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Deep Learning Protocol for Condition Monitoring & Fault Identification in a Rotor-Bearing System from Raw Time-Domain Data

A Deep Learning protocol is developed for identification of typical faults occurring in rotating machinery. In past Support Vector Machines (SVMs), Clustering, Artificial Neural Networks (ANNs) and other algorithms have been used for this purpose. However, these algorithms require the raw time-domain data, from the sensors on the machine, to be first processed and handcrafted into parameters like Fast Fourier Transform (FFT) coefficients, Statistical Moments, etc. before being fed as inputs. ANN with back-propagation is a popular algorithm in many domains. It however suffers from the vanishing gradient problem and not adequate enough when subjected to raw sensor response as input. Deep Learning or Deep Neural Network is understood as a form of neural network with a large number of layers. Convolutional Neural Network (CNN) architecture is commonly used in a deep neural network for image recognition. A Deep Learning CNN architecture has been developed, employing the analogy of an RGB image, to directly work upon the raw time-domain signals obtained from sensors on a rotor-bearing system. The analogous RGB channels are vibration data from different sub-systems of the complete rotor-bearing assembly. The Deep Learning Network effectively recognizes all kinds of faults that were investigated.

Introduction

Data collection, feature extraction and fault identification are typical steps in fault diagnosis of a mechanical system. Conventional approaches in fault diagnosis extract features from time and frequency domain of raw signals. Statistical parameters and Fast Fourier Transform coefficients are widely used features. Machine learning techniques are used with these handcrafted features to identify faults. Fuzzy Logic, Wavelets, Clustering, Decision Trees, Support Vector Machines (SVM) and Artificial Neural Networks (ANN) are some of the techniques used in past for fault identifications [START_REF] Boumahdi | On the extraction of rules in the identification of bearing defects in rotating machinery using decision tree[END_REF]- [START_REF] Vyas | Artificial neural network design for fault identification in a rotorbearing system[END_REF]. Statistical moments of raw time domain signal and its derivatives were used as features of ANN by Vyas [START_REF] Vyas | Artificial neural network design for fault identification in a rotorbearing system[END_REF] for fault diagnosis of rotor-bearing system. Efforts to automate the feature extraction using deep learning techniques are being made in recent studies [START_REF] Zhao | Deep Learning and Its Applications to Machine Health Monitoring[END_REF]. Janssensa [START_REF] Janssens | Convolutional Neural Network Based Fault Detection for Rotating Machinery[END_REF] used Discrete Fourier Transform coefficients as input to Convolutional Neural Network (CNN) for bearing fault classification. Features learnt from CNN network combined with time domain features were used by Xie [START_REF] Xie | Fault Diagnosis for Rotating Machinery Based on Convolutional Neural Network and Empirical Mode Decomposition[END_REF] to train SVM model. Guo [START_REF] Guo | A novel fault diagnosis method for rotating machinery based on a convolutional neural network[END_REF] trained a CNN network with input as continuous wavelet transform scalogram of rotor machinery.

ANNs are not adequate to abstract features from raw time domain data due to large dimension of the data and vanishing gradients. The method proposed in this study, directly works upon raw time domain data eliminating the pre-requisite of extracting features.

Deep Neural Network, like CNN is capable of learning abstract features from large and multidimensional data like images and audio signals. CNN preserves the topology of the input and has lesser number of learning parameters than a neural network of the same depth, which also makes learning faster.

Methodology and Training Data

CNN is chosen as primary model in this study. As a multi sensor model is necessary to identify faults in large systems, a Multi-channel Convolution Neural Network (McCNN) is incorporated in the proposed model.

Network Architecture

Input layer, Convolution layer, Pooling layer and Fully Connected layer form the building blocks of a CNN. The architecture is described in 

Experiment Setup & Training Data

Experiments were performed by Jasdeep Singh [START_REF] Singh | Condition Monitoring of Geared Rotor Systems using Neural Networks[END_REF] on a rotor test rig (Machine Fault Simulator Figure 2.2), which consists of a shaft supported in two roller bearings and driven by a DC motor. A flexible coupling is used to connect rotor shaft to that of motor. At one end of the shaft there is a sheave, which is connected to a reciprocating mechanism through a belt drive and a gearbox. Two discs mounted on the shaft. 

# Faults (Set

Network Topology

As described earlier (Figure 2.1), the response of all six sensors is mapped between normalised values of 0 and 1, on a McCNN, a multi-channel input similar to an RGB image. The two (horizontal and vertical) sensors of a sub-system comprise a channel and three such sub-systems complete the multi-channel input to the CNN. The topology of input, therefore is, 4096x2x3. Each channel is analogous to an RGB channel of a colored image. Each channel is padded with zero columns on both sides as shown in Figure 2.1. This input is passed down to further layers as listed in Table 2 3.2) in comparison to those obtained through training by isolated data from an individual sub-system (row numbers 1-3 in Table 3.2). This observation is visible for Set B, which contains more and combined faults, which increase the complexity of task, and underlines the fact that for fairly large and complex system we need sensor data from multiple critical locations.

Figure 2 . 1 .

