ∈ F sw(x), but only on K and ε > 0.
Hence, the assertion follows. 2

Merging Lemmas 12 and 13, we obtain the following result:

Theorem 14. Consider any compact set K ⊂ Rn \ {0}. For
any given ε > 0 there exists a κ0 > 0 such that

|V (x)− V κ(x)| < ε and 〈∇V κ(x), f〉 ≤ −α3(|x|) + ε,

for all f ∈ F sw(x), x ∈ K and for all κ ≤ κ0.



Proof of Theorem 10. To complete the proof, we briefly
recall the arguments used in (Lin et al., 1996, Theroem
B.1), to which we refer for further details. We consider
{Uk} a locally finite, countable cover of Rn \ {0}, with
Uk compact and Uk ⊂ Rn \ {0}. Let {βk} be a partition
of unity on Rn \ {0} associated to the covering {Uk}.
Thus, given µ and ψ of the statement one can properly
define εk > 0 and apply Theorem 14 to Uk and εk, for

each k ∈ N, obtaining a smooth approximation Ṽk on Uk.

Defining Ṽ (x) =
∑
k∈N βk(x)Ṽk(x), it can be seen that the

statement holds. 2

4.2 Application to ISS via Smooth functions

As sample application of our smooth approximation of
patchy functions, we discuss here some ISS results. Given
a proper partition X = {X1, . . . ,XM}, let us add to the
system (13) a state dependent input map, that is,

ẋ(t) ∈ F sw
u (x, u) := co {fi(x) + gi(u) | i ∈ IX (x)} , (30)

where {g1, . . . , gM} ⊂ C1(Rm,Rn). We have the following

Proposition 15. Let us consider the system (30) with input

u ≡ 0. Suppose that there exist a Ṽ ∈ C∞(Rn,R) and
α1, α2, α3 ∈ K∞ such that, for all x ∈ Rn

• α1(|x|) ≤ Ṽ (x) ≤ α2(|x|), (31)

• 〈∇Ṽ (x), f〉 ≤ −α3(|x|), ∀f ∈ F sw
u (x, 0), (32)

i.e. Ṽ is a smooth GAS-Lyapunov function for the system
(30) with input u ≡ 0. Moreover, let us suppose that there
exist β1, β2 ∈ K∞ and ε > 0 such that

(i) gi(u) ≤ β1(|u|) for all u ∈ Rm;

(ii) |∇Ṽ (x)| ≤ β2(|x|) + ε for all x ∈ Rn;

(iii) lim|x|→∞
α3(|x|)
β2(|x|) = +∞.

Then there exists α̃3 ∈ K∞ and γ ∈ K such that

〈∇Ṽ (x), f̃〉 ≤ −α̃3(|x|), ∀|x| ≥ γ(|u|), (33)

for every f̃ ∈ F sw
u (x, u).

Property (33) implies that the system (30) is ISS, and Ṽ is
an ISS-Lyapunov function (Sontag and Wang, 1995). The
asymptotic ratio condition (iii) also appears in (Liberzon
and Shim, 2015, Theorem 1). Let us note that quantifying

the decay of Ṽ via α3 is the key to proving ISS, which
motivates our result of Theorem 10, where the dissipation
rate α3 is preserved by the smoothened construction. We
want to underline again that if system (30) is GAS (in
the case u ≡ 0), the existence of a smooth Lyapunov
function is assured by the converse Lyapunov Theorem
(Teel and Praly, 2000), but in this case we do not have
informations on the decay function. Moreover, let us note
that in items (ii) and (iii) of Prop. 15 we need to provide a
K∞-upper bound of the norm of the gradient of the smooth
Lyapunov function. Under some assumptions, this bound
can be deduced from the properties of the patchy function

that Ṽ approximates, as we show next in Example 1.

Proof. We follow the idea of (Khalil, 2002, Lemma 4.6).
First of all, note that

F sw
u (x, u) ⊂ co{fi(x) | x ∈ IX (x)}+co{gi(u) | x ∈ IX (x)}.

Thus, by (i) and (ii), given x ∈ Rn, u ∈ Rm, f̃ ∈ F sw
u (x, u),

we have

〈∇Ṽ (x), f̃〉 ≤ − α3(|x|) + β1(|u|)(β2(|x|) + ε)

=− (1− δ)α3(|x|)
− δα3(|x|) + β1(|u|)(β2(|x|) + ε),

for all 0 < δ < 1. Thus if β1(|u|)(β2(|x|)+ε)−δα3(|x|) ≤ 0

then 〈∇Ṽ (x), f̃〉 ≤ −(1− δ)α3(|x|). Computing we have

β1(|u|)(β2(|x|)+ε)−δα3(|x|) ≤ 0 ⇔ β1(|u|) ≤ δα3(|x|)
β2(|x|) + ε

.

