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Semi-group theory for the Stokes operator with
Navier-type boundary conditions on Lp-spaces

Hind Al Baba Chérif Amrouche Miguel Escobedo

June 28, 2016

Abstract

In this article we consider the Stokes problem with Navier-type boundary condi-
tions on a domain Ω, not necessarily simply connected. Since under these conditions
the Stokes problem has a non trivial kernel, we also study the solutions lying in the
orthogonal of that kernel. We prove the analyticity of several semigroups gener-
ated by the Stokes operator considered in different functional spaces. We obtain
strong, weak and very weak solutions for the time dependent Stokes problem with
the Navier-type boundary condition under different hypothesis on the initial data
u0 and external force f . Then, we study the fractional and pure imaginary powers
of several operators related with our Stokes operators. Using the fractional powers,
we prove maximal regularity results for the homogeneous Stokes problem. On the
other hand, using the boundedness of the pure imaginary powers we deduce maximal
Lp − Lq regularity for the inhomoge neous Stokes problem.

Contents

1 Introduction 2
1.1 Stokes problem with flux. . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Three types of solutions: strong, weak and very weak. . . . . . . . . . . . 5
1.3 Analytic semigroups. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Existence, uniqueness and maximal regularity of solutions. . . . . . . . . . 8

1.4.1 The non homogeneous problem. . . . . . . . . . . . . . . . . . . . . 9
1.4.2 The homogeneous problem. . . . . . . . . . . . . . . . . . . . . . . 11

1.5 Plan of the paper. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Notations and preliminary results 13
2.1 Functional framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Preliminary results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Some Properties of sectorial and non-negative operators . . . . . . . . . . 16
2.4 Some auxiliary results on ζ-convexity. . . . . . . . . . . . . . . . . . . . . 19

Key words and phrases: Stokes operator, Navier boundary conditions, Analytical semi-group, fractional
powers

1



3 The Stokes operator 21
3.1 The Stokes operator with Dirichlet boundary conditions . . . . . . . . . . 21
3.2 The Stokes operator with Navier-type boundary conditions . . . . . . . . 22

3.2.1 The Stokes operator with Navier-type conditions on Lpσ,τ (Ω) . . . . 22
3.2.2 The Stokes operator with Navier-type conditions on [Hp′

0 (div,Ω)]′σ,τ 24
3.2.3 The Stokes operator with Navier-type conditions on [T p

′
(Ω)]′σ,τ . . 26

4 Analyticity results 27
4.1 Analyticity on Lpσ,τ (Ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1.1 The Hilbertian case . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.1.2 Lp-theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2 Analyticity on [Hp′

0 (div,Ω)]′σ,τ . . . . . . . . . . . . . . . . . . . . . . . . 31
4.3 Analyticity on [T p

′
(Ω)]′σ,τ . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5 Stokes operator with flux boundary conditions 34

6 Complex and fractional powers of the Stokes operator 37
6.1 Pure imaginary powers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.2 Domains of fractional powers. . . . . . . . . . . . . . . . . . . . . . . . . . 42

7 The time dependent Stokes problem 45
7.1 The homogeneous problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
7.2 The inhomogeneous problem . . . . . . . . . . . . . . . . . . . . . . . . . . 54

1 Introduction

We consider in a bounded cylindrical domain, Ω× (0, T ) the linearised evolution Navier-
Stokes problem{

∂u
∂t −∆u + ∇π = f , divu = 0 in Ω× (0, T ),

u(0) = u0 in Ω,
(1.1)

where Ω is a bounded domain of R3, not necessarily simply connected, whose boundary
Γ is of class C2,1. Problem (1.1) describes the motion of a viscous incompressible fluid
in Ω. The velocity of motion is denoted by u and the associated pressure by π. Given
data are the external force f and the initial velocity u0.

Stokes and Navier-Stokes equations are often studied with Dirichlet boundary condi-
tions

u = 0 on Γ,

when the boundary Γ represents a fixed wall. This condition was formulated by G. Stokes
[71] in 1845, but as stated in [62] this condition is not always realistic since it doesn’t
reflect necessarily the behaviour of the fluid on or near the boundary.
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Even before, H. Navier [56] suggested in 1827 alternative boundary conditions more
precisely a type of slip boundary conditions with friction on the wall based on a pro-
portionality between the tangential components of the normal dynamic tensor and the
velocity

u · n = 0, 2 ν [Du · n]τ + αuτ = 0 on Γ× (0, T ), (1.2)

where ν is the viscosity and α ≥ 0 is the coefficient of friction and Du = 1
2(∇u+∇uT )

denotes the deformation tensor associated to the velocity field u. These Navier boundary
conditions allows the fluid to slip and measure the friction on the wall. Observe that,
formally, if α tends to infinity, the tangential component of the velocity will vanish and
we recover the non slip boundary condition u = 0 on Γ.

An interesting particular arises when the coefficient of friction α is zero. This
corresponds to a Navier-slip boundary condition without friction. This condition has
been considered in particular in the mathematical literature on flows near rough walls
[6, 20, 21, 22, 45, 46]. We also mention that in the case of flat boundary and when α = 0
the second condition in (1.2) can be replaced by another boundary condition involving
the vorticity

u · n = 0, curlu× n = 0 on Γ× (0, T ). (1.3)

We call them Navier-type boundary conditions. For a discussion on the No-Slip boundary
condition in the physics literature we refer to [51] and the references therein.

The relation between Navier conditions on rough boundary and the Dirichlet bound-
ary condition boundary is studied by Casado in [25, 26].

In this paper we study the Stokes operator with the Navier-type boundary conditions
(1.3). Our goal is to obtain a semi-group theory for the Stokes operator with Navier-type
boundary conditions as it already exists for other boundary conditions like Dirichlet and
Robin. For instance K. Abe & Y. Giga [1], W. Borchers & T. Miyakawa [18, 19], R.
Farwig & H. Sohr [35], Y. Giga [39, 40], Y. Giga & H. Sohr [42, 43], J. Saal [59], Y.
Shibata & R. Shimada [63], V. A. Solonnikov [68, 69, 70]).

In what follows, if we do not state otherwise, Ω will be considered as an open bounded
domain of R3 of class C2,1. In some situation we suppose that Ω is of class C1,1 in the
case where the regularity is sufficient for the proof. Then a unit normal vector to the
boundary can be defined almost everywhere it will be denoted by n. The generic point
in Ω is denoted by x = (x1, x2, x3).

We do not assume that Ω is simply-connected neither that its boundary Γ is connected
but we suppose that they satisfy the following condition (see [9] for instance): Condition
H: there exist J connected open surfaces Σj , 1 ≤ j ≤ J , called “cuts”, contained in Ω,
such that each surface Σj is an open subset of a smooth manifold, the boundary of Σj

is contained in Γ. The intersection Σi ∩ Σj is empty for i 6= j and finally the open set
Ω◦ = Ω\ ∪Jj=1 Σj is simply connected and pseudo-C1,1. We denote by Γi, 0 ≤ i ≤ I,
the connected component of Γ, Γ0 being the boundary of the only unbounded connected
component of R3\Ω. We also fix a smooth open set ϑ with a connected boundary (a
ball, for instance), such that Ω is contained in ϑ, and we denote by Ωi, 0 ≤ i ≤ I, the
connected component of ϑ\Ω with boundary Γi (Γ0 ∪ ∂ϑ for i = 0), (see figure above).
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Figure 1: The domain Ω

We denote by [·]j the jump of a function over Σj , i.e. the difference of the traces
for 1 ≤ j ≤ J . In all this article Lp(Ω) and W s,p(Ω) denote the usual Lebesgue and
Sobolev spaces for s ∈ R and p ≥ 1 (cf. [2], [24]). We denote D(Ω) the space of functions
indefinitely differentiable and with compact support in Ω and by D′(Ω) its dual space.
We recall that W−1,p(Ω) is the dual space of W 1,p′

0 (Ω) for p ∈ [1,∞) (cf. [2], [24]). For
any open connected surface Σ contained in Ω the space W s,p(Σ), for s ∈ (0, 1) and p > 1
is the Sobolev space:

W s,p(Σ) =

{
u ∈ Lp(Σ);

∫
Σ

∫
Σ

|u(x)− u(y)|p

|x− y|2+sp
dx dy <∞

}
equipped with the natural norm.

1.1 Stokes problem with flux.

When Ω is not simply-connected, the Stokes operator with boundary condition (1.3) has
a non trivial kernel Kτ (Ω) contained in all the Lr spaces for r ∈ (1,∞). This kernel
is independent of r, it has been proved to be of finite dimension J ≥ 1 (cf. [9], for
p = 2 and [13, Corollary 4.1] for p ∈ (1,∞)) and it is spanned by the function g̃rad qτj ,
1 ≤ j ≤ J, where qτj is the unique solution up to an additive constant to Problem (3.5)
below. Note that, for any function q in W 1,p(Ω◦), grad q is the gradient of q in the
sense of distribution in D′(Ω◦), it belongs to Lp(Ω◦) and therefore can be extended to
Lp(Ω). In order to distinguish this extension from the gradient of q in D′(Ω◦) we denote
it by g̃rad q. On the other hand, it was proved in [13], see also [4], that when Ω satisfies
Condition H, then, for any function u ∈ Lp(Ω), divergent free and such that u · n = 0
on Γ, to satisfy

∀ v ∈Kτ (Ω),

∫
Ω
u · v dx = 0, (1.4)
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is equivalent to the condition

〈u(t) · n , 1〉Σj = 0, 1 ≤ j ≤ J, 0 ≤ t ≤ ∞, (1.5)

with 〈· . ·〉Σj the duality product between the Sobolev space W
1
p
,p′

(Σj) and its dual space

W
− 1
p
,p

(Σj) where p′ is the conjugate of p: 1
p + 1

p′ = 1.

We will refer to the problem (1.1), (1.3), (1.5) as Stokes problem with flux condition.
By the equivalence mentioned above, the addition of the extra boundary condition (1.5)
makes the Stokes operator invertible with bounded and compact inverse on the space of
Lp functions that are divergent free and satisfy u · n = 0 on Γ.

1.2 Three types of solutions: strong, weak and very weak.

All along this paper we are interested in three different types of solutions for each of the
two problems (1.1), (1.3) and (1.1), (1.3), (1.5) defined above. The first, that we call
strong solutions, are solutions u that belong to Lp(0, T,Lq(Ω)) type spaces. The second,
called weak solutions, are solutions (in a suitable sense) u(t) that may be writen for a.e.
t > 0, as u(t) = v(t) + ∇w(t) where v(t) ∈ Lp(0, T ;Lq(Ω))) and w ∈ Lp(0, T ;Lq(Ω)).
The third and last, called very weak, are solutions u(t) that may be decomposed as
before but where now w ∈ Lp(0, T ;W−1, q(Ω)).

The concept of very weak solutions was introduced by Lions and Magenes in [52].
Later on, Amann considered this type of solutions in a series of articles [7, 8] in the
setting of Besov spaces. More recently this concept was modified by R. Farwig, G.P.
Galdi and H. Sohr in [31, 32, 33], R. Farwig and H. Kozono in [34], R. Farwig and
H. Sohr in [36] and G.P. Galdi and CHR. Simader in [37] to a setting in classical Lp-
spaces. This concept has also been generalized by K. Schumacher [60] to a setting in
a weighted Lebesgue and Bessel potential spaces using arbitrary Muckenhoupt weights.
The concept of very weak solutions is strongly based on duality arguments for strong
solutions. Therefore the boundary regularity required in this theory is the same as for
strong solutions.

1.3 Analytic semigroups.

In that general setting, we study first the existence of analytic semigroups generated by
the Stokes operators, defined on different functional spaces both for the problem (1.1),
(1.3) and for (1.1), (1.3), (1.5).

On the one hand, we consider Stokes operators defined on the three different spaces
Lpσ,τ (Ω) (cf. Subsection 3.1), [Hp′

0 (div,Ω)]′σ,τ and [T p
′
(Ω)]′σ,τ (cf. Subsection 2.1 for

precise definitions of these spaces). They lead respectively to some strong, weak and
very weak solutions of (1.1), (1.3). Similarly, we consider three Stokes operators with
flux, defined respectively on Xp, Y p and Zp (cf. (5.2), (5.8), (5.10)) in Section 5), that
lead to several solutions of (1.1), (1.3), (1.5).

In the first main result of this work, we prove that each of these six operators generates
an analytic semigroup on the corresponding functional space. More precisely:
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Theorem 1.1.
(i) The Stokes operators with Navier-type boundary conditions, Ap, Bp and Cp, generate
a bounded analytic semi-group on Lpσ,τ (Ω), [Hp′

0 (div,Ω)]′σ,τ and [T p
′
(Ω)]′σ,τ respectively

for all 1 < p <∞.
(ii) The Stokes operator with Navier-type boundary conditions and flux condition A′p, B′p
and C ′p generate a bounded analytic semi-group on Xp, Y p and Zp respectively, for all
1 < p <∞.

The proof of Theorem 1.1 uses a classical approach and starts with the study of the
resolvent of the Stokes operator and Stokes operator with flux conditions, both with
boundary conditions (1.3). A key observation is that the Stokes operator with Navier-
type boundary conditions, with and without flux conditions are equal to the Laplace
operator with Navier-type boundary conditions.

For this reason the study of the Stokes operator is reduced to that of the three
operators denoted Ap, Bp and Cp, defined on the spaces Lpσ,τ (Ω), [Hp′

0 (div,Ω)]′σ,τ and
[T p

′
(Ω)]′σ,τ and whose resolvent sets are given by the solutions of the system{

λu−∆u = f , divu = 0 in Ω,
u · n = 0, curlu× n = 0 on Γ,

(1.6)

where λ ∈ C∗ such that Reλ ≥ 0 and f belonging respectively toLpσ,τ (Ω), [Hp′

0 (div,Ω)]′σ,τ
and [T p

′
(Ω)]′σ,τ . Similarly, the problem for the Stokes operator with flux conditions is

reduced to the study of the three operators denoted A′p, B′p and C ′p, defined respectively
on Xp, Y p and Zp and whose resolvent sets are given by the solutions of the problem:

λu−∆u = f , divu = 0 in Ω,
u · n = 0, curlu× n = 0 on Γ,

〈u · n, 1〉Σj = 0, 1 ≤ j ≤ J.
(1.7)

where λ ∈ C∗ such that Reλ ≥ 0 .
We prove the existence of strong solutions of (1.6) satisfying the resolvent estimate

‖u‖Lp(Ω) ≤
C(Ω, p)

|λ|
‖f‖Lp(Ω). (1.8)

For p = 2 one has estimate (1.8) in a sector λ ∈ Σε for a fixed ε ∈ ]0, π[ where:

Σε = {λ ∈ C∗; | arg λ| ≤ π − ε}, with C∗ = C \ {0}.

We also show the existence of weak and very weak solutions and prove estimates like
(1.8) for the norms of [Hp′

0 (div,Ω)]′σ,τ and [T p
′
(Ω)]′σ,τ . We obtain similar results for the

operators A′p, B′p and C ′p.
There exists several results in the literature, on the analyticity of the Stokes semi-

group with Dirichlet boundary condition in Lp-spaces. This question was already studied
by V. A. Solonnikov in [68]. In that work, the author proves the resolvent estimate (1.8)
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for | arg λ| ≤ δ + π/2 where δ ≥ 0 is small. To derive this estimate [68] follows an idea
of Sobolevskii [67] (see the proof [68, Theorem 5.2]). New proofs and extension of the
result of [68] have been proved by Giga [39], Sohr and Farwig [35] and others.

In bounded domains the resolvent of the Stokes operator with Dirichlet boundary
condition has been studied by Giga in [39]. Using the theory of pseudo-differential
operators, the results in [39] extends those in [68] in two directions. First, the resolvent
estimate (1.8) is proved for larger set of values of λ. More precisely the estimate (1.8) is
proved in [39] for all λ in the sector Σε for any ε > 0. Second, in [39] the resolvent of
the Stokes operator is obtained explicitly and this enables him to describe the domains
of fractional powers of the Stokes operator with Dirichlet boundary condition.

In exterior domains, Giga and Sohr [42] approximate the resolvent of the Stokes
operator with Dirichlet boundary condition with the resolvent of the Stokes operator in
the entire space to prove this analyticity.

Later on, Farwig and Sohr [35] investigated the resolvent of the Stokes operator with
Dirichlet boundary conditions when divu 6= 0 in Ω. Their results include bounded
and unbounded domains, for the whole and the half space the proof rests on multiplier
technique. The problem is also investigated for bended half spaces and for cones by using
perturbation criterion and referring to the half space problem.

More recently, the analyticity of the Stokes semi-group with Dirichlet boundary con-
dition is studied in spaces of bounded functions by Abe and Giga [1] using a different
approach. One of the keys to prove their result is the estimate:

‖N(u, π)‖L∞(Ω×]0,T0[) ≤ C ‖u0‖L∞(Ω)

where:

N(u, π)(x, t) = |u(x, t)| + t1/2 |∇u(x, t)| + t |∇2u(x, t)| + t |∂tu(x, t)| + |∇π(x, t)|.

This estimate is obtained by means of a blow-up argument, often used in the study
of non linear elliptic and parabolic equations.

The resolvent of the Stokes operator is also studied with Robin boundary conditions
by Saal [59], Shibata and Shimada [63]. In [59], Saal proved that the Stokes operator
with Robin boundary conditions is sectorial and admits an H∞-calculus on Lpσ,τ (R3

+).
The strategy for proving these results is firstly to construct an explicit solution for the
associated Stokes resolvent problem. Next, the required resolvent estimates to conclude
that such an operator is sectorial are obtained by using the rotation invariance in (n−1)-
dimensions of large parts of the constructed solution formula, followed by using the known
boundedH∞-calculus for the Poisson operator (−∆R2)1/2 on Lp(R2) and performing fur-
ther computations. Shibata and Shimada proved in [63] a generalized resolvent estimate
for the St okes equ ations with non-homogeneous Robin boundary conditions and di-
vergence condition in Lp-framework in a bounded or exterior domain by extending the
argument of Farwig and Shor [35]. So that, their approaches in [63] is different from Saal
[59] and rather close to that in [35].

