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Abstract To deal with very large datasets a mini-batch

version of the Monte Carlo Markov Chain Stochastic

Approximation Expectation-Maximization algorithm for

general latent variable models is proposed. For expo-

nential models the algorithm is shown to be convergent

under classical conditions as the number of iterations

increases. Numerical experiments illustrate the perfor-

mance of the mini-batch algorithm in various models.

In particular, we highlight that mini-batch sampling

results in an important speed-up of the convergence of

the sequence of estimators generated by the algorithm.

Moreover, insights on the effect of the mini-batch size

on the limit distribution are presented. Finally, we il-

lustrate how to use mini-batch sampling in practice to

improve results when a constraint on the computing

time is given.
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1 Introduction

On very large datasets the computing time of the classi-

cal expectation-maximization (EM) algorithm (Demp-

ster et al., 1977) as well as its variants such as Monte

Carlo EM, Stochastic Approximation EM, Monte Carlo

Markov Chain-SAEM and others can be very long, since

all data points are visited in every iteration. To cir-

cumvent this problem, a number of EM-type algorithms

have been proposed, namely various mini-batch (Neal

and Hinton, 1999; Liang and Klein, 2009; Karimi et al.,

2018; Nguyen et al., 2020) and online (Titterington,

1984; Lange, 1995; Cappé and Moulines, 2009; Cappé,

2011) versions of the EM algorithm. They all consist in

using only a part of the observations during one itera-

tion in order to shorten computing time and accelerate

convergence. While online algorithms process a single

observation per iteration handled in the order of ar-

rival, mini-batch algorithms use larger, randomly cho-

sen subsets of observations. The size of these subsets

of data is generally called the mini-batch size. Choos-

ing large mini-batch sizes entails long computing times,

while very small mini-batch sizes as well as online algo-

rithms may result in a loss of accuracy of the algorithm.

This raises the question about the optimal mini-batch

size that would achieve a compromise between accuracy

and computing time. However this issue is generally

overlooked.

In this article, we propose a mini-batch version of

the MCMC-SAEM algorithm (Delyon et al., 1999; Kuhn

and Lavielle, 2004). The original MCMC-SAEM algo-

rithm is a powerful alternative to EM when the E-step

is intractable. This is particularly interesting for non-

linear models or non-Gaussian models, where the un-

observed data cannot be simulated exactly from the

conditional distribution. Moreover, the MCMC-SAEM
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algorithm is also more computing efficient than the

MCMC-EM algorithm, since only a single instance of

the latent variable is sampled at every iteration of the

algorithm. Nevertheless, when the dimension of the la-

tent variable is huge, the simulation step as well as the

update of the sufficient statistic can be time consuming.

From this point of view the here proposed mini-batch

version is computationally more efficient than the orig-

inal MCMC-SAEM, since at each iteration only a small

proportion of the latent variables is simulated and only

the corresponding data are visited to update the pa-

rameter estimates. For exponential models, we prove

almost-sure convergence of the sequence of estimates

generated by the mini-batch MCMC-SAEM algorithm

under classical conditions as the number of iterations of

the algorithm increases. We also conjecture an asymp-

totic normality result and the relation between the lim-

iting covariance and the mini-batch size. Moreover, for

various models we assess via numerical experiments the

influence of the mini-batch size on the speed-up of the

convergence at the beginning of the algorithm as well

as its impact on the limit distribution of the estimates.

Furthermore, we study the computing time of the algo-

rithm and address the question of how to use mini-batch

sampling in practice to improve results.

2 Latent variable model and algorithm

This section introduces the general latent variable model

considered throughout this paper and the original MCMC-

SAEM algorithm. Then the new mini-batch version of

the MCMC-SAEM algorithm is presented.

2.1 Model and assumptions

Consider the common latent variable model with in-

complete (observed) data y and latent (unobserved)

variable z. Denote n the dimension of the latent vari-

able z = (z1 . . . , zn) ∈ Rn. In many models, n also cor-

responds to the number of observations, but it is not

necessary that z and y have the same size or that each

observation yi depends only on a single latent compo-

nent zi, as it is for instance the case in the stochastic

block model, Section 4.3.

Denote θ ∈ Θ ⊂ Rd the model parameter of the

joint distribution of the complete data (y, z). In what

follows, omitting all dependencies in the observations y,

which are considered as fixed realizations in the analy-

sis, we assume that the complete-data likelihood func-

tion has the following form

f(z;θ) = exp {−ψ(θ) + 〈S(z), φ(θ)〉} c(z),

where 〈·, ·〉 is the scalar product, S(z) denotes a vector

of sufficient statistics of the model taking its values in

some set S and ψ and φ are functions on θ. The pos-

terior distribution of the latent variables z given the

observations is denoted by π(·;θ).

2.2 Description of MCMC-SAEM algorithm

The original MCMC-SAEM algorithm proposed by Kuhn

and Lavielle (2004) is appropriate for models, where

the classical EM-algorithm cannot be applied due to

difficulties in the E-step. In particular, in those models

the conditional expectation Eθk−1
[S(z)] of the sufficient

statistic under the current parameter value θk−1 has

no closed-form expression. In the MCMC-SAEM algo-

rithm the quantity Eθk−1
[S(z)] is thus estimated by a

stochastic approximation algorithm. This means that

the classical E-step is replaced with a simulation step

using a MCMC procedure combined with a stochastic

approximation step. Here, we focus on a version where

the MCMC part is a Metropolis-Hastings-within-Gibbs

algorithm (Robert and Casella, 2004). More precisely,

the k-th iteration of the classical MCMC-SAEM algo-

rithm consists of the following three steps.

2.2.1 Simulation step

A new realization zk of the latent variable is sampled

from an ergodic Markov transition kernelΠ(zk−1, ·|θk−1),

whose stationary distribution is the posterior distri-

bution π(·;θk−1). In practice, this simulation is done

by performing one iteration of a Metropolis-Hastings-

within-Gibbs algorithm. That is, we consider a collec-

tion (Πi)1≤i≤n of symmetric random walk Metropolis

kernels defined on Rn, where subscript i indicates that

Πi acts only on the i-th coordinate, see Fort et al.

(2003). These kernels are applied successively to up-

date the components of z one after the other. More pre-

cisely, let (ei)1≤i≤n be the canonical basis of Rn. Then,

for each i ∈ {1, . . . , n} starting from the n-vector z =

(z1, . . . , zn), the proposal in the direction of ei is given

by z + xei, where x ∈ R is sampled from a symmet-

ric increment density qi. This proposal is then accepted

with probability min{1, π(z + xei;θk−1)/π(z;θk−1)}.

2.2.2 Stochastic approximation step

The approximation of the sufficient statistic is updated

by

sk = (1− γk)sk−1 + γkS(zk), (1)

where (γk)k≥1 is a decreasing sequence of positive step-

sizes such that
∑∞
k=1 γk =∞ and

∑∞
k=1 γ

2
k <∞. That
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is, the current approximation sk of the sufficient statis-

tic is a weighted mean of its previous value sk−1 and

the value of the sufficient statistic S(zk) evaluated on

the current value of the simulated latent variable zk.