 21 The input layer is a multi-dimensional array like an RGB image. Convolution is the dot product of a Kernel with a part of input or previous layer. The topology of a Kernel is smaller than previous layer. Kernels are weight parameters of CNN and they traverse over the input space and generate a feature map. A Kernel of size m x n after convoluting over input of size M x N will result into feature map of size (M-m+1) x (N-n+1). Number of Kernels and Size of Kernel are the hyperparameters for particular convolutional layer. The Feature Map is then activated by an Activation Layer. ReLU Activation Function is used in CNN as it reduces vanishing gradients. The Feature Map is sometimes padded with zeroes to control the topology of further feature maps. Batch Normalization Layer is added between Convolution and ReLU Activation Layer. It normalizes the feature map after Convolution layer, firstly by subtracting the mini-batch mean from each of its inputs and then dividing by their standard deviation for each channel; and secondly by scaling the new obtained featured map by γ and then shifting by β, where γ and β are learnable parameters. Batch Normalization accelerates deep network training[START_REF] Ioffe | Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift[END_REF]. Pooling layer summarizes the response over a neighbourhood. It reduces the output size and makes features invariant to small input noise. Max Pooling, Average Pooling are widely used pooling operations. The size of the region is the hyperparameter. Finally, softmax function is used for fault classification.
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 21 Figure 2.1: CNN Architecture: Input matrix is made with responses from three sub-systems corresponding to three channels with two sensors response (horizontal & vertical) in each channel.
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 22 Figure 2.2: The rotor system (Machine fault Simulator) and sensor locations

Table 3 . 1 :

 31 Accuracy variation with depth and pooling function A comparison between traditional Neural Network and McCNN is also made to study the weights updation with training iteration. From Figure 3.1 it can be seen that traditional Neural Network shows the effect of vanishing gradient, while in McCNN the weight updation of layers distant from output layer are of nearly same order compare to proximate layers. Complex and large systems can be diagnosed in McCNN with significant depth without facing vanishing gradient.
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 31 Figure 3.1: Weight updation
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 2 Set A has 240 and Set B has 400 experimental responses. The datasets are divided between -training (60%), validation (20%) and test (20%) datasets.

		A)		Faults (Set B)
	1	No Fault with Attached Belt		Combined with missing tooth
	2	Loose Belt	13	Unbalance 6.82 gram
	3	Tight Belt	14	Eccentric Rotor
	4	Missing Tooth	15	Cocked Rotor
	5	Loose Gear	16	Bearing Outer Race Defect
	6	Unbalance 6.82 gram	17	Bearing Inner Race Defect
	7	Eccentric Rotor	18	Ball Spin Fault
	8	Cocked Rotor	19	Combined Bearing Fault
	9	Bearing Outer Race Defect	20	Loose Gear
	10	Bearing Inner Race Defect		
	11	Ball Spin Fault		
	12	Combined Bearing Fault		

1: Type of faults in dataset (Set A). Extra combined faults and (Set A) form (Set B) Twelve faults (Set A) are described in Table 2.1. Set B is a combination of Set A and combined faults.

Table 2 .

 2 .2. 2: CNN architecture and hyperparameters Network training is performed with stochastic gradient descent algorithm with momentum. The network was limited to a maximum of 800 iterations. Learning rate was 0.01. Mini-batch size was kept as 64 for Set A training and 128 for Set B. Both, max and average pooling were used in training for comparison. Training of McCNN is performed, both, on Set A and Set B. The architecture classified all training, validation and test dataset successfully for both Set A (individual faults) and Set B (combined faults). The accuracy increases as we increase number of layers hence depth of network, (Table3.1). Variation of accuracy with pooling function is also studied. Average Pooling network required less number of layers in comparison to Max Pooling to achieve zero error.

	#	Layer	Kernel Size/ Pooling Region	# of Kernels	Padding
	1	Input	-	-	-
	2	Convolution 1	40 × 2	8	Yes
	3	Batch Normalization + ReLU	-	-	-
	4	Pooling 1	3 × 1	-	-
	5	Convolution 2	20 × 2	16	Yes
	6	Batch Normalization + ReLU	-	-	-
	7	Pooling 2	4 × 1	-	-
	8	Convolution 3	4 × 2	32	No
	9	Batch Normalization + ReLU	-		-
	10 Pooling 3	3 × 1	-	-
	11 Convolution 4	4 × 2	32	No
	12	Batch Normalization + ReLU	-	-	-
	13	Pooling 4	2 × 1	-	-
	14 Convolution 5	2 × 2	32	No
	15 Batch Normalization + ReLU	-	-	-
	16 Pooling 5	2 × 1	-	-
	17 Convolution 6	2 × 1	32	No
	18 Batch Normalization + ReLU	-	-	-
	19 Pooling 6	2 × 1	-	-
	20 Fully Connected	12 Neurons	-	-

Conclusion

The present study introduces an approach for fault identification of a rotor-bearing system using Convolutional Neural Network. The need to extract features like statistical parameter or to convert time domain data to FFT domain for training is eliminated in present study. Raw time domain sensor response is used without any pre-processing or feature engineering for constructing input layer. A generic method of fault diagnosis for big complex systems with distant and multiple subsystems is presented, which merges sensor responses from demanding subsystems into distinct channels of input matrix to form the input layer of McCNN architecture. Patterns in raw time domain data, difficult to be comprehended manually, are perceived by the McCNN network.