Concerning the Navier-type boundary conditions, Miyakawa [55] shows that the Lapla-
cian with the Navier-type boundary conditions (1.3) on Lp(Ω) leaves the space Lpσ,τ (Ω)
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invariant and hence generates a holomorphic semi-group on Lpσ,τ (Ω) when the domain Ω
is of class C∞. Mitrea and Monniaux [53] have studied the resolvent of the Stokes op-
erator with Navier-type boundary conditions in Lipschitz domains and proved estimate
(1.8) using differential forms on Lipschitz sub-domains of a smooth compact Riemannian
manifold. In addition, when the boundary of Ω is sufficiently smooth, estimates of type
(1.8) are proved using that the boundary conditions (1.3) are regular elliptic (e.g. [72])
and the so called “Agmon trick” (e.g. [3]). In [38] the authors proved that the Stokes
operator with Navier-type boundary conditions admits a bounded H∞-calculus in the
case where the domain Ω is simply connected and this has many consequences in the
associated parabolic problem. In [5] the authors proved the analyticity of the semi-group
generated by the Stokes operator with these boundary conditions on Lpσ,τ (Ω). For this
reason they established estimate (1.8) using a formula involving the boundary conditions
(1.3) and that, for every p ≥ 2 and for every u ∈ W 1,p(Ω) such that ∆u ∈ Lp(Ω) one
has

−
∫

Ω
|u|p−2∆u · udx =

∫
Ω
|u|p−2|∇u|2 dx + 4

p− 2

p2

∫
Ω

∣∣∣∇|u|p/2∣∣∣2 dx

+ (p− 2) i
3∑

k=1

∫
Ω
|u|p−4 Re

( ∂ u
∂xk
· u
)

Im
( ∂ u
∂xk
· u
)

dx −
〈∂ u
∂n

, |u|p−2u
〉

Γ
,

where 〈. , .〉Γ is the anti-duality between the Sobolev spaceW 1/p,p′(Γ) and its dual space
W−1/p,p(Γ).

In this paper, we prove this resolvent estimate for the norms of [Hp′

0 (div,Ω)]′σ,τ and
[T p

′
(Ω)]′σ,τ using a duality argument. The next step after establishing the analyticity of

the semi-group is to solve the time dependent Stokes Problem (1.1) with the Navier-type
boundary conditions (1.3).

Using that the Stokes semi-group with Navier-type boundary condition is holomorphic
in Lpσ,τ (Ω), Miyakawa [55] studied the fractional powers of the Stokes operator and their
domains. This allows him to consider the Navier-Stokes problem with the corresponding
boundary condition and to prove a local in time existence and uniqueness results of
strong solution to the Problem for an initial data in Lpσ,τ (Ω) and under some regularity
assumptions on the external force f . Existence and uniqueness of solutions for the Stokes
system with Navier-type boundary conditions has been proved by Yudovich [76] in a two
dimensional, simply connected bounded domain. These two-dimensional results are based
on the fact that the vorticity is scalar and satisfies the maximum principle. However
this technique can not be extended to the three-dimensional case since the standard
maximum principle for the vorticity fails. On the other hand Mitrea and Monniaux [54]
have employed the Fujita-Kato approach and proved the existence of a local mild solution
to Problem (1.1) and (1.3).

1.4 Existence, uniqueness and maximal regularity of solutions.

With the analyticity of the different semi-groups in hand we can solve the time dependent
Stokes Problem (1.1), (1.3) and Stokes Problem with flux condition (1.1), (1.3), (1.5).
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We first deduce of course existence and uniqueness of several types of solutions, using
the classical semi group theory. But one of our main goals is also to obtain maximal
regularity results in each of these three cases. To this end, following classical arguments
(cf. in particular [43]), we are led to study the fractional and pure imaginary powers
of the operators I + L and L′ where L = Ap (resp. L = Bp and resp. L = Cp) is the
Stokes operator with Navier boundary condition on Lpσ,τ (Ω)) (resp. [Hp′

0 (div,Ω)]′σ,τ and
resp. [T p

′
(Ω)]′σ,τ ). We denote by L′ = A′p, B

′
p, C

′
p the corresponding operators with the

supplementary condition on the fluxes.

1.4.1 The non homogeneous problem.

Consider first the non-homogeneous problems. When the external force f belongs to
Lq(0, T ; Lpσ,τ (Ω)) it is known that the unique solution u of Problem (1.1), (1.3) satisfies
u ∈ C([0, T ] ; Lpσ,τ (Ω)) for T < ∞ (cf. [57]). For such f the analyticity of the semi-
group is not sufficient to obtain a solution u satisfying what is called the maximal Lp−Lq
regularity property, i.e.

u ∈ Lq(0, T ; W 2,p(Ω)),
∂u

∂t
∈ Lq(0, T ; Lpσ,τ (Ω)).

In order to have that property, one possibility is to impose further regularity on f , such
that local Hölder continuity (see [57]). The maximal Lp-regularity for the Stokes system
with Dirichlet boundary conditions was first studied by Solonnikov [68] when 0 < T <∞.
Solonnikov [68] constructed a solution (u, π) of (1.1) in Ω × [0, T ) satisfying the Lp

estimate∫ T

0

∥∥∥∂u
∂t

∥∥∥p
Lp(Ω)

d t +

∫ T

0
‖∇2u(t)‖pLp(Ω) d t +

∫ T

0
‖∇π(t)‖pLp(Ω)d t

≤ C(T,Ω, p)

∫ T

0
‖f(t)‖pLp(Ω) d t,

where the matrix∇2u = (∂i∂ju)i,j=1,2,3 is the matrix of the second order derivatives of u.
When Ω is not bounded Solonnikov’s estimate is not global in time because C(T,Ω, p)
may tend to infinity as T → ∞. His approach is based on methods in the theory
of potentials. Later on, Giga and Sohr [43] strengthened Solonnikov’s result in two
directions. First their estimate is global in time, i.e. the above constant is independent
of T . Second, the integral norms that they used may have different exponent p, q in space
and time. To derive such global Lp − Lq estimate for the Stokes system with Dirichlet
boundary conditions [43] use the boundedness of the pure imaginary power of the Stokes
operator. More precisely they use and extend an abstract perturbation result developed
by Dore and Venni [29].

Following the same strategy as in [43] we prove maximal regularity for the inhomo-
geneous Stokes problems by studying the pure imaginary powers of I + L and L′ for
L = Ap, Bp, Cp. Among the earliest works on the boundedness of complex and pure
imaginary powers of elliptic operators we refer to the work of R. Seeley [61]. In this
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work Seeley proved that an elliptic operator AB whose domain is defined by well posed
boundary conditions has bounded complex and imaginary powers in Lp satisfying the
estimate

∀ x ≤ 0, ∀ y ∈ R, ‖(AB)x+iy‖L(Lp(Ω)) ≤ Cpe
γ|y|,

for some constant Cp and γ.
Maximal Lp−Lq regularity for the Stokes problem with homogeneous Robin boundary

conditions in R3
+ is obtained in Saal [59] from the boundedness of the pure imaginary

powers. However, the same approach is not applicable to the non-homogeneous boundary
condition case and for this reason Shimada [64] didn’t follow Saal’s arguments. Shimada
[64] derive the maximal Lq−Lp regularity for the Stokes problem with non-homogeneous
Robin boundary conditions by applying Weis’s operator-valued Fourier multiplier theo-
rem to the concrete representation formulas of solutions to the Stokes problem.

Estimates of the imaginary powers of the Stokes operator with Dirichlet boundary
condition have been proved in [40, 42, 43]. That result is proved in [40] using the theory
of pseudo-differential operators. When Ω = R3, this boundedness is proved in [42] using
Fourier transform and multiplier theorem. Furthermore, in the case of an exterior domain
the desired estimate is obtained in [42] by comparing the pure imaginary powers of the
Stokes operator with the corresponding powers of the Stokes operator in R3. Finally, in
the half space such theorem for the Stokes operator with Dirichlet conditions is obtained
in [43] using the results in [18].

In our case, the boundedness of the imaginary powers of I + L and of I + L′ with
L = Ap, Bp, Cp essentially follows from previous results in [38]. The boundedness of the
imaginary powers of A′p, B′p, C ′p is then obtained using a scaling argument and passage
to the limit following [43, Theorem A1].

Using these properties it is then possible to prove the second main result of this
article, about the existence, uniqueness and maximal regularity of strong, weak and very
weak solutions of the non homogeneous Stokes problem with flux (1.1), (1.3), (1.5). We
only state in this Introduction the result for the strong solutions (cf. Theorem 7.14).
Similar results hold for the weak and very weak solutions of the Stokes problem with flux
(cf. Remark 7.15):

Theorem 1.2 (Strong Solutions for the inhomogeneous Stokes Problem with flux). Let
T ∈ (0,∞], 1 < p, q <∞. For all f ∈ Lq(0, T ; Xp), there exists a unique solution u of
(7.51) such that

u ∈ Lq(0, T0; D(A′p)), T0 ≤ T if T <∞ and T0 < T if T =∞, (1.9)

∂u

∂t
∈ Lq(0, T ; Xp) (1.10)∫ T

0

∥∥∥∂u
∂t

∥∥∥q
Lp(Ω)

d t +

∫ T

0
‖∆u(t)‖qLp(Ω) d t ≤ C(p, q,Ω)

∫ T

0
‖f(t)‖qLp(Ω) d t. (1.11)

and such that (u, π) is a solution of the inhomogeneous Stokes Problem (1.1), (1.3) ,
(1.5) for all π ∈ R.
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1.4.2 The homogeneous problem.

In the homogeneous case, the Stokes Problem (1.1), (1.3) is equivalent to the problem
(7.1). With an initial data Lpσ,τ (Ω), the analyticity of the semi-group generated by Ap
gives a unique solution u of (7.1) satisfying u ∈ Ck(]0 , ∞[ , D(A`p)), for all k ∈ N, for all
` ∈ N∗ (see Theorem 7.1 below). This function is a weak solution of the Stokes problem
(1.1), (1.3) and satisfies (cf. Corollary 7.2 )

∀ 1 ≤ q < 2, ∀ T <∞, u ∈ Lq(0, T ; W 1,p(Ω)) and
∂u

∂t
∈ Lq(0, T ; [Hp′

0 (div,Ω)]′).

We also prove the existence of very weak solution for the homogeneous Stokes Prob-
lem (1.1), (1.3) when the initial data is less regular and belongs to the dual space
[Hp′

0 (div,Ω)]′σ,τ . In this case the solution u satisfy (see Theorem 7.7)

∀ 1 ≤ q < 2, ∀ T <∞, u ∈ Lq(0, T ; Lp(Ω)) and
∂u

∂t
∈ Lq(0, T ; [T p

′
(Ω)]′σ,τ ).

In order to obtain the Lp − Lq estimates for the solution to the homogeneous Stokes
problem (1.1), (1.3) with an initial data u0 ∈ Lpσ,τ (Ω) we study the fractional pow-
ers of A′p. We characterize the domain D((A′p)

1
2 ) and we prove that D((A′p)

1
2 ) =

V p
σ,τ (Ω), where V p

σ,τ (Ω) is given by (6.22). This yields an equivalence of the two norms
‖(A′p)

1
2u‖Lp(Ω) and ‖curlu‖Lp(Ω). We also prove an embedding of Sobolev type for the

domain of the fractional powers of the Stokes operator D((A′p)
α), α ∈ R∗+ such that

0 < α < 3/2p.
This is similar to previous results by Borchers and Miyakawa in [18, 19], Giga and Sohr

[40, 42, 43] where the fractional powers of the Stokes operator with Dirichlet boundary
conditions A is studied. They have proved that D(A1/2) = W 1,p

0 (Ω) ∩ Lpσ(Ω) and the
equivalence of the two norms ‖A1/2u‖Lp(Ω) and ‖∇u‖Lp(Ω) for every u ∈ D(A1/2).They
also proved the Sobolev embedding of the domain D(Aα) into Lq(Ω) for the Stokes
operator with Dirichlet boundary conditions.

Using the fractional powers of A′p we prove our third main result:

Theorem 1.3. Let 1 < p ≤ q <∞, u0 ∈ Lpσ,τ (Ω) and

ũ0 = u0 − w0, (1.12)

w0 =

J∑
j=1

〈u0 · n , 1〉Σj g̃rad qτj . (1.13)

Then the homogeneous Problem (1.1), (1.3) has a unique solution u satisfying

u ∈ C([0, +∞[, Lpσ,τ (Ω)) ∩ C(]0, +∞[, D(Ap)) ∩ C1(]0, +∞[, Lpσ,τ (Ω)), (1.14)

u ∈ Ck(]0, +∞[, D(A`p)), ∀ k, ` ∈ N. (1.15)
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Moreover, for all q ∈ [p,∞), and for all integers m,n ∈ N, such that m + n > 0, there
exists constants M > 0 and µ > 0, such that the solution u satisfies the estimates:

‖u(t)−w0‖Lq(Ω) ≤ C e−µ t t−3/2(1/p−1/q)‖ũ0‖Lp(Ω), (1.16)

‖curlu(t)‖Lq(Ω) ≤ M e−µt t−3/2(1/p−1/q)−1/2‖ũ0‖Lp(Ω) (1.17)

and ∥∥∥ ∂m
∂tm

∆nu(t)
∥∥∥
Lq(Ω)

≤ M e−µt t−(m+n)−3/2(1/p−1/q)‖ũ0‖Lp(Ω). (1.18)

The result condition (1.1), (1.3), (1.5) with an initial data in Xp is given in The-
orem 7.4. In order to keep a reasonable size for this paper, we have not included the
study of the fractional powers of the operators Bp, Cp, B′p and C ′p. Therefore, there are
no regularity results for the weak and very weak solutions for the homogeneous prob-
lem. Nevertheless, the general theory of analytic semigroups applied to the semigroups
generated by Bp, Cp, B′p and C ′p provide existence and uniqueness results of solutions to
problems (1.1), (1.3) and (1.1), (1.3), (1.5) for initial data u0 with less regularity (cf.
Theorem 7.6 for the Stokes problem and Theorem 7.11 for the Stokes problem with flux
conditions).

When Ω = R3, Kato [49] shows that estimate (1.16) follows directly from the corre-
sponding estimates for the heat semi-group. In the half space, Borchers and Miyakawa
[18, 19] deduced estimate (1.16) for the Stokes semi-group with Dirichlet boundary con-
dition from Ukai’s formula [74]. In a bounded domain Giga [41] derives this estimate for
the Stokes semi-group with Dirichlet boundary conditions from the inequality

‖u‖Lq(Ω) ≤ C‖Aα/2u‖Lp(Ω), with α = 3(1/p− 1/q) (1.19)

which can be obtained directly from the usual Sobolev inequality for the Laplacian and
from the fact that in the case of bounded domains

‖∆α/2u‖Lp(Ω) ≤ C‖Aα/2u‖Lp(Ω) (1.20)

for every regular function u, for every α > 0 and for every 1 < p <∞ (see [40]). In the
case of exterior domains Giga and Sohr follow in [42] the same procedure as in the case of
bounded domains but with limitations with respect to the values of p and q, because in
this case the inequality (1.20) still hold true but for limited values p and q. We note also
that in exterior domain Borchers and Miyakawa [19] prove the same result as [42] but
using (1.19). More recently Coulhon and Lamberton [27] proved the estimate (1.16) by
showing that some properties of the Stokes semi-group with Dirichlet boundary condition
can be obtained by a simple transfer of the properties of the heat semi-group.

1.5 Plan of the paper.

This paper is organized as follows. In Section 2 we give the functional framework and
some preliminary results at the basis of our proofs. In Section 3 we define the three
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different Stokes operators with Navier-type boundary conditions, and prove some of their
properties. In Section 4 we prove that the operators introduced in Section 3 generate
bounded analytic semi-groups. Section 5 is devoted to Stokes operators with Navier-type
boundary conditions and flux conditions. We introduce three operators of that kind and
prove that they generate analytic semigroups. We prove in Section 6 several results on
the pure imaginary and fractional powers of several operators. Then, in Section 7, we
solve the Stokes problem and the Stokes problem with flux under different assumptions
on the initial data u0 and the function f .

2 Notations and preliminary results

2.1 Functional framework

In this subsection we review some basic notations, definitions and functional framework
which are essential in our work. Vector fields, matrix fields and their corresponding
spaces defined on Ω will be denoted by bold character. The functions treated here are
complex valued functions. We will use also the symbol σ to represent a set of divergence
free functions and the symbol τ when the normal component on the boundary is vanish.
In other words if E is a subspace of D′(Ω), then

Eσ =
{
v ∈ E; div v = 0 in Ω

}
and

Eτ =
{
v ∈ E; v · n = 0 on Γ

}
.