2.2.3 Maximization step

The model parameter θ is updated by θk = θ̂(sk)

with θ̂(s) = arg max
θ∈θ

L(θ; s),

where L(θ; s) = −ψ(θ) + 〈s, φ(θ)〉 .

Depending on the model the maximization problem may

have a closed-form solution or not.

2.3 Mini-batch MCMC-SAEM algorithm

When the dimension n of the latent variable z is large,

the simulation step can be very time-consuming. In-

deed, simulating all latent components zi at every it-

eration is costly in time. Thus, according to the spirit

of other mini-batch algorithms, updating only a part

of the latent components may speed up the computing

time and also the convergence of the algorithm. With

this idea in mind, denote 0 < α ≤ 1 the average pro-

portion of components of the latent variable z that are

updated during one iteration.

Furthermore, depending on the model, the evalua-

tion of the sufficient statistic S(zk) on the current latent

variable zk can be accelerated as only a part of the com-

ponents of zk have changed. This brings a further gain

in computing time.

2.3.1 Mini-batch simulation step

In the mini-batch version of the MCMC-SAEM algo-

rithm the simulation step consists of two parts. First,

select the indices of the components zi of the latent vari-

able that will be updated. That is, we sample the num-

ber rk of indices from a binomial distribution Bin(n, α)

and then randomly select rk indices among {1, . . . , n}
without replacement. Denote Ik this set of selected in-

dices at iteration k. Second, instead of sampling all com-

ponents zk,i, we only sample from the Metropolis ker-

nels Πi for i ∈ Ik to update only the components zk,i
with index i ∈ Ik.

2.3.2 Stochastic approximation step

Again this step consists in updating the sufficient statis-

tic sk according to Equation (1). However, the naive

evaluation of the sufficient statistic S(zk) generally in-

volves all data y and thus is time-consuming on large

Algorithm 1 Mini-batch MCMC-SAEM
Input: data y.
Initialization: Choose initial values θ0, s0, z0.
Set k = 1.
while not converged do

Sample rk ∼ Bin(n, α).
Sample rk indices from {1, . . . , n}, denoted by Ik.
Set zk = zk−1

for i ∈ Ik do
Sample z ∼ Πi(zk, ·|θk−1).
Set zk = z.

end for
sk = (1− γk)sk−1 + γkS(zk).

Update parameter θk = θ̂(sk).
Increment k.

end while

datasets. Though, in most models it is computationally

much more efficient to derive the value of S(zk) from

its previous value S(zk−1) by correcting only for the

terms that involve recently updated latent components.

In general, this amounts to using only a small part of

the data and thus speeds up computing. An example is

detailed in Section 4.3.

2.3.3 Maximization step

This step is identical to the one in the original algo-

rithm. It does not depend on the mini-batch proportion

α in any way: the formulae for the update of the pa-

rameter estimates are identical and the computing time

of the M-step is the same for any α.

2.3.4 Initialization

Initial values θ0, s0 and z0 for the model parameter, the
sufficient statistic and the latent variable, respectively,

have to be chosen by the user or at random.

See Algorithm 1 for a complete description of the

algorithm.

3 Convergence of the algorithm

In this section we show that, under appropriate assump-

tions, the mini-batch MCMC-SAEM algorithm converges

as the number of iterations increases. Note that we con-

sider convergence of the algorithm for a fixed dataset

y when the number of iterations tends to infinity, and

not statistical convergence where the sample size grows.

Other convergence results for mini-batch EM and SAEM

algorithms appear recently in Nguyen et al. (2020) and

Karimi (Chapter 7, 2019), respectively. Basically, the

assumptions are classical conditions that ensure the

convergence of the original MCMC-SAEM algorithm.
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So roughly, our theorem says that if the batch MCMC-

SAEM algorithm converges, so does the mini-batch ver-

sion for any mini-batch proportion α. Compared to the

classical MCMC-SAEM algorithm, the mini-batch ver-

sion involves an additional stochastic part that comes

from the selection of indices of the latent components

that are to be updated. This additional randomness is

governed by the value of the mini-batch proportion α.

We also present arguments to explain the impact of

the mini-batch proportion α onto the limit distribution

of the sequence generated by the algorithm.

3.1 Equivalent descriptions

The above description of the simulation step is conve-

nient for achieving maximal computing efficiency. We

now focus on a mathematically equivalent framework

that underlines the fact that the mini-batch MCMC-

SAEM algorithm formally belongs to the family of clas-

sical MCMC-SAEM algorithms.

For two kernels P1 and P2, we denote their compo-

sition by

P2 ◦ P1(z, z′) =

∫
z̃

P2(z̃, z′)P1(z, dz̃).

With this notation at hand, the Metropolis-Hastings-

within-Gibbs uses the kernel Π = Πn ◦ · · · ◦Π1. Now,

to describe the mini-batch simulation step in terms of

a Markov kernel, we first introduce kernel Πα,i, which

is a mixture of the original kernel Πi and the identity

kernel Id, defined as

Πα,i(z, z
′|θ) =

αΠi(z, (z1, . . . , z
′
i, . . . , zn)|θ) + (1− α)Id(z, z′).

Hence, the mini-batch simulation step corresponds to

generating a latent vector z according to the Markov

kernel Πα = Πα,n ◦ · · · ◦Πα,1. Indeed, Πα can also be

written as

Πα(z, z′|θ) =
n∑
k=0

αk(1− α)n−k
∑

1≤i1<···<ik≤n

(Πik ◦ · · · ◦Πi1)(z, z′|θ).

That means that Πα is a mixture of compositions of

the original kernels Πi and the identity kernel. In other

words, the mini-batch MCMC-SAEM algorithm corre-

sponds to the family of classical MCMC-SAEM algo-

rithms with a particular choice of the transition ker-

nel. Note that Πα can also be interpreted as a mix-

ture over different trajectories (the choice of indices

i1 < · · · < ik to be updated) of Metropolis-Hastings-

within-Gibbs kernels acting on a part of the latent vec-

tor z.

We now give a third mathematically equivalent de-

scription of the simulation step, which will be appropri-

ate for the analysis of the theoretical properties of the

algorithm. In the k-th mini-batch simulation step, we

sample for every i ∈ {1, . . . , n} a Bernoulli random vari-

able Uk,i with parameter α. So Uk,i indicates whether

the latent variable zk−1,i is updated at iteration k or

not. Next, we sample a realization z̃k,i from the transi-

tion kernel Πi and set

zk,i = Uk,iz̃k,i + (1− Uk,i)zk−1,i. (2)

In particular, we see from this formula that, for α = 1,

the sequence (zk)k≥1 generated by the batch algorithm

is a Markov chain with transition kernel Π = Πn ◦ · · · ◦
Π1, what has already been mentioned above.