By (iii), there exists γ̃ ∈ K∞ such that γ̃(s) ≤ δ α3(s)
β2(s)+ε

for all s ∈ R≥0, and thus, by letting α̃3 = (1 − δ)α3 and
γ = γ̃−1 ◦ β1, we can deduce (33). 2

Example 1. (Linear conewise switching). Let us consider
a partition X = {X1, . . . ,XM} such that all the Xi are
cones, that is, if x ∈ Xi then λx ∈ Xi, for all λ ∈ R+, for
all i ∈ I. Consider the linear switched system

ẋ(t) ∈ co {Aix+Biu | i ∈ IX (x)} =: F sw
lin (x, u) (34)

where {A1, . . . , AM} ⊂ Rn×n and {B1, . . . , BM} ⊂ Rn×m.
Considering system (34) with u ≡ 0, let us suppose that
a GAS-patchy Lipschitz function V : Rn → R is given. In
particular, without loss of generality, we can suppose that
V is homogeneous of degree 2. If it is not, by linearity of
(34) and the fact that every Xi is a cone, we can apply
the idea presented in (Rosier, 1992, Prop 2) to each Vi,

obtaining a patchy Lyapunov function Ṽ homogeneous of
degree 2. For that reason, there exist a1, a2, a3 > 0 such
that

a1|x|2 ≤ V (x) ≤ a2|x|2, ∀x ∈ Rn,
〈∇Vi(x), Aix〉 ≤ −a3|x|2 ∀x ∈ int(Xi)∀i ∈ I,
〈∇Vj(x), Aix〉 ≤ −a3|x|2 ∀x ∈ ∂X ,∀(j, i) ∈ IX (x)2.

Moreover, following Rosier (1992), if V is homogeneous of
degree 2, then the generalized gradient ∂V (·) is homoge-
neous of degree 1 in the sense that ∂V (λx) = λ∂V (x),
∀x ∈ Rn, ∀λ ∈ R. Thus we can find a b ∈ R such that

max
v∈∂V (x)

|v| ≤ b|x|, ∀x ∈ Rn. (35)

Applying Theorem 10, for any ε > 0 we construct a smooth

function Ṽ ∈ C∞(Rn,R) such that

(a1 − ε)|x|2 ≤ Ṽ (x) ≤ (a2 + ε)|x|2, ∀x ∈ Rn,
〈∇Ṽ (x), f〉 ≤ −(a3 + ε)|x|2 ∀x ∈ Rn ∀f ∈ F sw

lin (x, 0).

Moreover, the gradient of Ṽ inherits the property (35) in
the sense that it can be bounded by a linear function, that

is there exists a b̃ ∈ R such that |∇Ṽ (x)| ≤ b̃|x|+ ε. Thus,
all the hypotheses of Prop. 15 are satisfied by the function

Ṽ , and we can conclude that the system (34) is ISS, and

function Ṽ is a smooth ISS-Lyapunov function.

We want to underline that, without the smoothness as-

sumption on the function Ṽ , Prop. 15 does not hold;
this provides a motivation to study the approximation
technique for the family of patchy Lyapunov functions.

4.3 Lie Lyapunov Functions: A counterexample

Let us consider a patchy Lyapunov function for system
(13) in the sense of Lie, i.e. a patchy function V : Rn → R
that satisfies (17), (18) and (20). The smoothing technique
used in Section 4.1 is not useful in this context, as shown
in the following counterexample:
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Fig. 1. Illustration of Example 2. The blue curve is a solution
starting at z0 = (−1, 1)>; the red curve shows a level set of
the patchy function V ; the black and green vectors represent,
respectively, the fields and the gradients at z = (1, 1)>.

Example 2. We consider the dynamical system from
(Johansson and Rantzer, 1998, Example 1). Given the
proper partition X = {X1,X2} of R2 defined by

Xi := {x ∈ R2 | x>Qix ≥ 0},

with Q1 =
(−1 0

0 1

)
, and Q2 = −Q1, we consider the

switching system

ẋ =

{
A1x, if x ∈ X1,

A2x, if x ∈ X2,

with A1 =
(−0.1 1
−5 −0.1

)
and A2 =

(−0.1 5
−1 −0.1

)
. It is easy

to see that the patchy function defined by

V (x) =

{
V1(x) = x>P1x if x ∈ X1,

V2(x) = x>P2x if x ∈ X2,

with P1 =
(

5 0
0 1

)
, P2 =

(
1 0
0 5

)
is a Lie Lyapunov function:

outside the switching surfaces (i.e. if x ∈ int(X1)∪int(X2)),
we have 〈∇V (x), ẋ〉 < 0 and hence (18) holds. On the
switching lines (i.e if x ∈ ∂X = bd(X1) ∩ bd(X2)), we

have V̇ F sw(x) = ∅, which means that nothing has to be
checked in (20). See Figure 1 for a graphical illustration of
a trajectory of the system and a particular level set of the
function V . It is clear that V is not a Clarke Lyapunov
function, for example at the point z = (1, 1)> ∈ ∂X we
have 〈∇V1(z), A2z〉 = 23.4 > 0, which contradicts (19). If
we try to apply the smoothing technique of Section 4.1 to
the function V , we would have

∇V κ(z)→ w :=
1

2
∇V1(z) +

1

2
∇V2(z) ∈ ∂V (z),

and for this vector w, it holds that 〈w,A2z〉 = 11.4 >
0. The sequence of smooth functions Vκ obtained via
convolution with ψκ defined as in (24), even if it converges
uniformly on the compact sets to V , does not preserve
the property of being monotonically decreasing along the
solutions, which holds for V by assumption.

This example shows that the convolution-based approxi-
mation, when working with the sequence of mollifiers (24),
does not permit us to approximate a patchy Lie Lyapunov
function by a smooth one. The problem of the existence
and construction of such smooth approximate functions
remains open for further research.

5. CONCLUSION

Having proposed certain patchy Lyapunov functions for
certifying the stability of autonomous switched systems,
we addressed the question of constructing a smooth ap-
proximation of such functions. Such constructions are par-
ticularly relevant for studying stability in the presence of
bounded disturbances in the dynamics. Some questions on
generalizing this construction with Lie notion of derivative
are still being investigated.
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