Now, we introduce some functional spaces. Let Lp(Ω) denotes the usual vector valued
Lp-space over Ω. Let us define the spaces:

Hp(curl,Ω) =
{
v ∈ Lp(Ω); curlv ∈ Lp(Ω)

}
,

Hp(div,Ω) =
{
v ∈ Lp(Ω); divv ∈ Lp(Ω)

}
,

Xp(Ω) = Hp(curl,Ω) ∩Hp(div,Ω),

equipped with the graph norm. Thanks to [13] we know thatD(Ω) is dense inHp(curl,Ω),
Hp(div,Ω) and Xp(Ω).
We also define the subspaces:

Hp
0(curl,Ω) =

{
v ∈Hp(curl,Ω); v × n = 0 on Γ

}
,

Hp
0(div,Ω) =

{
v ∈Hp(div,Ω); v · n = 0 on Γ

}
,

Xp
N (Ω) =

{
v ∈Xp(Ω); v × n = 0 on Γ

}
,

Xp
τ (Ω) =

{
v ∈Xp(Ω); v · n = 0 on Γ

}
and

Xp
0(Ω) = Xp

N (Ω) ∩Xp
τ (Ω).
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We have denoted by v × n (respectively by v · n) the tangential (respectively normal)
boundary value of v defined in W−1/p, p(Γ) (respectively in W−1/p, p(Γ)) as soon as v
belongs to Hp(curl,Ω) (respectively to Hp(div,Ω)). More precisely, any function v in
Hp(curl,Ω) (respectively in Hp(div,Ω)) has a tangential (respectively normal) trace
v × n (respectively v · n) in W−1/p, p(Γ) (respectively in W−1/p, p(Γ)) defined by:

∀ϕ ∈W 1, p′(Ω), 〈v × n, ϕ〉Γ =

∫
Ω
curlv ·ϕ dx −

∫
Ω
v · curlϕ dx (2.1)

and
∀ϕ ∈W 1, p′(Ω), 〈v · n, ϕ〉Γ =

∫
Ω
v · gradϕ dx +

∫
Ω
divv ϕ dx, (2.2)

where 〈., .〉Γ is the anti-duality betweenW−1/p, p(Γ) andW 1/p, p′(Γ) in (2.1) and between
W−1/p, p(Γ) and W 1/p, p′(Γ) in (2.2). Thanks to [13] we know that D(Ω) is dense in
Hp

0(curl,Ω) and inHp
0(div,Ω). We denote by [Hp

0(curl,Ω)]′ and [Hp
0(div,Ω)]′ the dual

spaces ofHp
0(curl,Ω) andHp

0(div,Ω) respectively. Notice that we can characterize these
dual spaces as follows: A distribution f belongs to [Hp

0(curl,Ω)]′ if and only if there exist
functions functions ψ ∈ Lp′(Ω) and ξ ∈ Lp′(Ω), such that f = ψ + curl ξ. Moreover
one has

‖f‖[Hp
0(curl,Ω)]′ = inf

f =ψ+ curl ξ
max (‖ψ‖

Lp
′
(Ω)
, ‖ξ‖

Lp
′
(Ω)

).

Similarly, a distribution f belongs to [Hp
0(div,Ω)]′ if and only if there exist ψ ∈ Lp′(Ω)

and χ ∈ Lp′(Ω) such that f = ψ + gradχ and

‖f‖[Hp
0(div,Ω)]′ = inf

f =ψ+ gradχ
max (‖ψ‖

Lp
′
(Ω)

, ‖χ‖Lp′ (Ω)).

Finally we consider the space

T p(Ω) =
{
v ∈Hp

0(div,Ω); div v ∈W 1,p
0 (Ω)

}
, (2.3)

equipped with the graph norm. Thanks to [12, Lemma 4.11, Lemma 4.12] we know that
D(Ω) is dense in T p(Ω) and a distribution f ∈ (T p(Ω))′ if and only if there exists a
function ψ ∈ Lp′(Ω) and a function χ ∈W−1,p′(Ω) such that f = ψ + ∇χ.

2.2 Preliminary results

In this subsection, we review some known results which are essential in our work. First,
we recall that the vector-valued Laplace operator of a vector field v = (v1, v2, v3) is
equivalently defined by

∆ v = grad (div v)− curl curl v .

Next, we review some Sobolev embeddings (see [13]):

Lemma 2.1. The spaces Xp
N (Ω) and Xp

τ (Ω) defined above are continuously embedded
in W 1,p(Ω).
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Consider now the spaces

X2,p(Ω) =
{
v ∈ Lp(Ω); div v ∈W 1,p(Ω), curlu ∈W 1,p(Ω) and v · n ∈W 1−1/p,p(Γ)

}
(2.4)

and

Y 2,p(Ω) =
{
v ∈ Lp(Ω); divv ∈W 1,p(Ω), curlv ∈W 1,p(Ω) and v×n ∈W 1−1/p,p(Γ)

}
.

Lemma 2.2. The spaces X2,p(Ω) and Y 2,p(Ω) are continuously embedded in W 2,p(Ω).

Consider now the space

E p(Ω) = {v ∈W 1,p(Ω); ∆v ∈ [H p′

0 (div,Ω)]′},

which is a Banach space for the norm:

‖ v ‖E p(Ω)=‖ v ‖W 1,p(Ω) + ‖ ∆v ‖
[H p′

0 (div,Ω)]′
.

Thanks to [12, Lemma 4.1] we know that D(Ω) is dense in E p(Ω). Moreover we have
the following Lemma (see [12, Corollary 4.2]):

Lemma 2.3. The linear mapping γ : v −−→ curl v×n defined on D(Ω) can be extended
to a linear and continuous mapping

γ : E p(Ω) −−−−→W− 1
p
,p

(Γ).

Moreover, we have the Green formula: for any v ∈ E p(Ω) and ϕ ∈ X p′
τ (Ω) such that

divϕ = 0 in Ω.

−〈∆v,ϕ〉Ω =

∫
Ω
curl v · curlϕ dx− 〈curlv× n,ϕ〉Γ.

where 〈., .〉Γ denotes the anti-duality between W− 1
p
,p

(Γ) and W
1
p
,p′

(Γ) and 〈., .〉Ω denotes
the anti-duality between [H p′

0 (div,Ω)]′ and H p′

0 (div,Ω).

Next we consider the space

Hp(∆,Ω) =
{
v ∈ Lp(Ω); ∆v ∈ (T p

′
(Ω))′

}
,

which is a Banach space for the graph norm. Thanks to [12, Lemma 4.13, Lemma 4.14]
we know that

Proposition 2.4. The space D(Ω) is dense in Hp(∆,Ω). Moreover for every v in
Hp(∆,Ω) the trace curlv × n exists and belongs to W−1−1/p,p(Γ). In addition we
have the Green formula: for all v ∈ Hp(∆,Ω) and for all ϕ ∈ W 2,p(Ω) such that
divϕ = ϕ · n = 0 on Γ and curlϕ× n = 0 on Γ:

〈∆v , ϕ〉
(T p
′
(Ω))′×T p′ (Ω)

=

∫
Ω
v ·∆ϕ dx + 〈curlv × n , ϕ〉Γ, (2.5)

where 〈. , .〉Γ = 〈. , .〉
W−1−1/p,p(Γ)×W 1+1/p,p′ (Γ)

.
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Next we consider the problem:

div (gradπ − f) = 0 in Ω, (gradπ − f) · n = 0 on Γ. (2.6)

We recall the following lemma concerning the weak Neumann problem without giving
the proof (see [65] for point i) and [10] for points ii) and iii)).

Lemma 2.5. (i) Let f ∈ Lp(Ω), the Problem (2.6) has a unique solution π ∈W 1,p(Ω)/R
satisfying the estimate

‖gradπ‖Lp(Ω) ≤ C1(Ω) ‖f‖Lp(Ω),

for some constant C1(Ω) > 0.
(ii) Let f ∈ [Hp′

0 (div,Ω)]′, the Problem (2.6) has a unique solution π ∈ Lp(Ω)/R
satisfying the estimate

‖π‖Lp(Ω)/R ≤ C2(Ω, p)‖f‖
[Hp′

0 (div,Ω)]′
,

(iii) Let f ∈ (T p
′
(Ω))′, where T p(Ω) is given by (2.3). The Problem (2.6) has a

unique solution π ∈W−1,p(Ω)/R satisfying the estimate

‖π‖W−1,p(Ω)/R ≤ C(Ω, p) ‖f‖
(T p
′
(Ω))′

.

2.3 Some Properties of sectorial and non-negative operators

This subsection is devoted to the definitions and some relevant properties of sectorial
and non-negative operators very useful in our work. In all this subsection X denotes a
Banach space and A : D(A) ⊂ X 7→ X is a closed linear operator. D(A) is the domain
of A, it is equipped with the graph norm and form with this norm a Banach space.

Let 0 ≤ θ < π/2 and let Σθ be the sector

Σθ =
{
λ ∈ C∗; | arg λ| < π − θ

}
.

Thanks to [30, Chapter 2, page 96], we know that a linear densely defined operator A is
sectorial if there exists a constant M > 0 and 0 ≤ θ < π/2 such that

∀λ ∈ Σθ, ‖R(λ, A)‖L(X) ≤
M

|λ|
, (2.7)

where R(λ, A) = (λ I − A)−1. This means that the resolvent of a sectorial operator
contains a sector Σθ for some 0 ≤ θ < π/2 and for every λ ∈ Σθ one has estimate (2.7).

Moreover, the authors give in [30] a necessary and sufficient condition for an operator
A to generates a bounded analytic semi-group. In fact, according to [30, Chapter 2,
Theorem 4.6, page 101], an operator A generates a bounded analytic semi-group if and
only if it is sectorial in the sense of (2.7).
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Nevertheless, it is not always easy to prove that an operator A is sectorial in the
sense (2.7). Although, Yosida proved in [75] that it is suffices to prove (2.7) in the half
plane {λ ∈ C∗; Reλ ≥ 0}. This result is stated in [14, Chapter 1, Theorem 3.2, page 30]
and proved by K. Yosida.

Proposition 2.6. Let A : D(A) ⊆ X 7−→ X be a linear densely defined operator and
M > 0 such that

∀λ ∈ C∗, Reλ ≥ 0, ‖R(λ, A)‖L(X) ≤
M

|λ|
.

Then A is sectorial in the sense of (2.7).

Proof. Thanks to Yosida [75, Chapter VIII, Theorem 1, page 211] we know that ρ(A)
is an open subset of C and for all λ0 ∈ ρ(A), the disc of center λ0 and radius |λ0|/M
is contained in ρ(A). In particular, for every r > 0, the open disks with center ± i r
and radius |r|/M is contained in ρ(A). The union of such disks and of the half plane
{λ ∈ C; Reλ ≥ 0} contains the sector{

λ ∈ C∗; | arg λ| < π − arctan(M)
}
,

hence it contains the sector

S =
{
λ ∈ C∗; | arg λ| < π − arctan(2M)

}
.

If λ ∈ S and Reλ < 0, we write λ in the form λ = ± i r − (θ r)/(2M) for some θ ∈ (0, 1).
Thanks to [?, Chapter 4, formula 1.2, page 239]e know that

R(λ, A) = R(± i r, A)
[
I + (λ ∓ i r)R(± i r, A)

]−1
.

We can easily verify that
∥∥[I + (λ ∓ i r)R(± i r, A)

]−1∥∥
L(X)

≤ 2.

Next, observe that |λ| =
√
r2 + θ2 r2

4M2 = r
√

4M2 + θ2

2M . Then

‖R(λ, A)‖ ≤ 2M

r
≤

2M
√

4M2 + θ2

2M

r
√

4M2 + θ2

2M

≤
√

4M2 + 1

|λ|
.

Now if λ ∈ S such that Reλ ≥ 0 then thanks to our assumption one has

‖R(λ, A)‖L(X) ≤
M

|λ|
(2.8)

which ends the proof.

Remark 2.7. Proposition 2.6 means that there exists an angle 0 < θ0 < π/2 such that
the resolvent set of the operator A contains the sector

Σθ0 =
{
λ ∈ C∗; | arg λ| ≤ π − θ0

}
where estimate (2.8) is satisfied.

17



Next we recall some definitions and properties concerning the fractional powers of a
non-negative operator. We start by the following definition.

Definition 2.8. An operator A is said to be a non-negative operator if its resolvent set
contains all negative real numbers and

sup
t>0

t ‖(t I +A)−1‖L(X) <∞.

For a non-negative operator A it is possible to define its complex power Az for
every z ∈ C as a densely defined closed linear operator in the closed subspace XA =
D(A) ∩ R(A) in X. Here D(A) and R(A) denote, respectively, the domain and the
range of A. Observe that, if both D(A) and R(A) are dense in X, then XA = X. We
refer to [50, 73] for the definition and some relevant properties of the complex power of
a non-negative operator.

For a non-negative bounded operator whose inverse A−1 exists and it is bounded
(i.e. 0 ∈ ρ(A)), the complex power Az can be defined for all z ∈ C by the means of the
Dunford integral ([75]):

Az f =
1

2π i

∫
Γθ

(−λ)z (λ I +A)−1 fdλ, (2.9)

where Γθ runs in the resolvent set of−A from∞ ei(θ−π) to zero and from zero to∞ ei(π−θ),
0 < θ < π/2 in C avoiding the non negative real axis. The branch of (−λ)z is taken so
that Re((−λ)z) > 0 for λ < 0. It is proved by Triebel [73] that when the operator A is
of bounded inverse, the complex powers Az for Re z > 0 are isomorphisms from D(Az)
to XA.

The following property plays an important role in the study of the abstract inhomo-
geneous Cauchy-Problem and give us more regularity for the solutions (see [43]).

Definition 2.9. Let θ ≥ 0 and K ≥ 1. A non-negative operator A belongs to EθK(X) if
Ais ∈ L(XA) for every s ∈ R and its norm in L(XA) satisfies the estimate

‖Ais‖L(XA) ≤ K eθ |s|. (2.10)

If in addition D(A) and R(A) are dense in X, we say that A ∈ EθK(X).

We note that, these spaces EθK(X) and EθK(X) were introduced by Dore and Venni [29],
Giga and Sohr [43] in the abstract perturbation theory.

When −A is the infinitesimal generator of a bounded analytic semi-group (T (t))t≥0,
the following proposition is proved by Komatsu (see [50, Theorem 12.1] for instance)

Proposition 2.10. Let −A be the infinitesimal generator of a bounded analytic semi-
group (T (t))t≥0. For any complex number α such that Reα > 0 one has

∀t > 0, ‖AαT (t)‖L(X) ≤ C t−Reα. (2.11)
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The following lemma is proved by Komatsu (see [50]) and plays an important role in
the study of the domains of fractional powers of the Stokes operator with Navier-type
boundary conditions.

Lemma 2.11. Let A be a non-negative closed linear operator. If Reα > 0 the domain
D((ν I + A)α) doesn’t depend on ν ≥ 0 and coincides with D((µ I + A)α) for µ ≥ 0. In
other words

∀µ, ν > 0, D(Aα) = D((µ I + A)α) = D((ν I + A)α).

Finally, let A be a non-negative operator such that 0 ∈ ρ(A). The boundedness of
Ais, s ∈ R allows us to determine the domain of definition of D(Aα), for complex number
α satisfying Reα > 0 using complex interpolation. The following result is due to [73]

Theorem 2.12. Let A be a non-negative operator with bounded inverse. We suppose
that there exist two positive numbers ε and C such that Ais is bounded for −ε ≤ s ≤ ε
and ‖Ais‖L(XA) ≤ C. If α is a complex number such that 0 < Reα <∞ and 0 < θ < 1
then

[X , D(Aα)]θ = D(Aαθ).

2.4 Some auxiliary results on ζ-convexity.

In order to prove maximal Lp − Lq regularity properties for the solutions of the inho-
mogeneous Stokes problem, we use the property of ζ-convexity of Banach spaces. This
property has already proved to be useful in the same context (cf. [43]). For further
readings on ζ-convex Banach spaces we refer to [23, 58].

The ζ convex property may be defined as follows:

Definition 2.13. A Banach space X is ζ-convex if there is a symmetric biconvex function
ζ on X ×X such that ζ(0, 0) > 0 and

∀x, y ∈ X, ‖x‖X ≥ 1, ζ(x, y) ≤ ‖x+ y‖X . (2.12)

For this and equivalent definitions see Theorem 1 and Theorem 2 in [58].
The ζ-convexity property is stronger than uniform convexity or reflexivity. It has

been proved in Proposition 3 of [58] that for any Ω open domain of R3 the space Lp(Ω)
is ζ-convex if and only if 1 < p <∞.

The following property of ζ-convex spaces is needed in the following. Since its proof
is elementary we shall skip it.

Proposition 2.14. Every closed subspace of a ζ-convex space is ζ-convex.

On the other hand, the following characterization of ζ-convex spaces in terms of the
Hilbert transform is proved in [23] (cf. Theorem 3.3 in Section 3 and Section 2). See also
[58] (Theorem 1 and Theorem 2):
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Theorem 2.15. A Banach space X is ζ-convex if and only if, for some s ∈ (1,∞), the
truncated Hilbert transform

(Hεf)(t) =
1

π

∫
|τ |>ε

f(t− τ)

τ
dτ

converges as ε → 0, for almost all t ∈ R, for all f ∈ Ls(R; X), and there is a constant
C = C(s,X) independent of f such that

‖Hf ‖Ls(R, X) ≤ C ‖f ‖Ls(R;X),

where (Hf)(t) = limε→0(Hεf)(t).

Using Theorem 2.15 we prove the following proposition and show the ζ-convexity of
the dual spaces [Hp′

0 (div,Ω)]′ and [T p
′
(Ω)]′.

Proposition 2.16. Let 1 < p < ∞, the dual spaces [Hp′

0 (div,Ω)]′ and [T p
′
(Ω)]′ are

ζ-convex Banach spaces.

Proof. We will only write the proof of the ζ-convexity of [Hp′

0 (div,Ω)]′ because the proof
of the ζ-convexity of [T p

′
(Ω)]′ is similar. Let f ∈ Ls(R; [Hp′

0 (div,Ω)]′), then for almost
all t ∈ R, there exists ψ(t) ∈ Lp(Ω) and χ(t) ∈ Lp(Ω) such that

f(t) = ψ(t) + ∇χ(t), ‖f(t)‖
[Hp′

0 (div,Ω)]′
= max(‖ψ(t)‖Lp(Ω), ‖χ(t)‖Lp(Ω)).

Since f ∈ Ls(R; [Hp′

0 (div,Ω)]′), it is clear that ψ ∈ Ls(R; Lp(Ω)) and χ ∈ Ls(R;Lp(Ω)).
On the other hand we can easily verify that

(Hεf)(t) = (Hεψ)(t) + ∇(Hεχ)(t).