Fort et al. (2003) establish results on the geomet-

ric ergodicity of hybrid samplers and in particular for

the random-scan Gibbs sampler. The latter is defined

as n−1
∑n
i=1Πi, where each Πi is a kernel on Rn act-

ing only on the i-th component. More generally, the

random-scan Gibbs sampler may be defined as
∑n
i=1 aiΠi,

where (a1, . . . , an) is a probability distribution. This

means that at each step of the algorithm, only one

component i is drawn from the probability distribution

(a1, . . . , an) and then updated. These probabilities may

be chosen uniformly (ai = 1/n) or, for example, can be

used to favor a component that is more difficult to ex-

plore. We generalize the results of Fort et al. (2003) to

a setup, where at each step k kernel Π̄α is used that

is iterated from a random-scan Gibbs sampler Π̃α as

follows

Π̄α(·, ·|θk) = Π̃α(·, ·|θk)
∑

i Uk,i , (3)

with

Π̃α(·, ·|θk) ={
(
∑n
i=1 Uk,i)

−1∑n
i=1 Uk,iΠi(·, ·|θk) if

∑n
i=1 Uk,i ≥ 1,

Id else

Note that this is not exactly the kernel corresponding

to the algorithm described above, as the same compo-

nent i can possibly be updated more than once during

the same iteration. Nonetheless, we neglect this effect

and establish our result for the algorithm based on ker-

nel Π̄α.

3.2 Assumptions and convergence result

Assume that the random variables s0, z1, z2, . . . are de-

fined on the same probability space (Ω,A, P ). We de-

note F = {Fk}k≥0 the increasing family of σ-algebras

generated by the random variables s0, z1, z2, . . . , zk. Con-

sider the following regularity conditions.
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(M1) The parameter space θ is an open subset of Rd.
The complete-data likelihood function is given by

f(z;θ) = exp {−ψ(θ) + 〈S(z), φ(θ)〉} c(z),

where S is a continuous function on Rn taking its

values in an open subset S of Rm. Moreover, the

convex hull of S(Rn) is included in S, and for all

θ ∈ θ, ∫
|S(z)|π(z;θ)dz <∞.

(M2) The functions ψ and φ are twice continuously

differentiable on θ.

(M3) The function s̄ : θ → S defined as

s̄(θ) =

∫
S(z)π(z;θ)dz,

is continuously differentiable on θ.

(M4) The observed-data log-likelihood function ` : θ →
R defined as

`(θ) = log

∫
f(z;θ)dz,

is continuously differentiable on θ and

∂θ

∫
f(z;θ)dz =

∫
∂θf(z;θ)dz.

(M5) Define L : S × θ → R as L(s;θ) = −ψ(θ) +

〈s, φ(θ)〉 . There exists a continuously differentiable

function θ̂ : S → θ, such that, for any s ∈ S and

any θ ∈ θ,

L(s; θ̂(s)) ≥ L(s;θ).

We now introduce the usual conditions that ensure

convergence of the SAEM procedure.

(SAEM1) For all k ∈ N, γk ∈ [0, 1],
∑∞
k=1 γk = ∞

and
∑∞
k=1 γ

2
k <∞.

(SAEM2) The functions ` : θ → R and θ̂ : S → θ are

m times differentiable, where we recall that S is an

open subset of Rm.

For any s ∈ S, we define Hs(z) = S(z) − s and its

expectation with respect to the posterior distribution

π(·; θ̂(s)) denoted by h(s) = Eθ̂(s)[S(z)] − s. For any

ρ > 0, denote Vρ(z) = supθ∈θ[π(z;θ)]ρ. We consider

the following additional assumptions as done in Fort

et al. (2003).

(H1) There exists a constant M0 such that

L =
{

s ∈ S, 〈∇`(θ̂(s)), h(s)〉 = 0
}

⊂ {s ∈ S,−`(θ̂(s)) < M0}.

In addition, there exist M1 ∈ (M0,∞] such that

{s ∈ S,−`(θ̂(s)) ≤M1} is a compact set.

(H2) The family {qi}1≤i≤n of symmetric densities is

such that, for i = 1, . . . , n, there exist constants

ηi > 0 and δi < ∞ such that qi(x) > ηi for all

|x| < δi.

(H3) There are constants δ and ∆ with 0 ≤ δ ≤ ∆ ≤
∞ such that

inf
i=1,...,n

∫ ∆

δ

qi(x)dx > 0,

and for any sequence {zj} with limj→∞ |zj | =∞, a

subsequence {žj} can be extracted with the prop-

erty that, for some i ∈ {1, . . . , n}, for any x ∈ [δ,∆]

and any θ ∈ θ,

lim
j→∞

π(žj ;θ)

π(žj − sign(zji )xei;θ)
= 0 and

lim
j→∞

π(žj + sign(zji )xei;θ)

π(žj ;θ)
= 0.

(H4) There exist C > 1, ρ ∈ (0, 1) and θ0 ∈ θ such

that, for all z ∈ Rn,

|S(z)| ≤ Cπ(z;θ0)−ρ.

To state our convergence result, we consider the version

of the algorithm with truncation on random boundaries

studied by Andrieu et al. (2005). This additional projec-

tion step ensures in particular the stability of the algo-

rithm for the theoretical analysis and is only a technical

tool for the proof without any practical consequences.

Theorem 1 Assume that the conditions (M1)–(M5),

(SAEM1), (SAEM2) and (H1)–(H4) hold. Let 0 <

α ≤ 1 and (θk)k≥1 be a sequence generated by the

mini-batch MCMC-SAEM algorithm with correspond-

ing Markov kernel Π̄α(·, ·|θ) and truncation on random

boundaries as in Andrieu et al. (2005). Then, almost

surely,

lim
k→∞

d (θk, {θ,∇`(θ) = 0}) = 0,

where d(x,A) = inf{y ∈ A, |x − y|}, that is, (θk)k≥1
converges to the set of critical points of the observed

likelihood `(θ) as the number of iterations increases.

Proof The proof consists of two steps. First, we prove

the convergence of the sequence of sufficient statistics

(sk)k≥1 towards the set of zeros of function h using

Theorem 5.5 in Andrieu et al. (2005). Second, following

the usual reasoning for EM-type algorithms, described

for instance in Delyon et al. (1999), we deduce that the

sequence (θk)k≥1 converges to the set of critical points

of the observed data log-likelihood `.
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First step. In order to apply Theorem 5.5 in Andrieu

et al. (2005), we need to establish that their conditions

(A1) to (A4) are satisfied. In what follows, (A1) to

(A4) refer to the conditions stated in Andrieu et al.

(2005). First, note that under our assumptions (H1),

(M1)–(M5) and (SAEM2), condition (A1) is satis-

fied. Indeed, this is a consequence of Lemma 2 in De-

lyon et al. (1999). To establish (A2) and (A3), as sug-

gested in Andrieu et al. (2005), we establish their drift

conditions (DRI), see Proposition 6.1 in Andrieu et al.