Next, since Lp(Ω) (respectively Lp(Ω)) is ζ-convex then (Hεψ)(t) (respectively (Hεχ)(t))
converges as ε→ 0 to Hψ(t) (respectively to Hχ(t)). Moreover we have the estimate

‖Hψ(t)‖Ls(R;Lp(Ω)) ≤ C(s,Ω, p) ‖ψ‖Ls(R;Lp(Ω))

and
‖Hχ(t)‖Ls(R;Lp(Ω)) ≤ C(s,Ω, p) ‖ψ‖Ls(R;Lp(Ω))

This means that (Hεf)(t) converges as ε→ 0 to Hf(t) = Hψ(t) + ∇Hχ(t). Moreover
we have the estimate

‖Hf(t)‖
Ls(R; [Hp′

0 (div,Ω)]′)
≤ C(s,Ω, p) ‖f‖

Ls(R; [Hp′
0 (div,Ω)]′)

,

which ends the proof.
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3 The Stokes operator

The main object of this section is to introduce the different Stokes operators with Navier-
type boundary conditions that we need in order to solve the Stokes problem for the
different types of initial data u0 and external forces f that we want to consider. For
the sake of comparison we also recall the definition of the Stokes operator with Dirichlet
boundary conditions.

3.1 The Stokes operator with Dirichlet boundary conditions

We consider the space

Lpσ,τ (Ω) =
{
f ∈ Lp(Ω); div f = 0 in Ω, f · n = 0 on Γ

}
.

Endowed the Lp(Ω) norm, it is a Banach space. We also define

V p
0(Ω) =

{
v ∈W 1,p

0 (Ω); div v = 0 in Ω
}

which is a Banach space for the norm of W 1,p(Ω). For every u ∈ V p
0(Ω) we define the

Stokes operator with Dirichlet boundary condition by

∀v ∈ V p′

0 (Ω), 〈Au , v〉
(V p′

0 (Ω))′×V p′
0 (Ω)

=

∫
Ω
∇u : ∇v dx.

Notice that, we can also define the Stokes operator with Dirichlet boundary condition by

A : D(A) ⊂ Lpσ,τ (Ω) −→ Lpσ,τ (Ω),

where D(A) = W 2,p(Ω) ∩W 1,p
0 (Ω) ∩Lpσ(Ω) and A = −P∆. We recall that

P : Lp(Ω) −→ Lpσ,τ (Ω) (3.1)

is the Helmholtz projection defined by,

∀f ∈ Lp(Ω), Pf = f − gradπ, (3.2)

where π is the unique solution of Problem (2.6). This means that, the Stokes operator
is defined by :

u ∈ D(A), Au = −P∆u = −∆u + gradπ,

where π is the unique solution up to an additive constant of the problem

div(gradπ − ∆u) = 0 in Ω, (gradπ − ∆u) · n = 0 on Γ. (3.3)
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3.2 The Stokes operator with Navier-type boundary conditions

In this Section we consider three different Stokes operators with Navier type boundary
conditions.

When Ω is not simply-connected, the Stokes operator with boundary condition (1.3)
has a non trivial kernel included in all the Lp spaces for p ∈ (1,∞). It may be caracterised
as follows:

Kτ (Ω) =
{
v ∈Xp

τ (Ω); div v = 0, curlv = 0 in Ω
}
. (3.4)

It has been proved that his kernel is actually independent of p (cf. [9], for p = 2 and
[13] for p ∈ (1,∞)), is of finite dimension J ≥ 1 and spanned by the functions g̃rad qτj ,
1 ≤ j ≤ J , (see [9, proposition 3.14]). For all 1 ≤ j ≤ J , the function g̃rad qτj is the
extension by continuity of grad qτj to Ω, with qτj is the unique solution up to an additive
constant of the problem:

−∆qτj = 0 in Ω◦,

∂nq
τ
j = 0 on Γ,[

qτj

]
k

= constant, 1 ≤ k ≤ J,[
∂nq

τ
j

]
k

= 0; 1 ≤ k ≤ J,
〈∂nqτj , 1〉Σk = δjk, 1 ≤ k ≤ J.

(3.5)

We recall that, for all 1 ≤ j ≤ J, the product 〈· . ·〉Σj is the duality product between

W
− 1
p
,p

(Σj) and W 1− 1
p′ ,p
′
(Σj).

3.2.1 The Stokes operator with Navier-type conditions on Lpσ,τ (Ω)

Consider the space

Xp
σ,τ (Ω) =

{
v ∈Xp

τ (Ω); divv = 0 in Ω
}
, (3.6)

which is a Banach space for the normXp(Ω). We recall thatXp
σ,τ (Ω) is a closed subspace

of Xp
τ (Ω) and on Xp

σ,τ (Ω) the norm of Xp
τ (Ω) is equivalent to the norm of W 1,p(Ω).

Let u ∈ Lpσ,τ (Ω) be fixed and consider the mapping

Apu : W −→ C

v 7−→ −
∫

Ω
u ·∆v dx,

where
W = Xp′

σ,τ (Ω) ∩W 2,p′(Ω).

It is clear that Ap ∈ L(Lpσ,τ (Ω), W ′) and thanks to de Rham’s Lemma there exists
π ∈W−1,p(Ω) such that

Apu+ ∆u = ∇π in Ω.
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Now suppose that u ∈ Lpσ,τ (Ω) and Apu ∈ Lpσ,τ (Ω). Since ∆u = −Apu + ∇π, then
thanks to [12, Lemma 4.14] curlu × n ∈ W−1−1/p,p(Γ). Moreover if we suppose that
curlu× n = 0 on Γ then (u, π) ∈ Lpσ,τ (Ω)×W−1,p(Ω) is a solution of the problem{

−∆u + ∇π = Apu, divu = 0 in Ω,
u · n = 0, curlu× n = 0 on Γ.

As a result using the regularity of the Stokes Problem [12, Theorem 4.8] one has (u, π) ∈
W 2,p(Ω)×W 1,p(Ω) .

The operator Ap : D(Ap) ⊂ Lpσ,τ (Ω)−→Lpσ,τ (Ω) is a linear operator with

D(Ap) =
{
u ∈W 2,p(Ω); divu = 0 in Ω, u · n = 0, curlu× n = 0 on Γ

}
, (3.7)

provided that Ω is of class C2.1 (cf. [5]). Moreover

∀ u ∈ D(Ap), Apu = −∆u + gradπ, (3.8)

where π is the unique solution up to an additive constant of the problem

div(gradπ − ∆u) = 0 in Ω, (gradπ − ∆u) · n = 0 on Γ.

Observe that for all u ∈ D(Ap) and for all v ∈Xp′
σ,τ (Ω) one has∫

Ω
Ap u · v dx =

∫
Ω
curlu · curlv dx.

It easily follows that (Ap)
∗ = Ap′ .

Notice also that for all 1 < p, q <∞ and u ∈ D(Ap) ∩D(Aq), Apu = Aqu. We also
recall the following propositions, see [5, Proposition 3.1] for the proof.

Proposition 3.1. For all u ∈ D(Ap), Apu = −∆u.

Remark 3.2. Unlike the Stokes operator with Dirichlet boundary condition, we observe
that here the pressure is constant, while with Dirichlet boundary condition the pressure
cannot be a constant since it is the solution of the Problem (3.3).

In the rest of this paper we will consider the Stokes operator with Navier-type bound-
ary conditions (1.3). We end this section by the following propositions (see [5, Proposition
3.2, Proposition 3.3] for the proof):

Proposition 3.3. The space D(Ap) is dense in Lpσ,τ (Ω).

Remark 3.4. (i) Notice that, thanks to Lemmas 2.1 and 2.2, since Ω is of class C2,1 we
have

∀u ∈ D(Ap), ‖u‖W 2,p(Ω) ' ‖u‖Lp(Ω) + ‖∆u‖Lp(Ω).

(ii) We recall that, thanks to [12, Proposition 4.7], since Ω is of class C2,1, for all u ∈
D(Ap) such that 〈u · n , 1〉Σj = 0, 1 ≤ j ≤ J we have

‖u‖W 2,p(Ω) ' ‖∆u‖Lp(Ω).
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Proposition 3.5. Suppose that Ω is not simply connected. The range R(Ap) of the
Stokes operator is not dense in Lpσ,τ (Ω).

Proof. Since the domain Ω is not simply connected, the dimension of the kernel Kτ (Ω)
of the Stokes operator Ap′ on Lp

′
σ,τ (Ω) is finite and greater than or equal to 1. Suppose

then that the range R(Ap) is dense in Lpσ,τ (Ω). Using the fact that (Ap)
∗ = Ap′ and that

Lpσ,τ (Ω) = R(Ap) = [Ker(Ap′)]
⊥,

where
Ker(Ap′) =

{
v ∈ D(Ap′); Ap′v = 0 in Ω

}
,

and
[Ker(Ap′)]

⊥ =
{
f ∈ Lpσ,τ (Ω);

∫
Ω
f · v = 0, ∀v ∈ Ker(Ap′)

}
.

we obtain that
Ker(Ap′) = Kτ (Ω) = {0},

which is a contradiction.

3.2.2 The Stokes operator with Navier-type conditions on [Hp′

0 (div,Ω)]′σ,τ

Consider now the space:

E = {f ∈ [Hp′

0 (div,Ω)]′; div f ∈ Lp(Ω)},

which is a Banach space with the norm

‖f‖E = ‖f‖
[Hp′

0 (div,Ω)]′
+ ‖div f‖Lp(Ω). (3.9)

We introduce also the following space:

D(Ω) = {v∣∣Ω; v ∈ D(R3)}.

Lemma 3.6. The space D(Ω) is dense in E.

Proof. Let ` ∈ E′ such that 〈` , v〉E′×E = 0 for all v ∈ D(Ω) and let us show that ` is
null in E. We know that there exists a function u in Hp′

0 (div,Ω) and a function χ in
Lp
′
(Ω) such that for all f in E one has:

〈` , f〉E′×E = 〈f , u〉
[Hp′

0 (div,Ω)]′×Hp′
0 (div,Ω)

+

∫
Ω

div f χ dx. (3.10)

We denote by ũ and χ̃ the extension of u and χ by zero to R3. As a result for every
f ∈ D(R3) one has

〈f , ũ〉
[Hp′

0 (div,R3)]′×Hp′
0 (div,R3)

+

∫
R3

div f χ̃dx = 0.
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Then ũ = ∇ χ̃ and u = ∇χ. This means that χ̃ ∈ Lp′(R3) and ∇ χ̃ ∈ Hp′

0 (div, R3).
Then χ̃ ∈W 2,p′(R3) and χ ∈W 2,p′

0 (Ω). Now since D(Ω) dense in W 2,p′

0 (Ω) there exists a
sequence (χk)k in D(Ω) that converges to χ in W 2,p′(Ω). Finally for all f ∈ E one has:

〈` , f〉E′×E = 〈f , u〉
[Hp′

0 (div,Ω)]′×Hp′
0 (div,Ω)

+

∫
Ω

div f χ dx.

= lim
k→+∞

[
〈f , ∇χk〉[Hp′

0 (div,Ω)]′×Hp′
0 (div,Ω)

+

∫
Ω

div f χk dx.
]

= 0.

The following Corollary gives us the normal trace of a function f in E.

Corollary 3.7. The linear mapping γ : f 7−→ f ·n defined on D(Ω) can be extended to
a linear continuous mapping still denoted by γ : E−→W−1−1/p,p(Γ). Moreover we have
the following Green formula: for all f ∈ E and for all χ ∈ W 2,p′(Ω) such that ∂ χ

∂ n = 0
on Γ, ∫

Ω
(div f)χ dx = −〈f , ∇χ〉Ω + 〈f · n , χ〉Γ, (3.11)

where 〈· , ·〉Ω = 〈· , ·〉
[Hp′

0 (div,Ω)]′×Hp′
0 (div,Ω)

and 〈· , ·〉Γ = 〈· , ·〉W−1−1/p,p(Γ)×W 1+1/p,p′ (Γ).

Now we consider the space

[Hp′

0 (div,Ω)]′σ,τ =
{
f ∈ [Hp′

0 (div,Ω)]′; div f = 0 in Ω, f · n = 0 on Γ
}
. (3.12)

We define the operator

Bp : D(Bp) ⊂ [Hp′

0 (div,Ω)]′σ,τ 7−→ [Hp′

0 (div,Ω)]′σ,τ ,

by
∀u ∈ D(Bp), Bp u = −∆u in Ω. (3.13)

The domain of Bp is given by

D(Bp) =
{
u ∈W 1,p(Ω); ∆u ∈ [Hp′

0 (div,Ω)]′ divu = 0 in Ω,

u · n = 0, curlu× n = 0 on Γ
}
. (3.14)

Remark 3.8. The operator Bp is the extension of the Stokes operator to [Hp′

0 (div,Ω)]′σ,τ .

Proposition 3.9. The space Dσ(Ω) is dense in [Hp′

0 (div,Ω)]′σ,τ .

Proof. Let ` be a linear form on [Hp′

0 (div,Ω)]′σ,τ such that ` vanishes on Dσ(Ω) and let
us show that ` is null on [Hp′

0 (div,Ω)]′σ,τ . Thanks to the Hahn-Banach theorem, ` can
be extended to a linear continuous form on [Hp′

0 (div,Ω)]′ denoted by ˜̀. Moreover

∀f ∈ [Hp′

0 (div,Ω)]′σ,τ , `(f) = 〈˜̀ , f〉
Hp′

0 (div,Ω)×[Hp′
0 (div,Ω)]′

.
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Since ` vanishes on Dσ(Ω) then thanks to De-Rham lemma there exists a function π ∈
W 2,p′(Ω) such that ∂ π

∂ n = 0 on Γ and ˜̀ = ∇π in Ω. Now let f ∈ [Hp′

0 (div,Ω)]′σ,τ then by
Corollary 3.7 we have

`(f) = 〈f , ∇π〉
[Hp′

0 (div,Ω)]′×Hp′
0 (div,Ω)

= −
∫

Ω
(div f)π dx + 〈f · n , π〉Γ

= 0.

As a result of Proposition 3.9 we deduce the density of the domain of the operator
Bp.

Corollary 3.10. The operator Bp is a densely defined operator.

3.2.3 The Stokes operator with Navier-type conditions on [T p
′
(Ω)]′σ,τ

Consider the space
G =

{
f ∈ (T p

′
(Ω))′; div f ∈ Lp(Ω)

}
,

equipped with the graph norm. We skip the proof of the following lemma because it is
similar to the proof of Lemma 3.6:

Lemma 3.11. The space D(Ω) is dense in G.

As in the previous Subsection The following Corollary gives the normal trace of
functions in G.

Corollary 3.12. The linear mapping γ : f 7−→ f · n defined on D(Ω) can be extended
to a linear continuous mapping still denoted by γ : G −→ W−2−1/p,p(Γ). Moreover we
have the following Green formula: for all f ∈ G and for all χ ∈ W 3,p′(Ω) such that
∂ χ
∂ n = 0 on Γ and ∆χ = 0 on Γ,∫

Ω
(div f)χ dx = −〈f , ∇χ〉

(T p
′
(Ω))′×T p′ (Ω)

+ 〈f · n , χ〉Γ. (3.15)

We recall that 〈. , .〉Γ = 〈. , .〉W−2−1/p,p(Γ)×W 2+1/p,p′ (Γ).

Now we consider the space

[T p
′
(Ω)]′σ,τ =

{
f ∈ (T p

′
(Ω))′; div f = 0 in Ω, f · n = 0 on Γ

}
. (3.16)

Next, we consider the operator:

Cp : D(Cp) ⊂ [T p
′
(Ω)]′σ,τ −→ [T p

′
(Ω)]′σ,τ ,

defined by
∀u ∈ D(Cp), Cp u = −∆u inΩ. (3.17)
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The domain of Cp is given by

D(Cp) =
{
u ∈ Lp(Ω); ∆u ∈ (T p

′
(Ω))′, divu = 0 in Ω, u·n = 0, curlu×n = 0 on Γ

}
.

(3.18)

Remark 3.13. The operator Cp is the extension of the stokes operator to [T p
′
(Ω)]′σ,τ .

We skip the proof of the following proposition because it is similar to the proof of
Proposition 3.9:

Proposition 3.14. The space Dσ(Ω) is dense in [T p
′
(Ω)]′σ,τ .

4 Analyticity results

In this section we will state our main result and its proof. We will prove that the Stokes
operator with Navier-type boundary conditions (1.3) generates a bounded analytic semi-
group on Lpσ,τ (Ω), [Hp′

0 (div,Ω)]′σ,τ and [T p
′
(Ω)]′σ,τ respectively for all 1 < p <∞.

4.1 Analyticity on Lpσ,τ (Ω)

In this subsection, we review the main results of [5] concerning the analyticity of the
semi-group generated by the Stokes operator with Navier-type boundary conditions Ap
on Lpσ,τ (Ω), (see [5] for the proof).

4.1.1 The Hilbertian case

The results of [5] on the resolvent of the Stokes operator are obtained considering the
problem (1.6), that we recall here:{

λu−∆u = f , divu = 0 in Ω,
u · n = 0, curlu× n = 0 on Γ,

(4.1)

where f ∈ L2
σ,τ (Ω) and λ ∈ Σε.

Remark 4.1. Observe that, Problem (4.1) is equivalent to the problem{
λu−∆u = f , in Ω,
u · n = 0, curlu× n = 0 on Γ.

(4.2)

Let u ∈ H1(Ω) be the unique solution of Problem (4.2) and set divu = χ. It is clear
that λχ−∆χ = 0 in Ω. Moreover, since f · n = 0 and u · n = 0 on Γ then ∆u · n = 0
on Γ. Notice also that the condition curlu×n = 0 on Γ implies that curl curlu ·n = 0
on Γ. Finally since ∆u = grad(divu)− curl curlu one gets ∂χ

∂n = 0 on Γ. Thus χ = 0
in Ω and the result is proved.

We have the following theorem, for the proof see [5, Theorem 4.3].
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Theorem 4.2. Let ε ∈ ]0, π[ be fixed, f ∈ L2
σ,τ (Ω) and λ ∈ Σε.