(2005). We first focus on establishing (DRI1) in Andrieu

et al. (2005). To this aim, we rely on Fort et al. (2003)

that establish results for the random-scan Metropo-

lis sampler. In their context, they consider a sampler

Π = n−1
∑n
i=1Πi. We generalize their results to our

setup according to (3). Following the lines of the proof

of Theorem 2 in Fort et al. (2003), we can show that

Equations (6.1) and (6.3) appearing in the drift condi-

tion (DRI1) in Andrieu et al. (2005) are satisfied when

(H2)–(H3) hold. Indeed following the strategy devel-

oped in Allassonnière et al. (2010), we first establish

Equations (6.1) and (6.3) using a drift function depend-

ing on θ, namely Vθ(z) = π(z;θ)−ρ, where ρ is given by

(H4). Then we define the common drift function V as

follows. Let θ0 ∈ θ and ρ be given in (H4) and define

V (z) = π(z;θ0)−ρ. Then for any compact K ∈ θ, there

exist two positive constants cK and CK such that for

all θ ∈ K and for all z, we get cKV (z) ≤ π(z;θ)−ρ ≤
CKV (z). We then establish Equations (6.1) and (6.3)

for this drift function V . Moreover, using Proposition 1

and Proposition 2 in Fort et al. (2003) we obtain that

Equation (6.2) in (DRI1) from Andrieu et al. (2005)

holds. Under assumption (H4) we have the first part

of (DRI2) in Andrieu et al. (2005). The second part is

true in our case with β = 1. Finally, (DRI3) in Andrieu

et al. (2005) holds in our context with β = 1, since

s 7→ θ̂(s) is twice continuously differentiable and thus

Lipschitz on any compact set. To prove this, we decom-

pose the space in an acceptance region and a rejection

region and consider the integral over four sets leading

to different expressions of the acceptance ratio (see, for

example, the proof of Lemma 4.7 in Fort et al., 2015).

This implies that (DRI) and therefore (A2)–(A3) in An-

drieu et al. (2005) are satisfied. Notice that (SAEM1)

ensures (A4). This concludes the first step of the proof.

Second step. As the function s 7→ θ̂(s) is continuous,

the second step is immediate by applying Lemma 2 in

Delyon et al. (1999).

3.3 Limit distribution

The theoretical study of the impact of the mini-batch

proportion α on the limit distribution of the sequence

(θk)k≥1 generated by the mini-batch MCMC-SAEM

algorithm is involved, and here we only present some

heuristic arguments. We conjecture that, under reason-

able assumptions, (θk)k≥1 is asymptotically normal at

rate 1/
√
k and the limiting covariance matrix, say Vα,

depends on the mini-batch proportion α in the follow-

ing form

Vα =
2− α
α

V1,

where V1 denotes the limiting covariance of the batch

algorithm. This formula is coherent with the expected

behavior with respect to the mini-batch proportion.

Namely, the limit variance is monotone in α, for α = 1

we recover the limit variance of the batch algorithm,

and, when α vanishes, the limit variance tends to in-

finity. Numerical experiments in Sections 4.3 and 4.4

support this conjecture.

The general approach to establish asymptotic nor-

mality of (θk)k≥1 consists in establishing asymptotic

normality of the sequence of sufficient statistics (sk)k≥1
and then applying the delta method. Now consider the

simple case where the model has a single latent compo-

nent, that is, n = 1. We rewrite Equation (1) as

sk = sk−1 + γkh(sk) + γkηk,

where ηk = S(zk)−Eθk−1
[S(z)], and note that S(zk) =

UkS(z̃k) + (1 − Uk)S(zk−1). In general, the principal

contribution to the limit variance comes from the term

1√
k

k∑
l=1

ηl =
1√
k

k∑
l=1

Nl,k
(
S(z̃l)− Eθl−1

[S(z)]
)

+
1√
k

k∑
l=1

(Nl,k − 1)Eθl−1
[S(z)], (4)

where

Nl,k = Ul

k∑
j=l

{
j∏

m=1

(1− Ul+m)

}
,

The quantity Nl,k equals zero if there is no update of

the unique latent component at iteration l. Otherwise,

Nl,k is the number of iterations until the next update

after the one at iteration l. The random variable Nl,k
takes its values in {0, 1, . . . , k − l + 1} and it can be

shown that

P(Nl,k = m) =


1− α, m = 0

α2(1− α)m−1, m = 1, . . . , k − l
α(1− α)k−l, m = k − l + 1

.



Properties of the Stochastic Approximation EM Algorithm with Mini-batch Sampling 7

Another important property is that
∑k
l=1Nl,k = k a.s.

It can be shown that the second term in the right-

hand side of (4) tends to zero in probability when k

goes to infinity. To analyze the first term, we consider

the simple setting where for all k ≥ 1, θk = θ∗, where

θ∗ is constant, as e.g. a critical point of the observed

likelihood, and z̃k are simulated from the conditional

distribution π(·;θ∗). In this case, conditionally to the

Bernoulli indicators of updates (Uk)k≥1, the central limit

theorem can be applied to the first term. For the con-

ditional variance of the first term in Equation (4) we

obtain

Var

(
1√
k

k∑
l=1

Nl,k
(
S(z̃l)− Eθl−1

[S(z)]
)∣∣∣∣∣(Uk)k≥1

)

=
1√
k

k∑
l=1

N2
l,kV1,

where V1 is the variance of S(z) with z ∼ π(·;θ∗). Fur-

ther computations yield that the expectation taken over

(Uk)k≥1 gives

lim
k→∞

E

[
1√
k

k∑
l=1

N2
l,k

]
=

2− α
α

.

The main difficulty for generalizing this approach to

n > 1 arises from two facts. First, the components of

zk are not updated simultaneously, but at different iter-

ations. Second, the sufficient statistic may not be linear

in z. More precisely, when z is a vector, Nl,k is also a

vector and an equivalent of (4) is not immediate.

4 Numerical experiments

We carry out various numerical experiments in a non-

linear mixed effects model, a Bayesian deformable tem-

plate model, the stochastic block model and a frailty

model, to illustrate the performance and the properties

of the proposed mini-batch MCMC-SAEM algorithm

and the potential gain in efficiency and accuracy. The

programs of these experiments are available at

www.lpsm.paris/pageperso/rebafka/MiniBatchSAEM.tgz

4.1 Nonlinear mixed model for pharmacokinetic study

Clinical pharmacokinetic studies aim at analyzing the

evolution of the concentration of a given drug in the

blood of an individual over a given time interval af-

ter absorbing the drug. In this section a classical one-

compartment model is considered.

4.1.1 Model

The model presented in Davidian and Giltinan (1995)

serves to analyze the kinetic of the drug theophylline

used in therapy for respiratory diseases. For i = 1, . . . , n

and j = 1, . . . , J , we define

yij = h(Vi, kai,Cli) + εij

with

h(Vi, kai,Cli) =
dikai

Vikai − Cli

[
e−Clitij/Vi − e−kaitij

]
where the observation yij is the measure of drug con-

centration on individual i at time tij . The drug dose

administered to individual i is denoted di. The param-

eters for individual i are the volume Vi of the central

compartment, the constant kai of the drug absorption

rate, and the drug’s clearance Cli. The random mea-

surement error is denoted by εij and supposed to have

a centered normal distribution with variance σ2. For

the individual parameters Vi, kai and Cli log-normal

distributions are considered given by

log Vi = log(µV ) + zi,1,

log kai = log(µka) + zi,2,

log Cli = log(µCl) + zi,3,

where zi = (zi,1, zi,2, zi,3) are independent latent ran-

dom variables following a centered normal distribution

with variance Ω = diag(ω2
V , ω

2
ka, ω

2
Cl). Then the model

parameters are θ = (µV , µka, µCl, ω
2
V , ω

2
ka, ω

2
Cl, σ

2).

4.1.2 Algorithm

We implement the minibatch MCMC-SAEM algorithm

presented in Section 2.3. In the simulation step we use

the following sampling procedure. Let Ik be the subset

of indices of latent variable components zi that have

to be updated at iteration k. For each i ∈ Ik, we use

a Metropolis-Hastings procedure: first, for l ∈ {1, 2, 3}
draw a candidate z̃k,i,l from the normal distribution

N (zk−1,i,l, ηl), with η1 = 0.01, η2 = 0.02 and η3 =

0.03, chosen to get good mean acceptance rates. Then

compute the acceptance ratio ρk,i,l = ρ(zk−1,i,l, z̃k,i,l) of

the usual Metropolis-Hastings procedure. Finally, draw

a realization ωk,i,l of the uniform distribution U [0, 1]

and set zk,i,l = z̃k,i,l if ωk,i,l < ρk,i,l, and zk,i,l = zk−1,i,l
otherwise.

In the next step, we compute the stochastic approx-

imation of sufficient statistics of the model taking value

in R7 according to

sk = (1− γk)sk−1 + γkS(zk),
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Fig. 1 Estimates of the parameter µV using mini-batch
MCMC-SAEM with α ∈ {0.1, 0.3, 0.5, 0.8, 1} as a function
of the number of epochs.

where

S(zk) =

(
1

n

∑
i

zi,1,
1

n

∑
i

zi,2,
1

n

∑
i

zi,3,
1

n

∑
i

z2i,1,

1

n

∑
i

z2i,2,
1

n

∑
i

z2i,3,
1

nJ

∑
i,j

(yij − h(Vi, kai,Cli))
2


and where the sequence (γk)k≥1 is chosen such that

0 < γk < 1 for all k,
∑
γk =∞ and

∑
γ2k <∞.

Finally the maximization step is performed using

explicit solutions given by the following equations

µV,k = exp(sk,1); ω2
V,k = sk,4 − s2k,1;

µka,k = exp(sk,2); ω2
ka,k = sk,5 − s2k,2;

µCl,k = exp(sk,3); ω2
Cl,k = sk,6 − s2k,3;

σ2
k = sk,7.

For more technical details on the implementation,

we refer to (Kuhn and Lavielle, 2005).

4.1.3 Numerical results

In a simulation study we generate one dataset from

the above model with the following parameter values

n = 1000, J = 10, µV = 30, µka = 1.8, µCl = 3.5, ωV =

0.02, ωka = 0.04, ωCl = 0.06, σ2 = 2. For all individuals

i the same dose di = 320 and the time points tij = j

are used.

Then we estimate the model parameters by both the

original MCMC-SAEM algorithm and our mini-batch

version. The step sizes are set to γk = 1 for 1 ≤ k ≤
50 and γk = (k − 50)−0.6 otherwise. This corresponds

to a classical choice ensuring Assumption (SAEM1)

(Delyon et al., 1999). The algorithm did not seem to be

sensitive to this choice. Several mini-batch proportions,

namely α ∈ {0.1, 0.3, 0.5, 0.8, 1}, are considered. To be
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Fig. 2 Sample standard deviation of the estimate of pa-
rameter µV using mini-batch MCMC-SAEM with α ∈
{0.1, 0.3, 0.5, 0.8, 1} as a function of the number of iterations.

more precise, the estimation task is repeated 100 times

on the same fixed dataset for all considered algorithms.

The results for parameter µV are shown in Figures 1

and 2. The results for the other parameters are very

similar and therefore omitted.

Figure 1 shows the evolution of the precision of the

running mean of the estimates µ̄V,k =
∑k
l=1 µV,l/k of

parameter component µV as a function of the number

of epochs for different values of the proportion α. An

epoch is the average number of iterations required to

update n latent components. That is, one epoch corre-

sponds in average to 1/α iterations of the mini-batch al-

gorithm with proportion α. This means that parameter

estimators are compared when the different algorithms

have spent approximately the same time in the simula-

tion step, and, due to the dependency structure of the

nonlinear mixed model, when the algorithms have vis-

ited approximately the same amount of data. That is,

an epoch takes approximately the same computing time

for any proportion α. So Figure 1 compares estimates

at comparable computing times. It is obvious that for

all algorithms estimation improves when the number of

epochs increases. Moreover, and more importantly, the

rate of convergence depends on the mini-batch propor-

tion: the smaller α, the faster the convergence to the

target value µV = 30. Here, the fastest convergence is

obtained with the smallest mini-batch proportion, that

is, α = 0.1. For instance, to attain the precision ob-

tained within 5 epochs with α = 0.1, we need at least

25 epochs with the batch algorithm α = 1.

This acceleration of convergence at the beginning of

the algorithm induced by mini-batch sampling is char-

acteristic for mini-batch sampling in any EM-type algo-

rithm. Let us give an intuitive explanation of this char-

acteristic phenomenon. In general, the initial values of

the algorithm are far away from the unknown target val-
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ues. So, during the first iteration of the batch algorithm,

many time-consuming computations are done using a

very bad value θ0. Only at the very end of the first it-

eration, the parameter estimate is updated to a slightly

better value θ1. During the same time, a mini-batch al-

gorithm with small α performs some computations with

the same bad value θ0, but after a short time already,

the M-step is attained for the first time. As only a cou-

ple of latent components have been updated and only

a few data points have been visited, the new value θ1
may be only a very slight correction of θ0, but, never-

theless, it is a move into the right direction and the next

iteration is performed using a slightly better value than

in the previous one. Hence, performing mini-batch sam-

pling consists in making many small updates of the θ,

while in the same time the batch algorithm only makes

very few updates. Metaphorically speaking, the batch

algorithm makes long and time-consuming steps, but

these steps are not necessarily directed into the best

direction, whereas the mini-batch version makes plenty

small and quick steps, correcting its direction after ev-

ery step. As a whole, the mini-batch strategy leads to

much better results as illustrated in Figure 1.

Figure 2 presents for different values of the propor-

tion α the estimates of the empirical standard deviation

with respect to the number of iterations. We observe

that as the number of iterations increases, the stan-

dard deviations are lower than for higher values of α.

This illustrates in particular that including more data

in the inference task leads to more accurate estima-

tion results. This is indeed very intuitive. Therefore an

optimal choice of α should achieve a trade-off between

speeding up the convergence and involving enough data

in the process to get accurate estimates.

4.2 Deformable template model for image analysis

In this section an example on handwritten digits illus-

trates the benefits of using mini-batch sampling. We

consider the dense deformation template model for im-

age analysis that was first introduced in Allassonnière

et al. (2007). This model considers observed images as

deformations of a common reference image, called tem-

plate.