(i) The Problem (4.1) has a unique solution u ∈H1(Ω).
(ii) There exist a constant C ′ε > 0 independent of f and λ such that the solution u
satisfies the estimates

‖u‖L2(Ω) ≤
C ′ε
|λ|
‖f‖L2(Ω) (4.3)

and
‖curlu‖L2(Ω) ≤

C ′ε√
|λ|
‖f‖L2(Ω). (4.4)

(iii) The solution u ∈H2(Ω) and satisfies the estimate

‖u‖H2(Ω) ≤
C(Ω, λ, ε)

|λ|
‖f‖L2(Ω), (4.5)

where C(Ω, λ, ε) = C(Ω)(C ′ε + 1)(|λ|+ 1).

Remark 4.3. We note that for λ > 0 the constant C ′ε is equal to 1 and we recover the
m-accretive property of the stokes operator on L2

σ,τ (Ω).

Remark 4.4. Consider the sesqui-linear form:

∀u, v ∈X2
σ,τ (Ω), a(u,v) =

∫
Ω
curlu · curlv dx. (4.6)

If Ω is simply connected, we know that (see [9, Corollary 3.16]) for all v ∈ X2
σ,τ (Ω) one

has
‖v‖X2(Ω) ≤ C ‖curlv‖L2(Ω). (4.7)

As a result, the sesqui-linear form a is coercive and we can apply Lax-Milgram Lemma
to find solution to the problem: find u ∈X2

σ,τ (Ω) such that for all v ∈X2
σ,τ (Ω)

a(u,v) =

∫
Ω
f · v dx,

where f ∈ L2
σ,τ (Ω). This means that the operator A2 : D(A2) ⊂ L2

σ,τ (Ω) −→ L2
σ,τ (Ω)

is bijective.
Now, if Ω is multiply-connected, the inequality (4.7) is false because the kernel Kτ (Ω)

of the Stokes operator with Navier-type boundary conditions is not trivial (cf. [9]). It is
also proved in [9], that for all v ∈ X2

τ (Ω) we have instead the following Poincaré-type
inequality:

‖v‖X2
τ (Ω) ≤ C2(Ω)(‖curlv‖L2(Ω) + ‖div v‖L2(Ω) +

J∑
j=1

|〈v · n , 1〉Σj |). (4.8)

As a consequence of Theorem 4.2 we have the following theorem
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Theorem 4.5. The operator −A2 generates a bounded analytic semi-group on L2
σ,τ (Ω).

Remark 4.6. We recall that the restriction of an analytic semi-group to the non negative
real axis is a C0 semi-group. Thanks to Remark 4.3 the restriction of our analytic semi-
group to the real axis gives a C0 semi-group of contraction.

The following proposition gives the eigenvalues of the Stokes operator. We will see
later that the following proposition allows us to obtain an explicit form for the unique
solution of the homogeneous Stokes Problem (7.2) as a linear combination of the eigen-
functions of the Stokes operator.

Proposition 4.7. There exists a sequence of functions (zk)k ⊂ D(A2) and an increasing
sequence of real numbers (λk)k such that λk ≥ 0, λk → +∞ as k → +∞ and

∀v ∈X2
τ (Ω),

∫
Ω
curl zk · curlv dx = λk

∫
Ω
zk · v dx.

In other words, (λk)k are the eigenvalues of the Stokes operator and (zk)k are the asso-
ciated eigenfunctions.

Proof. Consider the operator

Λ : L2
σ,τ (Ω) −→ D(A2) ↪→ L2

σ,τ (Ω)

f 7−→ u

where u is the unique solution of the problem{
u+A2u = f , divu = 0 in Ω,
u · n = 0, curlu× n = 0 on Γ.

Thanks to Theorem 4.2, we know that Λ is a bounded linear operator from L2
σ,τ (Ω) into

itself. Moreover, thanks to Lemma 2.1 and the compact embedding of H1(Ω) in L2(Ω),
the canonical embedding D(A2) ↪→ L2

σ,τ (Ω) is compact. Equivalently, the operator Λ

is compact from L2
σ,τ (Ω) into itself. Moreover we can easily verify that this operator

is also a self adjoint operator. Thus L2
σ,τ (Ω) has a Hilbertian basis formed from the

eigenvectors of the operator Λ. Then, there exists a sequence of real numbers (µk)k>0

and eigenfunctions (zk)k>0 such that Λzk = µk zk and µk −→ 0 as k → +∞. This
means that −µk ∆zk + µk zk = zk. Note that 0 < µk ≤ 1. As a result A2 zk = λk zk,
where λk = 1

µk
− 1 and λk −→ +∞ as k → +∞. In conclusion (zk)k is a sequence of

eigenfunctions of the Stokes operator associated to the eigenvalues (λk)k.

Remark 4.8. As a consequence of Proposition 4.7, L2
σ,τ (Ω) can be written in the form

L2
σ,τ (Ω) = KerA2

+∞⊕
k=1

Ker(λk I − A2).
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In other words, any vector v ∈ L2
σ,τ (Ω) can be written in the form

v =
J∑
k=1

αkg̃rad q
τ
k +

+∞∑
k=1

βkzk,

where (g̃rad qτk)1≤k≤J is a basis for kerA2 = K2
τ (Ω) and ∀ k ∈ N, zk ∈ ker (λk I −A2).

We recall that J is the dimension of kerA2 = K2
τ (Ω), (see [9]).

As described above, when Ω is simply-connected, K2
τ (Ω) = {0}, λ0 = 0 is not an

eigenvalue and the Stokes operator is bijective from D(A2) into L2
σ,τ (Ω) with bounded

and compact inverse. In this case,

L2
σ,τ (Ω) =

+∞⊕
k=1

Ker(λk I − A2),

where (λk)k≥1 are the eigenvalues of the Stokes operator and (zk)k are the eigenfunctions
associated to eigenvalues (λk)k≥1. Moreover, the sequence (λk)k≥1 is an increasing se-
quence of positive real numbers and the first eigenvalue λ1 is equal to 1

C2(Ω) where C2(Ω)

is the constant that comes from the Poincaré-type inequality (4.8).

4.1.2 Lp-theory

This subsection extends Theorem 4.2 to every 1 < p < ∞. Theorem 4.9 gives the well
posedness of the resolvent Problem (4.1) in Lp(Ω), while Theorem 4.10 extends estimates
(4.3-4.5) to all 1 < p <∞ (see [5, Theorem 4.8, Theorem 4.11] for the proof).

Theorem 4.9. Let λ ∈ Σε, with 0 < ε < π/2, and let f ∈ Lpσ,τ (Ω). The Problem (4.1)
has a solution u ∈W 2,p(Ω). Moreover, this solution is unique in u ∈W 1,p(Ω).

Theorem 4.10. Let λ ∈ C∗ such that Reλ ≥ 0, let 1 < p < ∞, f ∈ Lpσ,τ (Ω) and let
u ∈W 1,p(Ω) be the unique solution of Problem (4.1). Then u satisfies the estimates

‖u‖Lp(Ω) ≤
κ1(Ω, p)

|λ|
‖f‖Lp(Ω), (4.9)

‖curlu‖Lp(Ω) ≤
κ2(Ω, p)√
|λ|

‖f‖Lp(Ω) (4.10)

‖u‖W 2,p(Ω) ≤ κ3(Ω, p)
1 + |λ|
|λ|

‖f‖Lp(Ω). (4.11)

where κi(Ω, p), i = 1, 2, 3 are positive constants independent of λ and f .

As a result we have the following theorem (see [5, Theorem 4.12] for the proof)

Theorem 4.11. The operator −Ap generates a bounded analytic semi-group on Lpσ,τ (Ω)
for all 1 < p <∞.
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Remark 4.12. Consider the two problems:{
λu−∆u = f , divu = 0 in Ω,
u× n = 0 on Γ

(4.12)

and {
λu−∆u + ∇π = f , divu = 0 in Ω,

u · n = 0, [Du · n]τ = 0 on Γ,
(4.13)

where λ ∈ C∗ is such that Reλ ≥ 0 and f ∈ Lpσ(Ω) (respectively f ∈ Lpσ,τ (Ω) ).
In two forthcoming papers we study the two Problems (4.12) and (4.13). Proceeding

in a similar way as in [5] we prove that these two Problems have a unique solution
u ∈W 1,p(Ω) (respectively (u, π) ∈W 1,p(Ω)×W 1,p(Ω)/R) that satisfy the estimate

‖u‖Lp(Ω) ≤
C(Ω, p)

|λ|
‖f‖Lp(Ω).

Moreover when Ω is of class C2,1, we have u ∈ W 2,p(Ω). This means that the Laplace
operator with normal boundary conditions and the Stokes operator with Navier boundary
condition generate a bounded analytic semi-group on Lpσ(Ω) and Lpσ,τ (Ω) respectively .

This analyticity allows us to solve the time dependent Stokes Problem with normal
boundary condition and pressure boundary condition:

∂u
∂t −∆u+∇π = f , divu = 0 in Ω× (0, T ),

u× n = 0, π = 0 on Γ× (0, T ),
u(0) = u0 in Ω,

(4.14)

as well as the time dependent Stokes Problem (1.1) with Navier-boundary condition
(1.2) for a given f ∈ Lq(0, T ; Lp(Ω)) and u0 ∈ Lpσ(Ω) (respectively u0 ∈ Lpσ,τ (Ω)).

4.2 Analyticity on [Hp′

0 (div,Ω)]′σ,τ

This subsection is devoted to the analyticity of the semi-group generated by the Stokes
operator on [Hp′

0 (div,Ω)]′σ,τ . This analyticity allows us to obtain the weak solution to
the Problem (1.1) with the boundary condition (1.3).

To this end we consider the problem:{
λu−∆u + ∇π = f , divu = 0 in Ω,

u · n = 0, curlu× n = 0 on Γ,
(4.15)

where λ ∈ C∗ such that Reλ ≥ 0 and f ∈ [Hp′

0 (div,Ω)]′. The following theorem gives
the existence and uniqueness of solution to Problem (4.15):

Theorem 4.13. Let λ ∈ C∗ such that Reλ ≥ 0 and let f ∈ [Hp′

0 (div,Ω)]′. The Problem
(4.15) has a unique solution (u, π) ∈W 1,p(Ω)× Lp(Ω)/R satisfying

‖u‖
[Hp′

0 (div,Ω)]′
≤ C(Ω, p)

|λ|
‖f‖

[Hp′
0 (div,Ω)]′

(4.16)

for some constant C(Ω, p) > 0 independent of λ and f .
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Proof. (i) For the existence of solutions for Problem (4.15) we proceed in the same way
as in [12, Theorem 4.4], Theorem 4.2 and Theorem 4.9.
(ii) To prove estimate (4.16) we proceed as follows: Consider the problem:{

λv −∆v + ∇θ = F , div v = 0 in Ω,
v · n = 0, curlv × n = 0 on Γ,

(4.17)

where F ∈ Hp′

0 (div,Ω) and λ ∈ C∗ such that Reλ ≥ 0. Thanks to Lemma 2.5 there
exists a unique up to an additive function θ ∈W 1,p′(Ω)/R solution of

div(∇θ − F ) = 0 in Ω (∇θ − F ) · n = 0 on Γ.

Moreover the function θ satisfies the estimate

‖∇θ‖
Lp
′
(Ω)
≤ C(Ω, p′) ‖F ‖

Lp
′
(Ω)
.

As a result, thanks to Theorem 4.9 and Theorem 4.10, Problem (4.17) has a unique
solution (v, θ) ∈W 1,p′(Ω)×W 1,p′(Ω)/R that satisfies the estimate

‖v‖
Lp
′
(Ω)
≤ C(Ω, p′)

|λ|
‖F ‖

Lp
′
(Ω)
.

Thus
‖v‖

Hp′
0 (div,Ω)

≤ C(Ω, p′)

|λ|
‖F ‖

Hp′
0 (div,Ω)

.

Now let (u, π) ∈ W 1,p(Ω) × Lp(Ω)/R be the solution of Problem (4.15), then by using
(3.11) we have:

‖u‖
[Hp′

0 (div,Ω)]′
= sup

F∈Hp′
0 (div,Ω),F 6=0

|〈u , F 〉Ω|
‖F ‖

Hp′
0 (div,Ω)

= sup
F∈Hp′

0 (div,Ω),F 6=0

|〈u , λv −∆v −∇θ〉Ω|
‖F ‖

Hp′
0 (div,Ω)

= sup
F∈Hp′

0 (div,Ω),F 6=0

|〈λu−∆u−∇π , v〉Ω|
‖F ‖

Hp′
0 (div,Ω)

= sup
F∈Hp′

0 (div,Ω),F 6=0

|〈f , v〉Ω|
‖F ‖

Hp′
0 (div,Ω)

≤ C(Ω, p′)

|λ|
‖f‖

[Hp′
0 (div,Ω)]′

,

which is estimate (4.16).

As consequence of Theorem 4.13 we have the following corollary

32



Corollary 4.14. Let λ ∈ C∗ such that Reλ ≥ 0 and let f ∈ [Hp′

0 (div,Ω)]′ such that
div f = 0 in Ω and f ·n = 0 on Γ. The Problem (4.1) has a unique solution u ∈W 1,p(Ω)
satisfying the estimate (4.16).

Next, using Proposition 2.6, one gets the analyticity of the semi-group generated by
the operator Bp:

Theorem 4.15. The operator −Bp generates a bounded analytic semi-group on the space
[Hp′

0 (div,Ω)]′σ,τ .

4.3 Analyticity on [T p′(Ω)]′σ,τ

In this subsection we prove the analyticity of the semi-group generated by the Stokes
operator on [T p

′
(Ω)]′σ,τ . Using this property we will show the existence of very weak

solutions to the Problem (1.1) with the Navier-type boundary condition (1.3). The
method and arguments in this Section are very similar to those of the previous one.

The following theorem gives the very weak solution to Problem (4.15).

Theorem 4.16. Let λ ∈ C∗ such that Reλ ≥ 0 and let f ∈ (T p
′
(Ω))′ then the Problem

(4.15) has a unique solution (u, π) ∈ Lp(Ω) × W−1,p(Ω)/R. Moreover we have the
estimate

‖u‖Lp(Ω) ≤
C(Ω, p)

|λ|
‖f‖

(T p
′
(Ω))′

, (4.18)

for some constant C(Ω, p) > 0 independent of λ and f .

Proof. (i) Thanks to the Green formula (2.5) and to [12, Theorem 4.15] we can easily
verify that Problem (4.15) is equivalent to the problem: Find u ∈ Lp(Ω) such that for
all ϕ ∈ D(Ap′) (given by (3.7)) and for all q ∈W 1,p′(Ω)

λ
∫

Ω u ·ϕ dx −
∫

Ω u ·∆ϕ dx = 〈f , ϕ〉
(T p
′
(Ω))′×T p′ (Ω)∫

Ω u · ∇q dx = 0.
(4.19)

Notice that we recuperate the pressure using the De-Rham argument: if F ∈W−2,p(Ω),
the dual of the spaceW 2,p′

0 (Ω), verifying 〈F , v〉D′(Ω)×D(Ω) = 0, for all v ∈ Dσ(Ω) then
there exists χ ∈W−1,p(Ω) such that F = ∇χ.

(ii) Let us now solve (4.19). As in the proof of Theorem 4.13, we know that for all
F ∈ Lp′(Ω) the problem:{

λϕ−∆ϕ−∇θ = F , divϕ = 0 in Ω,
ϕ · n = 0, curlϕ× n = 0 on Γ,

(4.20)

has a unique solution (ϕ, θ) ∈ D(Ap′)×W 1,p′(Ω)/R that satisfies the estimate

‖ϕ‖
Lp
′
(Ω)
≤ C(Ω, p′)

|λ|
‖F ‖

Lp
′
(Ω)
.
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Now the following linear mapping:

L : Lp
′
(Ω)−→C

F 7−→ 〈f , ϕ〉
(T p
′
(Ω))′×T p′ (Ω)

,

where ϕ is the unique solution of Problem (4.20), satisfies

|L(F )| ≤ ‖f‖
(T p
′
(Ω))′
‖ϕ‖

Lp
′
(Ω)
≤ C(Ω, p′)

|λ|
‖f‖

(T p
′
(Ω))′
‖F ‖

Lp
′
(Ω)
.

Then there exists a unique u ∈ Lp(Ω) such that

L(F ) =

∫
Ω
u · F dx = 〈f , ϕ〉

(T p
′
(Ω))′×T p′ (Ω)

and satisfying the estimate (4.18). On other worlds u is the unique solution of Problem
(4.19).

As a consequence of Theorem 4.16 we deduce the existence and uniqueness of very
weak solutions to Problem (4.1).

Corollary 4.17. Let λ ∈ C∗ such that Reλ ≥ 0 and let f ∈ (T p
′
(Ω))′ such that div f = 0

in Ω and f ·n = 0 on Γ. The Problem (4.1) has a unique solution u ∈ Lp(Ω) that satisfies
the estimate (4.18).

As described above, using Proposition 2.6 with w = 0, we have the analyticity of the
semi-group generated by the Stokes operator on [T p

′
(Ω)]′σ,τ :

Theorem 4.18. The operator −Cp is a densely defined operator and it generates a
bounded analytic semi-group on [T p

′
(Ω)]′σ,τ .

5 Stokes operator with flux boundary conditions

As we have already mentioned, the Stokes operator with Navier-type boundary conditions
in a non simply connected domain has a non trivial finite dimensional kernel Kτ (Ω). It
is then natural to study the Stokes problem on the orthogonal of that kernel. To this
end we first consider the Stokes operator on that space. It turns out that, under the
assumption of Condition H for the domain Ω, for a function u ∈ Lpσ,τ (Ω), to be in the
orthogonal of Kτ (Ω) is equivalent to the condition (1.5) (cf. [13], see also [4]). It is then
equivalent for our purpose to consider the Stokes problem, with Navier-type boundary
conditions, with the supplementary flux condition (1.5).