4.2.1 Model and algorithm

Using the formulation in Allassonnière et al. (2010), let

(yi)1≤i≤n be n observed gray level images. Each image

yi is defined on a grid of pixels Λ ⊂ R2, where for each

s ∈ Λ, xs is the location of pixel s in a domain D ⊂ R2.

We assume that every image derives from the defor-

mation of a common unknown template I, which is a
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Fig. 3 Estimation of the template with n = 20 images. First
row: using batch MCMC-SAEM ; second row: using mini-
batch MCMC-SAEM with α = 0.1 ; columns correspond to
1, 2 and 3 epochs, respectively.

function from D to R. Furthermore, we assume that for

every image yi there exists an unobserved deformation

field Φi : R2 → R2 such that

yi(s) = I(xs − Φi(xs)) + σεi(s),

where εi(s) have standard normal distribution and σ2

denotes the variance. To formulate this complex prob-

lem in a simpler way, the template I and the deforma-

tions Φi are supposed to have the following parametric

form. Given a set of landmarks denoted by (pk)1≤k≤kp ,

which covers the domain D, the template function I is

parametrized by coefficients ξ ∈ Rkp through

Iξ = Kpξ, where (Kpξ)(x) =

kp∑
k=1

Kp(x, pk)ξ(k),

and Kp is a fixed known kernel. Likewise, for another

fixed set of landmarks (gk)1≤k≤kg ∈ D, the deformation

field is given by

Φi(x) = (Kgzi)(x) =

kg∑
k=1

Kg(x, gk)(z
(1)
i (k), z

(2)
i (k)),

where zi = (z
(1)
i , z

(2)
i ) ∈ Rkg × Rkg and again, Kg is a

fixed known kernel. The latent variables zi are centered

Gaussian variables with covariance matrix Γ . We refer

to Allassonnière et al. (2010) for further details on the

model and also for the implementation of the MCMC-

SAEM algorithm, which estimates all model parameters

(ξ, Γ, σ2), and so the template I.
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Fig. 4 Synthetic images sampled from the model for digit 5 using the parameter estimates obtained with the batch version
on 20 images (top) and with the mini-batch version with α = 0.2 on 100 images (bottom).

4.2.2 Numerical results

In our numerical study we compare the performance

of the standard MCMC-SAEM algorithm to the mini-

batch version on images from the United States Postal

Service database (Hull, 1994).

In the first experiment we set the mini-batch pro-

portion α to 0.1 and have a look on the performances

during the very first iterations of the algorithms. Fig-

ure 3 shows the estimated template for digit 5 with

n = 20 images after the first three epochs, that is, after

three passes through the dataset. We observe that the

mini-batch algorithm obtains a more contrasted and ac-

curate template estimate than the batch version. That

is, convergence is accelerated at the beginning of the

algorithm when mini-batch sampling is used. This is

very similar to our observations in the nonlinear mixed

model in the previous section.

Now the question is how to take advantage of this

speed up in practice, as we usually do not stop any

algorithm after only three epochs. As it is good use

to run any MCMC-SAEM algorithm until convergence,

our approach is the following. Suppose that we find the

computing time acceptable when running the batch al-

gorithm on n = 20 images during 1000 iterations, that

is, until convergence. Can we do something better by

using mini-batch sampling, say with α = 0.2, within

the same computing time? When applying the mini-

batch algorithm on the same 20 images, convergence is

attained much faster and there is a gain in computing

time, but probably also some loss in accuracy. This is

not what we are interested in, as we want to make use

of the entire allotted computing time. The solution is to

increase the number of images in the input of the mini-

batch algorithm. Our reasoning is the following: in the

batch version 20 images are processed per iteration. So

the mini-batch algorithm with α = 0.2 can be applied

to n = 100 images, as in average only 20 images are

used per iteration. Hence, running the mini-batch algo-

rithm with α = 0.2 and n = 100 and the batch version

with n = 20 over the same number of iterations takes

almost exactly the same time. We see that, given a con-

straint on the computing time, using a small mini-batch

proportion allows to increase the number of images in

the input.

To assess the accuracy of the estimates obtained

by the two algorithms, we generate new samples from

the model using the parameter estimates obtained by

the different algorithms. From the synthetic images pre-

sented in Figure 4 we see that the ones in the lower part

of the figure resemble more usual handwritten digits 5

than the ones in the upper part. This highlights that

both template and deformation are better estimated

by the mini-batch version performed on 100 images of

the dataset than with the batch algorithm on 20 im-

ages. Hence, given a constraint on the computing time,

more accuracy can be obtained by using the mini-batch

MCMC-SAEM instead of the original algorithm.

4.3 Stochastic block model

Now we turn to a random graph model which is inter-

esting as it has a complex dependency structure. The

model is the so-called stochastic block model (see Ma-
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tias and Robin (2014) for a review), where every obser-

vation depends on more than one latent component.

4.3.1 Model

In the stochastic block model (SBM) the latent variable

z = (z1, . . . , zn) is composed of i.i.d. random variables

zi taking their values in {1, . . . , Q} with probabilities

pq = Pθ(z1 = q) for q = 1, . . . , Q. The observed adja-

cency matrix y = (yi,j)i,j of a directed graph is such

that the observations yi,j are independent conditional

on z and yi,j |z has Bernoulli distribution with param-

eter νzi,zj depending on the latent variables of the in-

teracting nodes i and j.

We see that every observation yi,j depends on two

latent components, namely on zi and zj . In turn, the

latent component zk influences all observations in the

set {yi,k, i = 1, . . . , n} ∪ {yk,j , j = 1, . . . , n} creating

complex stochastic dependencies between the observa-

tions.

Denote θ = ((pq)1≤q≤Q, (νq,l)1≤q,l≤Q) the collection

of model parameters for a directed SBM. The complete

log-likelihood function is given by

logPθ(y, z) = logPθ(y|z) + logPθ( z)

=

Q∑
q=1

n∑
i=1

1{zi = q} log pq

+
∑
q,l

∑
i,j

1{zi = q, zj = l}yi,j log νq,l

+
∑
q,l

∑
i,j

1{zi = q, zj = l}(1− yi,j) log(1− νq,l)

where 1{A} denotes the indicator function of the set A.

Hence, the complete log-likelihood of the SBM belongs

to the exponential family with the following sufficient

statistics, for 1 ≤ q, l ≤ Q,

Sq1(z) =

n∑
i=1

1{zi = q},

Sq,l2 (z) =
∑
i,j

1{zi = q, zj = l}yi,j ,

Sq,l3 (z) =
∑
i,j

1{zi = q, zj = l}(1− yi,j).

and corresponding natural parameters ϕq1(θ) = log pq,

ϕq,l2 (θ) = log νq,l and ϕq,l3 (θ) = log(1− νq,l).