We then begin this section considering A′p, the Stokes operator, with Navier-type
boundary conditions, and with flux condition (1.5). Its resolvent set is given by the
solutions of problem (1.7) that we may recall here:

λu−∆u = f , divu = 0 in Ω,
u · n = 0, curlu× n = 0 on Γ,

〈u · n, 1〉Σj = 0, 1 ≤ j ≤ J.
(5.1)
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The addition of the extra boundary condition on the cuts Σj , 1 ≤ j ≤ J makes the
Stokes operator invertible on Lpσ,τ (Ω) with bounded and compact inverse.

Consider then the space

Xp =
{
f ∈ Lpσ,τ (Ω);

∫
Ω
f · v dx = 0, ∀ v ∈Kτ (Ω)

}
, (5.2)

(not to confuse with the space Xp(Ω) defined in the subsection 2.1). It worth noting
that,

∀ 1 < p <∞, Lpσ,τ (Ω) = Kτ (Ω)⊕Xp and (Xp)
′ = Xp′ . (5.3)

Next, we define the operator A′p : D(A′p) ⊂Xp−→Xp by:

D(A′p) =
{
u ∈ D(Ap); 〈u · n , 1〉Σj = 0, 1 ≤ j ≤ J

}
(5.4)

and A′pu = Apu, for all u ∈ D(A′p). In other words, the operator A′p is the restriction
of the Stokes operator to the space Xp. It is clear that when Ω is simply connected the
Stokes operator Ap coincides with the operator A′p.

Remark 5.1. Let u ∈ Lpσ,τ (Ω), we note that the condition

∀ v ∈Kτ (Ω),

∫
Ω
u · v dx = 0, (5.5)

is equivalent to the condition (see [13, Lemma 3.2, Corollary 3.4]):

〈u · n , 1〉Σj = 0, 1 ≤ j ≤ J. (5.6)

We prove in the following proposition the density of the domain of the operator A′p.

Proposition 5.2. The operator A′p is densely defined operator on Xp.

Proof. Thanks to Remark 5.1 it is clear that Dp(A
′) ⊂Xp. Moreover, using Lemma 2.3

we can easily verify that for all v ∈ Kτ (Ω),
∫

Ω ∆u · v dx = 0. As a result A′u ∈ Xp

and A′ is a well defined operator.
Now, for the density, let w ∈ Lpσ,τ (Ω) such that 〈w · n , 1〉Σj = 0 for all 1 6 j 6 J .

We know that there exists a sequence (wk)k in Dσ(Ω) such that wk −→ w in Lp(Ω).
As a consequence for all 1 6 j 6 J , 〈wk · n , 1〉Σj −→ 〈w · n , 1〉Σj = 0, as k → +∞.
Now for all k ∈ N, setting w̃k = wk −

∑J
j=1〈wk · n , 1〉Σj g̃rad qτj . We can easily verify

that (w̃k)k is in Dp(A
′) and converges to w in Lp(Ω).

Next we study the resolvent of the operator A′p and, to this end, consider the problem
(5.1) for λ ∈ C. The following results holds:

Theorem 5.3. Let λ ∈ C such that Reλ ≥ 0 and f ∈ Xp. The problem (5.1) has a
unique solution u ∈W 1,p(Ω) that satisfies the estimates (4.9)-(4.10).
In addition, the solution u belongs to W 2,p(Ω) and satisfies the estimate

‖u‖W 2,p(Ω) ≤ C(Ω, p) ‖f‖Lp(Ω), (5.7)

where C(Ω, p) is independent of λ and f .
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This result is proved for λ = 0 in [12] (cf. Proposition 4.3). On the other hand, for
λ ∈ C∗, Reλ ≥ 0 a similar Theorem has been proved for the problem (4.1) in [5] (cf.
Theorem 4.8 and Theorem 4.11). Since the proof of Theorem 5.3 is very similar it will
be skipped.

The following theorem follows:

Theorem 5.4. The operator −A′p generates a bounded analytic semi-group on Xp for
all 1 < p <∞.

Remark 5.5. Let (S(t))t>0 be the semi-group generated by −A′p onXp. We notice that
S(t) = T (t)|Xp

where (T (t))t≥0 is the analytic semi-group generated by the operator −Ap
on Lpσ,τ (Ω).

Remark 5.6. Thanks to Proposition 4.7 we conclude that the spaceX2 has a Hilbertian
basis formed from the eigenfunctions of the operator A′2. Moreover σ(A2) = σ(A′2)∪{0}
and X2 =

⊕+∞
k=1 Ker(λk I − A2).

In a similar way, we now define and give some properties of the Stokes operators with
flux boundary conditions defined on the subspaces of [Hp′

0 (div,Ω)]′σ,τ and [T p
′
(Ω)]′σ,τ .

Since the proof of these properties are completely similar to those for the operator A′p
we do not write any detail.

(i) Consider the space

Y p =
{
f ∈ [Hp′

0 (div,Ω)]′σ,τ ; ∀v ∈Kτ (Ω), 〈f , v〉Ω = 0
}
, (5.8)

where 〈. , .〉Ω = 〈. , .〉
[Hp′

0 (div,Ω)]′×Hp′
0 (div,Ω)

.
We define the operator B′p : D(B′p) ⊂ Y p −→ Y p by:

D(B′p) =
{
u ∈ D(Bp); 〈u · n , 1〉Σj = 0, 1 ≤ j ≤ J

}
(5.9)

and B′pu = Bpu, for all u ∈ D(B′p). We recall that D(Bp) is given by (3.14). Observe
that, the operator B′p is the restriction of the Stokes operator to the space Y p. It is clear
that when Ω is simply connected the Stokes operator Bp coincides with the operator B′p.

We easily verify that f ∈ Y p and for all λ ∈ C∗ such that Reλ ≥ 0 the Problem
(5.1) has a unique solution u ∈W 1,p(Ω) satisfying the estimate (4.16). In other words,
the operator B′p is a well defined densely defined operator and −B′p generates a bounded
analytic semi-group on Y p.

(ii) Consider the space

Zp =
{
f ∈ [T p

′
(Ω)]′σ,τ ; ∀v ∈Kτ (Ω), 〈f , v〉Ω = 0

}
, (5.10)

where 〈. , .〉Ω = 〈. , .〉
[T p
′
(Ω)]′×T p′ (Ω)

.
We define the operator C ′p : D(C ′p) ⊂ Zp −→ Zp by:

D(C ′p) =
{
u ∈ D(Cp); 〈u · n , 1〉Σj = 0, 1 ≤ j ≤ J

}
(5.11)
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and C ′pu = Cpu, for all u ∈ D(C ′p). We recall that D(Cp) is given by (3.18). Notice
that, the operator C ′p is the restriction of the Stokes operator to the space Zp. Similarly,
when Ω is simply connected the Stokes operator Cp coincides with the operator C ′p.

We verify that f ∈ Zp and for all λ ∈ C∗ such that Reλ ≥ 0 the Problem (5.1) has
a unique solution u ∈ Lp(Ω) satisfying the estimate (4.18). In other words, the operator
C ′p is a well defined densely defined operator and −C ′p generates a bounded analytic
semi-group on Zp.

6 Complex and fractional powers of the Stokes operator

In this section we are interested in the study of the complex and the fractional powers
of the Stokes operators Ap and A′p on Lpσ,τ (Ω) and Xp respectively. Since theses opera-
tors generates bounded analytic semi-groups in their corresponding Banach spaces (see
Theorems 4.11 and 5.4), they are in particular non-negative operators. It then follows
from the results in [50] and in [73] that their powers Aαp and (A′p)

α, α ∈ C, are well,
densely defined and closed linear operators on Lpσ,τ (Ω) and Xp with domain D(Aαp ) and
D((A′p)

α) respectively.
The purpose of this section is to prove some properties and estimates for these oper-

ators Aαp and (A′p)
α. Since it will be needed, we also obtain in this section a result on

the purely imaginary powers of (I +Ap) that easily follows from previous results in [38].
The fractional powers of the Stokes operator with Dirichlet boundary conditions on a

bounded domains are studied in detail in [40]. In that case the Stokes operator is bijective
with bounded inverse. This is still true for the Stokes operator with Navier-type and flux
boundary conditions A′p but not true for the Stokes operator with Navier-type boundary
conditions Ap.

6.1 Pure imaginary powers.

In this section we prove that the pure imaginary powers of the operators (I +L) and L′,
for L = Ap, Bp, Cp, are bounded. The proofs are based on Lemma A2 in [43] and some
results in [38] about the operator ∆M defined as follows :

∆M : D(∆M ) ⊂ Lp(Ω) −→ Lp(Ω),

where
D(∆M ) =

{
u ∈W 2,p(Ω); u · n = 0, curlu× n = 0 on Γ

}
(6.1)

and
∀u ∈ D(∆M ), ∆Mu = ∆u in Ω. (6.2)

As it was noticed in [38], (see also [5]):

D(∆M ) ∩Lpσ,τ (Ω) = D(Ap), (6.3)

∀u ∈ D(Ap), Apu = −∆M u in Ω (6.4)
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and
R(λ, ∆M )(Lpσ,τ (Ω)) ⊂ Lpσ,τ (Ω). (6.5)

Similarly we have:
D(∆M ) ∩Xp = D(A′p), (6.6)

∀u ∈ D(A′p), Apu = −∆M u in Ω (6.7)

and
R(λ, ∆M )(Xp) ⊂Xp. (6.8)

Our first result in this section is the following:

Theorem 6.1. There exists an angle 0 < θ0 < π/2 and a constant M > 0 such that for
all s ∈ R we have

‖(I +Ap)
i s‖L(Lpσ,τ (Ω)) ≤ M e|s| θ0 . (6.9)

Proof. Using Theorem 3.1 and Remark 3.2 in [38] with λ = 1, we deduce that (I −∆M )
has a bounded H∞- calculus on Lp(Ω). Then, there exist an angle 0 < θ0 < π/2 and a
constant M > 0 such that for all s ∈ R

‖(I −∆M )i s‖L(Lp(Ω)) ≤ M e|s| θ0 .

(For the definition of H∞- calculus of an operator in a Banach space and its relation
with the pure imaginary powers of this operator see [28, Section 2] for instance). Using
now (6.3)-(6.5), the estimate (6.9) follows.

Remark 6.2. The results in [38] are proved under the hypothesis that the domain Ω is
bounded with a uniform C3- boundary. On the other hand, it is well known in elliptic
theory (cf. Grsivard [44]) that the same regularity results hold if the Ck regularity is
replaced by the regularity Ck−1,1. Notice that this is precisely our hypothesis with k = 3.

In the following Proposition we prove that the pure imaginary powers of the operators
(I+Bp) and (I+Cp) are bounded on [Hp′

0 (div,Ω)]′σ,τ (given by (3.12)) and on [T p
′
(Ω)]′σ,τ

(given by (3.16)) respectively. We recall that the operators Bp and Cp given by (3.13) and
(3.17) respectively are the extensions of the Stokes operator to the spaces [Hp′

0 (div,Ω)]′σ,τ
and [T p

′
(Ω)]′σ,τ respectively.

Proposition 6.3. There exists 0 < θ0 < π/2 and a constant C > 0 such that for all
s ∈ R

‖(I +Bp)
i s‖L([Hp′

0 (div,Ω)]′σ,τ )
≤ C e|s| θ0 (6.10)

and
‖(I + Cp)

i s‖L([T p
′
(Ω)]′σ,τ )

≤ C e|s| θ0 . (6.11)
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Proof. We will prove estimate (6.10), estimate (6.11) follows in the same way . Consider
the operator Bp defined in (3.13) and let f ∈ Lpσ,τ (Ω). Notice that

‖(I +Bp)
i sf‖

[Hp′
0 (div,Ω)]′

= ‖(I +Ap)
i sf‖

[Hp′
0 (div,Ω)]′

≤ ‖(I +Ap)
i sf‖Lp(Ω)

≤ C e|s| θ0‖f‖Lp(Ω).

This means that for all s ∈ R, the operator (I + Bp)
i s is bounded from Lpσ,τ (Ω) into

[Hp′

0 (div,Ω)]′σ,τ . Next, observe that

Dσ(Ω) ⊂ Lpσ,τ (Ω) ⊂ [Hp′

0 (div,Ω)]′σ,τ .

As a result, using the density of Dσ(Ω) in [Hp′

0 (div,Ω)]′σ,τ (see Proposition 3.9) and
the Hahn-Banach theorem we can extend (I + Bp)

i s to a bounded linear operator on
[Hp′

0 (div,Ω)]′σ,τ and we deduce deduce estimate (6.10).

We consider now the Stokes operators with flux condition A′p, B′p, C ′p on Xp, Yp,
Zp respectively. Using that these operators are densely defined and invertible with
bounded inverse, we prove that their pure imaginary powers are bounded in Xp, Yp,
Zp respectively. To this end, we first show the following auxiliary Proposition for whose
proof we use again the results of [38].

Proposition 6.4. Suppose that Ω is strictly star shaped with respect to one of its points
and let 1 < p < ∞. There exist an angle θ0 and a constant M > 0 such that, for all
s ∈ R:

‖(A′p)i s‖L(Xp) + ‖(B′p)i s‖L(Y p) + ‖(C ′p)i s‖L(Zp) ≤ M e|s| θ0 . (6.12)∥∥∥(λ I −∆M

)i s∥∥∥
L(Lp(Ω))

≤ M e|s| θ0 , ∀λ > 0. (6.13)

Remark 6.5. It follows from the results in [38] that the imaginary powers of (λ I−∆M )
are bounded in L(Lp(Ω)). We explicitly write the estimate (6.13) in the statement of
Proposition 6.4 in order to emphasize that the constants M and θ0 are independent of
λ > 0.

Proof. Estimate (6.12) is proved by showing that it holds separately for each of the three
terms in its left hand side. Since the proof is the same for the three terms, we only write
the details for ‖(A′p)i s‖L(Xp).

The first step of the proof is to show the existence of constants C > 0 and θ0 ∈ (0, π/2)
such that: ∥∥∥( 1

µ2
I −∆M

)i s∥∥∥
L(Lp(Ω))

≤ C e|s| θ0 (6.14)

and ∥∥∥( 1

µ2
I +A′p

)i s∥∥∥
L(Xp)

≤ C e|s| θ0 , (6.15)

for all µ > 0.
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Since Ω is strictly star shaped with respect to one of its points, then after translation
in R3, we can suppose that this point is 0. It follows that for all µ > 1 and x ∈ Ω we
have x/µ ∈ Ω. The proof is based on the scaling transformation

∀x ∈ Ω, (Sµf)(x) = f(x/µ), f ∈ Lp(Ω). (6.16)

As in the proof of Theorem A1 in [43] we can easily verify that

−µ2∆M = Sµ(−∆M )S−1
µ , I − µ2∆M = Sµ(I −∆M )S−1

µ .

We recall that the operator ∆M is defined by (6.1)-(6.2).
Similarly we can also verify that

µ2A′p = SµA
′
p S
−1
µ , I + µ2A′p = Sµ(I +A′p)S

−1
µ .

As a result for all z ∈ C using (2.9) we have,

(I − µ2∆M )z = Sµ(I −∆M )zS−1
µ and (I + µ2A′p)

z = Sµ(I +A′p)
zS−1

µ .

Thus for all z ∈ C we have

‖(I − µ2∆M )z‖L(Lp(Ω)) = ‖Sµ(I −∆M )zS−1
µ ‖L(Lp(Ω)) ≤ ‖(I −∆M )z‖L(Lp(Ω))

and
‖(I + µ2A′p)

z‖L(Xp) = ‖Sµ(I +A′p)
zS−1

µ ‖L(Xp) ≤ ‖(I +A′p)
z‖L(Xp).

Using Theorem 3.1 and Remark 3.2 in [38], respectively to Theorem 6.1, we deduce that
there exist 0 < θ1, θ2 < π/2 and constants M1, M2 > 0 such that :

∀ s ∈ R, ‖(I − µ2∆M )i s‖L(Lp(Ω)) ≤ M1 e
|s| θ1 , (6.17)

and
∀ s ∈ R, ‖(I + µ2A′p)

i s‖L(Xp) ≤ M2 e
|s| θ2 , (6.18)

where the constants M1 in (6.17) and M2 in (6.18) are independents of µ. Since( 1

µ2
I −∆M

)i s
=

1

µ2 i s
(I − µ2∆M )i s and

( 1

µ2
I +A′p

)i s
=

1

µ2 i s
(I + µ2A′p)

i s

(6.14) and (6.15) follow.
Of course, (6.13) follows from (6.14). On the other hand, since by Proposition 4.3 in [12]
and Proposition 5.2 above, the range and the domains of A′p, B′p and C ′p are dense inXp,
Y p, Zp respectively, we may apply Lemma A2 of [43] and obtain that, for all f ∈ D(A′p)

‖(A′p)i sf‖Lp(Ω) = lim
µ→+∞

∥∥∥( 1

µ2
I +A′p

)i s
f
∥∥∥
Lp(Ω)

. (6.19)

As a result we deduce from (6.15) and (6.19) that (6.12) holds for all f ∈ D(A′p). By
the density of D(A′p) in Xp (see Proposition 5.2) it then follows that (6.12) holds for all
f in Xp.
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For a general domain Ω of Class C2,1, not necessarily strictly star shaped with respect
to one of its points, we use that (see [17] for instance), a bounded Lipschitz-Continuous
open set is the union of a finite number of star-shaped, Lipschitz-continuous open sets.
The idea is then to apply the argument above to each of these sets in order to derive the
desired result on the entire domain. However, the divergence-free condition of a function
f ∈ Lpσ,τ (Ω) is not preserved under the cut-off procedure and this process is non-trivial.
This is done in the following Theorem.

Theorem 6.6. There exist an angle 0 < θ0 < π/2 and a constant M > 0 such that for
all s ∈ R we have

‖(A′p)i s‖L(Xp) + ‖(B′p)i s‖L(Y p) + ‖(C ′p)i s‖L(Zp) ≤ M e|s| θ0 (6.20)

Proof. As in the proof of Proposition 6.4, we prove Theorem 6.6 by showing that estimate
(6.20) holds separately for each term in the left hand side. Since the proof is the same
for the three terms, we only write the details for ‖(A′p)i s‖L(Xp).

Let (Θj)j∈J be an open covering of Ω by a finite number of star-shaped open sets and
let us consider a partition of unity (ϕj)j∈J subordinated to the covering (Ωj)j∈J where
for all j ∈ J, Ωj = Θj ∩ Ω. This means that

∀j ∈ J, Suppϕj ⊂ Ωj

and ∑
j∈J

ϕj = 1, ϕj ∈ D(Ωj).

Let f ∈Xp, then f can be written as

f =
∑
j∈J

f j , ∀j ∈ J, f j = ϕjf .

Notice that for all j ∈ J, f j is not necessarily a divergence free function.
Let µ > 0 and let s ∈ R. From (6.6)-(6.8) we know that( 1

µ2
I +A′p

)is
f =

( 1

µ2
I −∆M

)is
f =

∑
j∈J

( 1

µ2
I −∆M

)is
f j .

As a result, one has∥∥∥( 1

µ2
I +A′p

)is
f
∥∥∥
Lp(Ω)

≤
∑
j∈J

∥∥∥( 1

µ2
I −∆M

)is
f j

∥∥∥
Lp(Ω)

=
∑
j∈J

∥∥∥( 1

µ2
I −∆M

)is
f j

∥∥∥
Lp(Ωj)

Since for all j ∈ J, the domain Ωj is strictly star shaped with respect to one of its points,
then using (6.13) we have∥∥∥( 1

µ2
I +A′p

)is
f
∥∥∥
Lp(Ω)

≤ e|s| θ0
∑
j∈J

Cj ‖f j‖Lp(Ωj)

≤ C(Ω, p) e|s| θ0‖f‖Lp(Ω)
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with a constant C(Ω, p) independent of µ and f . As a result one has∥∥∥( 1

µ2
I +A′p

)is∥∥∥
L(Xp)

≤ C(Ω, p) e|s| θ0 .

Thus as in the proof of Theorem 6.1, using [43, Lemma A2] we deduce that for all
f ∈ D(A′p)

‖(A′p)i sf‖Lp(Ω) = lim
µ→+∞

∥∥∥( 1

µ2
I +A′p

)i s
f
∥∥∥
Lp(Ω)

. (6.21)

This means that (6.20) hold for all f ∈ D(A′p). Using the density of D(A′p) in Xp we
deduce our result in Xp.

Remark 6.7. Notice that estimate (6.15) is also true if we replace A′p by Ap. However,
since the range of Ap is not dense in Lpσ,τ (Ω) it is not possible to apply Lemma A2 of
[43] to pass to the limit as µ→∞.

6.2 Domains of fractional powers.

For all α ∈ R, the map v 7−→ ‖(A′p)α v‖Lp(Ω) is a norm on D((A′p)
α). This is due to the

fact that (cf. [73, Theorem 1.15.2, part (e)]), the operator A′p has a bounded inverse and
thus for all α ∈ C∗, the operator (A′p)

α is an isomorphism from D((A′p)
α) to Xp.

Consider the space

V p
σ,τ (Ω) = {v ∈Xp

σ,τ (Ω); 〈v · n , 1〉Σj = 0, 1 ≤ j ≤ J}, (6.22)

with Xp
σ,τ (Ω) is defined by (3.6). Thanks to the work of [12, 13] we know that, for

all v ∈ V p
σ,τ (Ω) the norm of ‖v‖W 1,p(Ω) is equivalent to the norm ‖curlu‖Lp(Ω). The

following theorem characterizes the domain of (A′p)
1
2 .

Theorem 6.8. For all 1 < p < ∞, D((A′p)
1
2 ) = V p

σ,τ (Ω) with equivalent norms. Fur-
thermore, for every u ∈ D((A′p)

1
2 ), the norm ‖(A′p)

1
2u‖Lp(Ω) is a norm on D((A′p)

1
2 )

which is equivalent to the norm ‖curlu‖Lp(Ω). In other words, there exists two constants
C1 and C2 such that for all u ∈ D((A′p)

1
2 )

‖(A′p)
1
2u‖Lp(Ω) ≤ C1‖curlu‖Lp(Ω) ≤ C2‖(A′p)

1
2u‖Lp(Ω).

Proof. The goal is to prove the relation[
D(A′p); Xp

]
1/2

= V p
σ,τ (Ω).

Thanks to Theorem 6.6 we know that that the pure imaginary powers of A′p are bounded
on Xp and satisfy estimate (6.20). As a result thanks to Theorem 2.12 we have

D((A′p)
1
2 ) =

[
D(A′p); Xp

]
1/2

.
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Consider now a function u ∈ D(A′p), set z = curlu and U = (u, z). It is clear that
z ∈ Hp

0(curl,Ω) and using Lemma 2.1 we deduce that z ∈ Xp
N (Ω) ↪→ W 1,p(Ω) and

U ∈ Xp ×W 1,p(Ω). On the other hand if u ∈ Xp, thanks to [12, 13], we know that
U ∈ Xp × [Hp

0(curl,Ω)]′ ↪→ Xp ×W−1,p(Ω). Next let u ∈ D((A′p)
1
2 ) then U ∈

Xp × [W 1,p(Ω),W−1,p(Ω)]1/2 = Xp × Lp(Ω). Thus using Lemma 2.1 we deduce that
u ∈ V p

σ,τ (Ω). This amount to say that

D((A′p)
1
2 ) ↪→ V p

σ,τ (Ω). (6.23)

It remains to prove the second inclusion. First we recall that (Xp)
′ = Xp′ and the

adjoint operator ((A′p)
1
2 )∗ is equal to (A′p′)

1
2 . Observe that thanks to [73, Theorem

1.15.2, part (e)], since A′p has a bounded inverse, then for all 1 < p < ∞, (A′p)
1
2 is an

isomorphism from D((A′p)
1
2 ) to Xp. This means that for all F ∈ Xp′ there exists a

unique v ∈ D((A′p′)
1
2 ) solution of

(A′p′)
1
2v = F . (6.24)

As a result for all u ∈ D(A′p) we have

‖(A′p)
1
2u‖Xp = sup

F∈Xp′ ,F 6=0

∣∣∣〈(A′p) 1
2u , F 〉Xp×Xp′

∣∣∣
‖F ‖

Lp
′
(Ω)

= sup
F∈Xp′ ,F 6=0

∣∣∣〈(A′p) 1
2u , (A′p′)

1
2v〉Xp×Xp′

∣∣∣
‖F ‖

Lp
′
(Ω)

,

where v is the unique solution of (6.24) and Xp′ is a closed subspace of Lp
′
(Ω) equipped

with the norm of Lp
′
(Ω).

As a result,

‖(A′p)
1
2u‖Xp = sup

v∈D(A
1/2

p′ ),v 6=0

∣∣∣〈A′pu , v〉Xp×Xp′

∣∣∣
‖(A′p′)

1
2v‖

Lp
′
(Ω)

= sup
v∈D(A

1/2

p′ ),v 6=0

∣∣∣ ∫Ω curlu · curlv dx
∣∣∣

‖(A′p′)
1
2v‖

Lp
′
(Ω)

≤ C(Ω, p) ‖u‖W 1,p(Ω). (6.25)

Now since D(A′p) is dense in V p
σ,τ (Ω) one gets inequality (6.25) for all u ∈ V p

σ,τ (Ω) and
then

V p
σ,τ (Ω) ↪→ D((A′p)

1
2 )

and the result is proved.
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The following proposition shows an embedding of Sobolev type for the domains of
fractional powers of the Stokes operator with flux boundary conditions. This embedding
give us the Lp −Lq estimates for the corresponding homogeneous problem.

Proposition 6.9. For all 1 < p <∞ and for all 0 < α ≤ 1 we define β = max(α, 1−α)
then

D((A′p)
α) ↪→ Lq(Ω) (6.26)

for all q such that:
(i) For 1 < p < 3

2β , q ∈
[
p, 3p

3−2βp

]
.

(ii) For p = 3
2β , q ∈ [1, +∞[ .

(iii) For p > 3
2β , q = +∞.

Moreover for such q, the following estimate holds

∀u ∈ D((A′p)
α), ‖u‖Lq(Ω) ≤ C(Ω, p) ‖(A′p)αu‖Lp(Ω). (6.27)

Proof. As described in the proof of Theorem 6.8 we know thatD((A′p)
α) =

[
D(A′p) ; Xp

]
α
.

Moreover, we know that,
[
D(A′p) ; Xp

]
α
↪→
[
W 2,p(Ω) ; Lp(Ω)

]
α

= W 2(1−α),p(Ω). It is
clear that for 0 < α < 1/2, we have 1− α > α and

D((A′p)
α) ↪→W 2α,p(Ω).

Similarly, for 1/2 ≤ α ≤ 1, we have α ≥ 1− α and

D((A′p)
α) ↪→ D((A′p)

1−α) ↪→W 2α,p(Ω).

Thus one has, for all 0 < α ≤ 1

D((A′p)
α) ↪→ D((A′p)

1−α) ↪→W 2β,p(Ω).

Now using the result of [2, Theorem 7.57] we deduce the Sobolev embedding (6.26) with
p and q satisfying (i), (ii) and (iii). Finally, estimate (6.27) is a direct consequence of
the Sobolev embedding (6.26), since D((A′p)

α) is equipped with the graph norm of the
operator (A′p)

α.

The following Corollary extends Proposition 6.9 to any real α such that 0 < α < 3/2p.
This result is similar to the result of Borchers and Miyakawa [19] who proved the same
result for the Stokes operator with Dirichlet boundary conditions in exterior domains for
1 < p < 3.

Corollary 6.10. for all 1 < p < ∞ and for all α ∈ R such that 0 < α < 3/2p the
following Sobolev embedding holds

D((A′p)
α) ↪→ Lq(Ω),

1

q
=

1

p
− 2α

3
. (6.28)

Moreover for all u ∈ D((A′p)
α) the following estimate holds

‖u‖Lq(Ω) ≤ C(Ω, p) ‖(A′p)αu‖Lp(Ω). (6.29)
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Proof. First observe that for 0 < α < min(1, 3/2p) the Sobolev embedding (6.28) is a
consequence of Proposition 6.9 part (i). Next, for any real α such that 0 < α < 3/2p we
write α = k + θ, where k is a non negative integer and 0 < θ < 1.

Next we set

1

q0
=

1

p
− 2θ

3
and

1

qj
=

1

q0
− 2j

3
, j = 0, 1, ...., k. (6.30)

It is clear that 1
qj

= 1
qj−1
− 2

3 and that qk = q. Moreover, by assumptions on p and α

we have for j = 0, 1, ...., k, θ + j < 3/2p. As a consequence of Proposition 6.9 part (i) it
follows that

D((A′p)
θ) ↪→ Lq0(Ω)

and for all 1 ≤ j ≤ k
D(A′qj−1

) ↪→ Lqj (Ω).

It thus follows that for all u ∈ D((A′p)
∞) = ∩m∈ND((A′p)

m)

‖u‖Lq(Ω) ≤ ‖A′qk−1
u‖Lqk−1 (Ω) ≤ ... ≤ ‖(A′q0)ku‖Lq0 (Ω) ≤ ‖(A′p)αu‖Lp(Ω). (6.31)

By density ofD((A′p)
∞) inD((A′p)

α) on gets the Sobolev embeddings (6.28) and estimate
(6.31). Finally, estimate (6.29) is a direct consequence of (6.28).

7 The time dependent Stokes problem

In this section we solve the time dependent Stokes Problem (1.1) with the boundary
condition (1.3) using the semi-group theory. As described above, due to the boundary
conditions (1.3) the Stokes operator coincides with the Laplace operator.

7.1 The homogeneous problem

Consider the problem:
∂u
∂t −∆u = 0, divu = 0 in Ω× (0, T ),
u · n = 0, curlu× n = 0 on Γ× (0, T ),

u(0) = u0 in Ω.

(7.1)

Usually in the Problem (7.1) where figures the constraint divu = 0 in Ω, a gradient of
pressure appears. However, thanks to our boundary conditions, the pressure is constant
in our case. For this reason, the Problem (7.1) is equivalent to the homogeneous Stokes
problem 

∂u
∂t −∆u+∇π = 0, divu = 0 in Ω× (0, T ),

u · n = 0, curlu× n = 0 on Γ× (0, T ),
u(0) = u0 in Ω.

(7.2)

We start with the following result for initial data in Lpσ,τ (Ω) that follows easily from the
classiacl semi group theory for the operator Ap on the space Lpσ,τ (Ω).
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Theorem 7.1. Let u0 ∈ Lpσ,τ (Ω), then Problem (7.1) has a unique solution u(t) satis-
fying

u ∈ C([0, +∞[, Lpσ,τ (Ω)) ∩ C(]0, +∞[, D(Ap)) ∩ C1(]0, +∞[, Lpσ,τ (Ω)), (7.3)

u ∈ Ck(]0, +∞[, D(A`p)), ∀ k ∈ N, ∀ ` ∈ N \ {0}. (7.4)

Moreover we have the estimates

‖u(t)‖Lp(Ω) ≤ C1(Ω, p) ‖u0‖Lp(Ω) (7.5)∥∥∥∂u(t)

∂t

∥∥∥
Lp(Ω)

≤ C2(Ω, p)

t
‖u0‖Lp(Ω). (7.6)

‖curlu(t)‖Lp(Ω) ≤
C3(Ω, p)√

t
‖u0‖Lp(Ω) (7.7)

and
‖u(t)‖W 2,p(Ω) ≤ C4(Ω, p) (1 +

1

t
) ‖u0‖Lp(Ω), (7.8)

for all t > 0.

Proof. Since the operator −Ap generates a bounded analytic semi-group (T (t))t≥0 on
Lpσ,τ (Ω), the Problem (7.1) has a unique solution u(t) = T (t)u0 . Thanks to [30,
Chapter 2, Proposition 4.3] we know that ‖T (t)‖L(Lpσ,τ (Ω)) ≤ C1(Ω, p), where C1(Ω, p) =
M1 κ1(Ω, p) for some constant M1 > 0. We recall that κ1(Ω, p) is the constant in (4.9).
As a result one has estimate (7.5). We also know thanks to [30, Chapter 2, Theorem
4.6] that this solution belongs to D(Ap) thus one has (7.3). Now using the fact that
T (t)u0 ∈ D(A∞p ) and the same argument of [24, Chapitre 7, Theorem 7.5, Theorem 7.7]
one gets the regularity (7.4). We recall that D(A∞p ) = ∩n∈ND(Anp ).

Moreover, thanks to [30, Chapter 2, Theorem 4.6, page 101] we know that

‖ApT (t)‖Lp(Ω) ≤
C2(Ω, p)

t
,

where C2(Ω, p) = M2 κ1(Ω, p) for some constant M2 > 0, which gives us estimate (7.6).
Next, to prove estimate (7.7) we proceed in the same way as in the proof of the estimate
(4.10) (see [5, Theorem 4.11] for the proof).

Since the norm of W 2,p(Ω) is equivalent to the graph norm of the Stokes operator
Ap one has estimate (7.8).

Estimates (7.5) and (7.7) allow to deduce the following Corollary:

Corollary 7.2 (Weak Solutions for the Stokes Problem). Let u0 ∈ Lpσ,τ (Ω) and u be the
unique solution of Problem (7.1) given by Theorem 7.1. Then u satisfies

∀ 1 ≤ q < 2, u ∈ Lq(0, T ; W 1,p(Ω)) and
∂u

∂t
∈ Lq(0, T ; [Hp′

0 (div,Ω)]′), (7.9)

for all T > 0.
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Proof. Let u(t) be the unique solution of Problem (7.1). By hypothesis we know that u
satisfies the estimates (7.5)-(7.8). Now thanks to Lemma 2.1 we know that

‖u(t)‖W 1,p(Ω) ' ‖u(t)‖Lp(Ω) + ‖curlu(t)‖Lp(Ω).

Thus one deduces directly that u ∈ Lq(0, T ; W 1,p(Ω)) for all 1 ≤ q < 2 and for all
0 < T <∞.
Next, let us prove that ∂u

∂t ∈ L
q(0, T ; [Hp′

0 (div,Ω)]′), set

ũ(t) = u(t)−
J∑
j=1

〈u(t) · n , 1〉Σj g̃rad qτj .

It is clear that u(t) = ũ(t) +
∑J

j=1〈u(t) · n , 1〉Σj g̃rad qτj . Moreover thanks to [12,
Theorem 4.4] we know that

‖∆u‖
[Hp′

0 (div,Ω)]′
= ‖∆ũ‖

[Hp′
0 (div,Ω)]′

' ‖ũ‖W 1,p(Ω) ≤ ‖u‖W 1,p(Ω).

The last inequality comes from the fact (see [13, Lemma 4.2])

|〈u · n , 1〉Σj | ≤ C(Ω, p) ‖u‖Lp(Ω).

Thus ∂u
∂t = ∆u ∈ Lq(0, T ; [Hp′

0 (div,Ω)]′) and the result is proved.

We observe the following remark:

Remark 7.3. (i) In the Hilbertian case (u0 ∈ L2
σ,τ (Ω)), the properties (7.5)-(7.8) are

immediate. We will prove estimate (7.7). Observe that, thanks to Propositon 4.7 and
Remark 4.8, on L2

σ,τ (Ω) we can express u(t) explicitly in the form

u(t) =
J∑
j=1

αj g̃rad q
τ
j +

+∞∑
k=1

βk e
−λk t zk, (7.10)

where
αj =

∫
Ω
u0 · g̃rad qτj dx and βk =

∫
Ω
u0 · zk dx.