4.3.2 Algorithm

The implementation is straightforward. In the simula-

tion step, the proposal distribution q of latent variables
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Fig. 5 Estimation of the limit distribution of the estimate of
ν2,2 = 0.2 after 10 000 iterations for the mini-batch algorithm
with proportions α ∈ {0.01, 0.05, 0.1, 0.2, 0.5, 0.75, 1}.

in the Metropolis algorithm is the discrete uniform dis-

tribution on {1, . . . , Q}.
As in other models, the update of the sufficient

statistic S(z) can be numerically optimized. Indeed,

with Ik denoting the indices of latent components that

are simulated, the vectors zk and zk−1 are only different

in the components with indices belonging to Ik. As a

consequence, the statistic Sq1(zk), for instance, is more

rapidly updated by computing

Sq1(zk−1) +
∑
i∈Ik

(1{zk,i = q} − 1{zk−1,i = q})

than by the formula
∑n
i=1 1{zk,i = q}, which involves

more operations. Likewise, Sq,l2 (zk) is faster computed

as follows

Sq,l2 (zk) = Sq,l2 (zk−1) +
∑
i∈Ik

n∑
j=1

1{zk,i = q, zk,j = l}yi,j

−
∑
i∈Ik

n∑
j=1

1{zk−1,i = q, zk−1,j = l}yi,j

+

n∑
i=1

∑
j∈Ik

1{zk,i = q, zk,j = l}yi,j

−
n∑
i=1

∑
j∈Ik

1{zk−1,i = q, zk−1,j = l}yi,j .

Here we see that not the entire data y are visited to up-

date Sq,l2 , but only those observations yi,j that stochas-

tically depend on the updated latent components zi
with i ∈ Ik.

The maximisation of the complete likelihood func-

tion with given values for the sufficient statistics sq1, s
q,l
2

and sq,l3 is straightforward. The updated parameter val-

ues are given by pq = sq1/n and νq,l = sq,l2 /(sq,l2 + sq,l3 ).
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Fig. 6 Sample variances of the parameter estimates after
10 000 iterations as a function of the mini-batch proportion α
(solid lines) and adjusted theoretical limit variances (dashed
lines).

4.3.3 Simulation results

For our simulations, model parameters are set to π1 =

1− π2 = 0.6 and

(νq,l)q,l =

(
0.25 0.1

0.1 0.2

)
.

To study the impact of mini-batch sampling on the

asymptotic behavior of the estimates, a directed graph

with n = 100 nodes is generated from the model and

the mini-batch algorithm with α ranging from 0.01 to

1 and with 10 000 iterations is applied 1000 times.

Figure 5 shows the histograms of the estimates of

parameter ν2,2 = 0.2 obtained with the different al-

gorithms. All histograms are approximately unimodal,
centered at the same value and symmetric. Moreover,

we see that the larger the mini-batch size the tighter

the distribution. Indeed, it seems that the estimates are

asymptotically normal and the limit variance increases

when α decreases. This increase of the limit variance

induced by mini-batch sampling is illustrated for all

model parameter estimates in Figure 6. Furthermore,

Figure 6 checks whether the theoretical formula of the

limit variance derived in Section 3.3 is adequate. Re-

call that we conjecture that the limit variance obtained

with the mini-batch algorithm with proportion α equals

(2 − α)/α times the limit variance obtained with the

batch algorithm, here represented by the dashed lines.

The excellent fit supports our conjecture.

Concerning the behavior at the beginning of the al-

gorithm, we observe the same acceleration for the mini-

batch versions as in the other models. Here 500 datasets

are simulated from the SBM and Figure 7 shows the

evolution of the adjusted rand index (ARI) during the

first epochs (Hubert and Arabie, 1985). This index com-
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Fig. 7 Mean ARI obtained by mini-batch MCMC-SAEM
algorithms as a function of the number of epochs for α ∈
{0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1}.

pares the clustering of the nodes obtained by the algo-

rithm to the true block memberships given by the latent

components zi. The ARI equals one if two clusterings

are identical up to permutation of the block labels. We

see that the algorithm with the smallest mini-batch pro-

portion provides the best clustering at any given num-

ber of epochs. Finding the good clustering is essential

for accurate parameter estimates.

Finally, we have a closer look on computing time

aspects. As already mentioned, the computing time of

the M-step does not depend on the mini-batch propor-

tion α. It is also clear that the simulation step in the

mini-batch algorithm is in average α times the comput-

ing time of the simulation step in the batch version, as

only a proportion α of the latent components are sim-

ulated. However, the computing time of the stochastic

approximation step, and in particular the update of the

sufficient statistic, depends on the amount of data used

and thus on the dependency structure of the model. In

most models, where every observation only depends on

a single latent component zi, the proportion of data

involved in the update is α. However, in the SBM a

set of latent components {z1, . . . , zm} for m < n in-

fluences the set of observations {yi,j , i = 1, . . . ,m, j =

1, . . . , n} ∪ {yi,j , i = 1, . . . , n, j = 1, . . . ,m}, whose car-

dinality is 2mn −m2. It follows that for a mini-batch

proportion α the corresponding proportion of data used

to update the sufficient statistics is α(2−α) and so the

computing time of this step is α(2− α) times the com-

puting time of the stochastic approximation step in the

batch algorithm.

Let us call SAE-step the combination of the simu-

lation step and the stochastic approximation step. We

determine the median computing time of the SAE-step

over 100 runs of the SAE-step for different mini-batch

proportions α and different numbers of nodes n. Fig-
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SAE-step with α over the median time of the batch SAE-step
for different numbers of nodes (solide lines). The dashed lines
represent the functions α 7→ α and α 7→ α(2 − α), the first
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stochastic approximation step.

ure 8 shows the ratio of the median time of the mini-

batch SAE-step with proportion α over the median time

of the batch SAE-step for different numbers of nodes,

that is,

α 7→ median time of SAE-step with α

median time of batch SAE-step
.

The dashed lines represent the functions α 7→ α and

α 7→ α(2−α). The first corresponds to the expected ra-

tio of computing times of the simulation step, the latter

to the expected ratio of computing times of the stochas-

tic approximation step. As expected, the observed com-

puting time ratios of the entire SAE-step fall between

these two boundaries.

4.4 Frailty model in survival analysis

In survival analysis the frailty model is an extension

of the well-known Cox model (Duchateau and Janssen,

2008). The hazard rate function in the frailty model

includes an additional random effect, called frailty, to

account for unexplained heterogeneity.

4.4.1 Model and algorithm

The observations are survival times t = (tij)1≤i≤n,1≤j≤m
measured over n groups withmmeasurements per group,

and covariates Xij ∈ Rp. We denote by λ0 the baseline

hazard function, that is here chosen to be the Weibull

function given by

λ0(t) = λ0ρt
ρ−1, t > 0,

with λ0 > 0 and ρ > 1. For every group i, a latent

variable zi is introduced representing a frailty term. We

suppose that z1, . . . , zn are i.i.d. with centered Gaussian

distribution with variance σ2. The conditional hazard

rate λij(·|zi) of observation tij given the frailty zi is

defined as

λij(·|zi) = λ0(·) exp(Xij
ᵀβ + zi),

where β ∈ Rp. Thus, the unknown model parameter

is θ = (β, σ2, λ0, ρ). In practical applications the main

interest lies in the estimation of the regression param-

eter β.

In the frailty model the conditional survival function

is given by

Gij(t|zi) = P(tij > t|zi)
= exp[−λ0tρ exp(Xij

ᵀβ + zi)].

In other words, the conditional distribution of the sur-

vival time tij given zi is the Weibull distribution with

scale parameter λ0 exp(Xij
ᵀβ + zi) and shape param-

eter ρ. For the conditional and the complete likelihood

functions we obtain

Pθ(t|z) =

n∏
i=1

m∏
j=1

Gij(tij |zi)λij(tij |zi),

Pθ(t, z) = Pθ(t|z)

n∏
i=1

ϕ
(zi
σ

)
,

where ϕ denotes the density of the standard normal

distribution.

The implementation of the algorithm is straightfor-

ward. In the simulation step candidates z̃k,i are drawn

from the normal distribution N (zk−1,i, 0.2). In the M-

step, the updates of σ2 and λ0,k are explicit, while

those of β and ρ are obtained by the Newton-Raphson

method.

4.4.2 Numerical results

In a simulation study we consider the frailty model

with parameters fixed to β = (β1, β2) = (2, 3), λ0 = 3,

σ2 = 2 and ρ = 3.6. We set n = 5000 and m = 100.

The covariates Xij are drawn independently from the

uniform distribution for every dataset.

In the first setting, 500 datasets are generated and

the mini-batch MCMC-SAEM algorithm with random

initial values and mini-batch proportions α between

0.01 and 1 is applied. Figure 9 and 10 shows the evolu-

tion of the precision of the mean of the estimates β̄1,k =∑k
l=1 β1,l/k of parameter component β1 as a function of

the number of epochs. Figure 9 shows 80%-confidence
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bands for β1, and Figure 10 gives the corresponding evo-

lution of the logarithm of the empirical mean squared

error. Again, it is clear from both graphs that the rate of

convergence depends on the mini-batch proportion. At

(almost) any number of epochs, the mean squared error

and the width of the confidence intervals is increasing

in α. From Figure 9 and 10 we see, for instance, that the

mini-batch version with α = 0.01 attains convergence

after only three epochs, while almost 30 epochs are re-

quired when α = 0.1. The choice of α that achieves the

fastest convergence is the smallest mini-batch propor-

tion, here 0.01.

In the second setting, we study the asymptotic be-

havior of the estimates, when the algorithms are sup-

posed to have converged, that is after 8000 iterations.

To evaluate the variance of the estimates that is only

due to the stochasticity of the algorithm, we fix a dataset

and run the different algorithms 500 times using differ-

ent initial values. Figure 11 illustrates the limit distri-
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Fig. 11 Estimation of the limit distribution of the estimate
of β1 after 8000 iterations for the mini-batch algorithm with
proportions α ∈ {0.01, 0.05, 0.1, 0.3, 0.5, 0.8, 1}.

0.00 0.25 0.50 0.75 1.00
alpha

Li
m

it 
va

ria
nc

es

Param
beta1
beta2
sig2

Fig. 12 Sample variances of the parameter estimates after
8000 iterations as a function of the mini-batch proportion α
(solid lines) and adjusted theoretical limit variances (dashed
lines).

butions of the estimates of β1, which seem to be Gaus-

sian, centered at the same value, but with varying vari-

ances. Figure 12 gives the corresponding values of the

limit variances for the different parameter estimates.

Again, we see that the limit variance increases when

α decreases. This is expected as less data are visited

per iteration for smaller α. Furthermore, we conjecture

in Section 3.3 that the theoretical limit variance of the

sequence generated by the algorithm with minibatch

size α is equal to V1(2− α)/α where V1 stands for the

limit variance of the batch algorithm. Figure 12 shows

a very good fit of the sample variances of the different

parameters to the function α 7→ v1(2− α)/α.

5 Conclusion

In this paper we have proposed to perform mini-batch

sampling in the MCMC-SAEM algorithm. We have shown

that the mini-batch algorithm belongs to the family of
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classical MCMC-SAEM algorithms with specific tran-

sition kernels. It is also shown that the mini-batch al-

gorithm converges almost surely, whenever the original

algorithm does. Concerning the limit distribution, ac-

cording to heuristic arguments and simulation results in

different models, estimators are asymptotically normal

and we have quantified the impact of the mini-batch

proportion onto the limit variance. However, the for-

mal proof of this result is left for future work.

The numerical experiments carried out in various

latent variable models illustrate that mini-batch sam-

pling leads to an important speed-up of convergence at

the beginning of the algorithm compared to the origi-

nal algorithm. In most papers on mini-batch sampling

as well as in this paper, the illustration of this speed

up is based on a comparison of estimates at the same

number of epochs. However, the computing time of an

epoch depends on the mini-batch proportion α, on the

amount of data used in the stochastic approximation

step and on the computing time of the M-step, which

is performed much more often when α is small. Indeed,

the smaller the value of α, the larger the number of M-

steps within an epoch. In the frailty model, for instance,

the maximisation in the M-step is not explicit and thus

more time-consuming than the other steps of the al-

gorithm, which makes mini-batch sampling less attrac-

tive for practical use in this model. This also raises the

question of the interest of an analysis of the perfor-

mance of the estimators with respect to the number of

epochs. From a practical point of view, in future stud-

ies, we advocate that it would be much more appealing

to compare algorithms relying on the same computing

time rather than on the same number of epochs.

The study of the stochastic block model has shown

that the common presentation of mini-batch sampling

as a method where a subset of the data is selected to

perform an iteration is misleading. Indeed, in the algo-

rithm, first the latent components that are to be simu-

lated are chosen, and only then, the data that are asso-

ciated with these updated latent components are deter-

mined to perform the update of the sufficient statistic.

In models where every observation only depends on a

single latent component, the proportion of data used

for the update equals the proportion of simulated latent

components. However, in models with a more involved

dependency structure as SBM this does no longer hold.

As a consequence, in the SBM the computing time of

one iteration of the SAE-step in the mini-batch algo-

rithm is not α times the corresponding SAE-step in the

batch version.

These issues on the computing time lead us to the

important question of how to make good use of mini-

batch sampling in practice, where we are often con-

fronted to constraints on the computing time. It seems

to us that the relevant problem is to find the algorithm

that provides the best results within some allotted com-

puting time. As we have seen in Section 4.2, combining

mini-batch sampling with an increase of the number of

observations compared to the batch version is a means

to achieve more accurate estimates under a given con-

straint on the computing time. Indeed, increasing the

sample size for mini-batch algorithms compensates for

the loss in accuracy of the final estimates, while the ac-

celeration of the convergence at the beginning of the al-

gorithm ensures the convergence of the MCMC-SAEM

algorithm within the considered computing time.

To find the optimal mini-batch proportion α and

the associated optimal sample size, an analysis of the

computing time per iteration is required, instead of per

number of epochs. These optimal values are model de-

pendent. Furthermore, as any MCMC-SAEM algorithm

must always be run until convergence, it is necessary to

understand the impact of the mini-batch proportion α

and the sample size on the convergence of the algo-

rithm, that is, on the number of iterations required to

achieve convergence.

All programs are available on request from the au-

thors.
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