As a result, using the fact that A2zk = λk zk and the fact that∫
Ω
|curl zk|2dx = λk ‖zk‖2L2(Ω)

= λk

one has

‖curlu(t)‖2
L2(Ω)

=
+∞∑
k=1

β2
k e
−2λk tλk.
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Finally, since

‖u0‖2L2(Ω)
=

J∑
j=1

α2
j +

+∞∑
k=1

β2
k

estimate (7.7) follows directly. Similarly one gets directly estimates (7.5)-(7.8). We recall
that (zk)k are eigenvectors for the Stokes operator associated to the eigenvalues (λk)k
and they form with (g̃rad qτj )1≤j≤J an orthonormal basis for L2

σ,τ (Ω) .
(ii) For p = 2, the solution u satisfies (see [11, Theorem 6.4])

u ∈ L2(0, T ; H1(Ω)) and
∂u

∂t
∈ L2(0, T ; [H2

0(div,Ω)]′) (7.11)

and
1

2

d

d t
‖u(t)‖2

L2(Ω)
+

∫
Ω
|curlu(t)|2 dx = 0.

In other words for p = 2, Corollary 7.2 still holds true for q = 2 included.

We consider now the case where the initial data u0 ∈Xp, (see (5.2) for the definition
of Xp).

Theorem 7.4. Suppose that u0 ∈Xp and let u be the unique solution to Problem (7.1).
Then u satisfies the following:

u ∈ C([0, +∞[, Xp) ∩ C(]0, +∞[, D(A′p)) ∩ C1(]0, +∞[, Xp), (7.12)

u ∈ Ck(]0, +∞[, D((A′p)
`)), ∀ k, ` ∈ N. (7.13)

Moreover, for all q ∈ [p,∞), for all integers m ≥ 0, n ≥ 0 and for all µ ∈ (0, λ1) there
exists a constant M > 0 such that the solution u satisfies, for all t > 0:

‖u(t)‖Lq(Ω) ≤ M e−µ t t−3/2(1/p−1/q)‖u0‖Lp(Ω), (7.14)

‖curlu(t)‖Lq(Ω) ≤ M e−µ t t−3/2(1/p−1/q)−1/2‖u0‖Lp(Ω) (7.15)

and ∥∥∥ ∂m
∂tm

∆nu(t)
∥∥∥
Lq(Ω)

≤ M e−µ t t−(m+n)−3/2(1/p−1/q)‖u0‖Lp(Ω), (7.16)

where λ1 is the first non zero eigenvalue of the Stokes operator defined above.

Proof. Applying the semi-group theory to the operator A′p, one gets the existence and
uniqueness of a solution to the homogeneous Stokes Problem (7.1) given by v(t) =
T (t)|Xp

u0 and satisfying (7.12)-(7.13). We recall that (T (t)|Xp
)t≥0 is the semi-group

generated by the Stokes operator with flux boundary conditions on Xp. Moreover,
since Xp ⊂ Lpσ,τ (Ω), by the uniqueness of solution u in Theorem 7.1, we deduce that
v(t) = u(t) = T (t)u0, the unique solution to Problem (7.1). Let us prove estimates
(7.14)–(7.16). To this end observe first that, by Theorem 5.3 and to [12], we have:

S(−A′p) = sup{Reλ ∈ σ(−A′p)} = −λ1 < 0.
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As a result, thanks to [57, Chapitre 4, Theorem 4.3, page 118], there is a constantM > 0
such that for all 0 < µ < λ1, ‖T (t)|Xp

‖L(Xp) ≤ M κ1(Ω, p) e−µ t.
The estimates (7.14)–(7.16) follow for the cases where q = p and m = 1, n = 0 or

m = 0, n = 0, 1, 2 using the classical semi-group theory.
Suppose that p 6= q, the proof is similar to the proof of [19, Corollary 4.6]. Let s ∈ R

such that 3
2(1
p −

1
q ) < s < 3

2p and set 1
p0

= 1
p −

2s
3 . It is clear that p < q < p0. Let u(t) be

the unique solution of Problem (7.1). Since for all t > 0, u(t) ∈ D((A′p)
∞), then thanks

to Corollary 6.10, u(t) ∈ D((A′p)
s) ↪→ Lp0(Ω). Now set α = 1/p−1/q

1/p−1/p0
∈ ]0, 1[, we can

easily verify that 1
q = α

p0
+ 1−α

p . Thus u(t) ∈ Lq(Ω) and

‖u(t)‖Lq(Ω) ≤ C‖u(t)‖αLp0 (Ω)‖u(t)‖1−αLp(Ω)

≤ C‖(A′p)sT (t)u0‖αLp(Ω)‖T (t)u0‖1−αLp(Ω)

≤ C e−µtt−αs‖u0‖Lp(Ω). (7.17)

= C e−µtt−3/2(1/p−1/q)‖u0‖Lp(Ω). (7.18)

Estimate (7.17) follows from the fact that, (cf. [57, Chapter 2, Theorem 6.13, page 76]),

‖(A′p)α T (t)|Xp
‖L(Xp) ≤ M κ1(Ω, p)

e−µ t

tα
. (7.19)

Next, let u0 ∈Xp ∩Xq then curlu(t) ∈ Lq(Ω) and

‖curlu(t)‖Lq(Ω) ≤ C ‖(A′q)
1
2u(t)‖Lq(Ω) = ‖(A′q)

1
2 T (t/2)T (t/2)u0‖Lq(Ω)

≤ C e−µtt−1/2 ‖T (t/2)u0‖Lq(Ω)

≤ C e−µtt−1/2 t−3/2(1/p−1/q)‖u0‖Lp(Ω).

Now let u0 ∈ Xp, using the density of Xp ∩ Xq in Xp we know that there exists a
sequence (u0m)m≥0 in Xp ∩ Xq that converges to u0 in Xp. For all m ∈ N we set
um(t) = T (t)u0m , as a result the sequences (um(t))m≥0 and (curlum(t))m≥0 converges
to u(t) and curlu(t) respectively in Lp(Ω), where u(t) = T (t)u0. On the other hand,
for all m,n ∈ N one has

‖curl(un(t)− um(t))‖Lq(Ω) ≤ C e−µtt−1/2 t−3/2(1/p−1/q)‖u0n − u0m‖Lp(Ω).

Thus (curlum(t))m≥0 is a Cauchy sequence in Lq(Ω) and converges to curlu(t) in
Lq(Ω). This means that curlu(t) ∈ Lq(Ω) and by passing to the limit as m → ∞ one
gets estimate (7.21).

Finally, using (7.12)-(7.13), we have for allm,n ∈ N, ∂m

∂tm∆nu ∈ C∞((0,∞), D(A′p)).
Thus ∂m

∂tm∆nu(t) belongs to Lq(Ω) and∥∥∥ ∂m
∂tm

∆nu(t)
∥∥∥
Lq(Ω)

= ‖(A′p)(m+n) T (t)u0‖Lq(Ω) ≤ C e−µtt−(m+n)−3/2(1/p−1/q)‖u0‖Lp(Ω).
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Using now the results of Theorem 7.4 we will extend estimates (7.5)-(7.8) and obtain
the following Lp − Lq estimates

Theorem 7.5. Let 1 < p ≤ q <∞ and u0 ∈ Lpσ,τ (Ω). The unique solution u to Problem
(7.1) given by Theorem 7.1 belongs to Lq(Ω) and satisfies, for all t > 0:

‖u(t)−w0‖Lq(Ω) ≤ C e−µ t t−3/2(1/p−1/q)‖ũ0‖Lp(Ω), (7.20)

with w0 and ũ0 are given by (1.13) and (1.12) respectively. Moreover, the following
estimates hold

‖curlu(t)‖Lq(Ω) ≤ C e−µtt−3/2(1/p−1/q)−1/2‖ũ0‖Lp(Ω), (7.21)

∀m,n ∈ N, m+ n > 0,
∥∥∥ ∂m
∂tm

∆nu(t)
∥∥∥
Lq(Ω)

≤ C e−µtt−(m+n)−3/2(1/p−1/q)‖ũ0‖Lp(Ω).

(7.22)

Proof. By definition, u0 = w0 + ũ0, with w0 ∈ Kτ (Ω) and ũ0 ∈ Xp. It follows that
the unique solution to Problem (7.1) given by Theorem 7.1 can be written in the form

u(t) = w0 + T (t)ũ0, (7.23)

where T (t)ũ0 satisfies (7.12)-(7.16).
The case p = q follows directly from Theorem 7.1, so let us suppose that p 6= q. The

estimate (7.20) follows from (7.23) and (7.14).
Estimate (7.21) follows from (7.15) using that curlu(t) = curlw0 +curl (T (t)ũ0) =

curl (T (t)ũ0).
Finally, for all m,n ∈ N, such that m+ n > 0 we have

∂m

∂tm
∆nu(t) = Am+n

p u(t) = Am+n
p w0 + Am+n

p (T (t)ũ0) = (A′p)
m+n (T (t)ũ0).

As a result, using Theorem 7.4 one has estimate (7.22).

Proof of Theorem 1.3. Theorem 1.3 immediately follows from Theorem 7.1 and Theorem
7.5.

We may also use the analyticity of the semigroups generated by the operators Bp and
Cp, proved in Section 4.2 and Section 4.3. We then deduce the following result, as we
did in Theorem 7.1.

Theorem 7.6. (i) For all u0 ∈ [Hp′

0 (div,Ω)]′σ,τ the Problem (7.1) has a unique solution
u satisfying

u ∈ C([0, +∞[, [Hp′

0 (div,Ω)]′σ,τ ) ∩ C(]0, +∞[, D(Bp)) ∩ C1(]0, +∞[, [Hp′

0 (div,Ω)]′σ,τ ),
(7.24)

u ∈ Ck(]0, +∞[, D(B`
p)), ∀ k ∈ N, ∀ ` ∈ N∗. (7.25)
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Moreover, for all t > 0:

‖u(t)‖
[Hp′

0 (div,Ω)]′
≤ C(Ω, p) ‖u0‖[Hp′

0 (div,Ω)]′
, (7.26)

∥∥∥∂u(t)

∂t

∥∥∥
[Hp′

0 (div,Ω)]′
≤ C(Ω, p)

t
‖u0‖[Hp′

0 (div,Ω)]′
(7.27)

and
‖u(t)‖W 1,p(Ω) ≤ C(Ω, p) (1 +

1

t
)‖u0‖[Hp′

0 (div,Ω)]′
. (7.28)

(ii) For every u0 ∈ [T p
′
(Ω)]′σ,τ the Problem (7.1) has a unique solution u satisfying

u ∈ C([0, +∞[, [T p
′
(Ω)]′σ,τ ) ∩ C(]0, +∞[, D(Cp)) ∩ C1(]0, +∞[, [T p

′
(Ω)]′σ,τ ), (7.29)

u ∈ Ck(]0, +∞[, D(C`p)), ∀ k ∈ N, ∀ ` ∈ N∗. (7.30)

Moreover, for all t > 0:

‖u(t)‖
[T p
′
(Ω)]′
≤ C(Ω, p) ‖u0‖[T p′ (Ω)]′

, (7.31)

∥∥∥∂u(t)

∂t

∥∥∥
[T p
′
(Ω)]′
≤ C(Ω, p)

t
‖u0‖[T p′ (Ω)]′

. (7.32)

and
‖u(t)‖Lp(Ω) ≤ C(Ω, p) (1 +

1

t
) ‖u0‖[T p′ (Ω)]′

. (7.33)

In the same way as we deduced Corollary 7.2, we deduce the following Corollary from
Theorem 7.6.

Corollary 7.7 (Very weak solutions for the homogeneous Stokes Problem). Let u0 ∈
[Hp′

0 (div,Ω)]′σ,τ , T < ∞ and let u be the unique solution of Problem (7.1) given by
Theorem 7.6, (i). Then u satisfies

∀ q ∈ [1, 2), u ∈ Lq(0, T ; Lp(Ω)) and
∂u

∂t
∈ Lq(0, T ; [T p

′
(Ω)]′σ,τ ). (7.34)

Proof. Using the semi-group theory we know that the solution u(t) ∈ W 1,p(Ω) for all
t > 0. As a result, using the interpolation inequality we have

‖u(t)‖Lp(Ω) ≤ C(Ω, p) ‖u(t)‖1/2
W 1,p(Ω)

‖u(t)‖1/2
W−1,p(Ω)

. (7.35)

On the other hand, thanks to Corollary 4.14 we know that

‖u(t)‖W 1,p(Ω) ' ‖u(t)‖
[Hp′

0 (div,Ω)]′
+ ‖∆u(t)‖

[Hp′
0 (div,Ω)]′

≤
(
1 +

1

t

)
‖u0‖Hp′

0 (div,Ω)]′
. (7.36)
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Moreover, thanks to the continuous embeddings [Hp′

0 (div,Ω)]′ ↪→W−1,p(Ω) and to the
semi-group theory we have

‖u(t)‖W−1,p(Ω) ≤ C(Ω, p) ‖u(t)‖
[Hp′

0 (div,Ω)]′
≤ C(Ω, p) ‖u0‖[Hp′

0 (div,Ω)]′
. (7.37)

As a result, putting together (7.35), (7.36) and (7.37) one gets

‖u(t)‖Lp(Ω) ≤ C(Ω, p)
(

1 +
1

t

)1/2
‖u0‖Hp′

0 (div,Ω)]′
.

Thus, for every T <∞ and for every 1 ≤ q < 2, u ∈ Lq(0, T ; Lp(Ω)).
It remains to prove that ∂u

∂t ∈ L
q(0, T ; [T p

′
(Ω)]′σ,τ ). We proceed in a similar way as

in the proof of Corollary 7.2. We set

ũ(t) = u(t)−
J∑
j=1

〈u(t) · n , 1〉Σj g̃rad qτj .

It is clear that u(t) = ũ(t) +
∑J

j=1〈u(t) · n , 1〉Σj g̃rad qτj . Moreover thanks to [12,
Theorem 4.15] we know that

‖∆u‖
[T p
′
(Ω)]′

= ‖∆ũ‖
[T p
′
(Ω)]′

' ‖ũ‖Lp(Ω) ≤ ‖u‖Lp(Ω).

The last inequality comes from the fact (see [13, Lemma 4.2])

|〈u · n , 1〉Σj | ≤ C(Ω, p) ‖u‖Lp(Ω).

Thus ∂u
∂t = ∆u ∈ Lq(0, T ; [T p

′
(Ω)]′) and the result is proved.

We present now the remaining results for the homogeneous Stokes system with flux
conditions. As it was said in the Introduction, they are very similar, although with some
differences, to those for the problem without flux condition that are described just above.
As for the proofs, they are also very similar and actually simpler to those without flux
condition, reason for which we will not give all of them in detail.

Remark 7.8. By (7.12), the function u that is obtained in Theorem 7.4 solves Problem
(7.1) and also satisfies condition (1.5). Then, for all π ∈ R, (u, π) is a solution of the
Stokes problem with flux (1.1), (1.3), (1.5).

Remark 7.9. Notice that the decay rates in the estimates (7.14)–(7.16) for the solution
u(t) are exponential, and not algebraic as in (7.5)-(7.8) of Theorem 7.1.

Remark 7.10. For p = 2, the solution u can be written explicitly in the form

u(t) =
+∞∑
k=1

βk e
−λk t zk, βk =

∫
Ω
u0 · zk dx
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and the exponential decay with respect to time can be obtained directly. Moreover,
contrary to the case p 6= 2 one has

‖u(t)‖L2(Ω) ≤ e−λ1t ‖u0‖L2(Ω). (7.38)

It is clear that estimate (7.38) yields a faster decay rate than (7.14). We recall that λ1

is the first eigenvalue for the operator A′p and it is equal to 1
C2(Ω) where C2(Ω) is the

constant of the Poincaré-type inequality (4.8).

In our next Theorem we consider initial data u0 belonging to Y p and to Zp.

Theorem 7.11. (i) For all u0 ∈ Y p the Problem (7.1) has a unique solution u satisfying

u ∈ C([0, +∞[, Y p) ∩ C(]0, +∞[, D(B′p)) ∩ C1(]0, +∞[, Y p), (7.39)

u ∈ Ck(]0, +∞[, D(B′`p )), ∀ k, ` ∈ N. (7.40)

Moreover there exists a constant C(Ω, p) and a constant µ > 0, such that, for all t > 0:

‖u(t)‖
[Hp′

0 (div,Ω)]′
≤ C(Ω, p) e−µ t ‖u0‖[Hp′

0 (div,Ω)]′
, (7.41)

∥∥∥∂u(t)

∂t

∥∥∥
[Hp′

0 (div,Ω)]′
≤ C(Ω, p)

e−µ t

t
‖u0‖[Hp′

0 (div,Ω)]′
(7.42)

and

‖u(t)‖W 1,p(Ω) ≤ C(Ω, p)
e−µ t

t
‖u0‖[Hp′

0 (div,Ω)]′
. (7.43)

(ii) For all u0 ∈ Zp the Problem (7.1) has a unique solution u satisfying

u ∈ C([0, +∞[, Zp) ∩ C(]0, +∞[, D(C ′p)) ∩ C1(]0, +∞[, Zp), (7.44)

u ∈ Ck(]0, +∞[, D(C ′`p )), ∀ k, ` ∈ N. (7.45)

Moreover there exists a constant C(Ω, p) and a constant µ > 0, such that, for all t > 0:

‖u(t)‖
[T p
′
(Ω)]′
≤ C(Ω, p) e−µ t ‖u0‖[T p′ (Ω)]′

, (7.46)

∥∥∥∂u(t)

∂t

∥∥∥
[T p
′
(Ω)]′

≤ C(Ω, p)
e−µ t

t
‖u0‖[T p′ (Ω)]′

(7.47)

and

‖u(t)‖Lp(Ω) ≤ C(Ω, p)
e−µ t

t
‖u0‖[T p′ (Ω)]′

. (7.48)

Proof. The theorem follows by the classical semigroup theory applied to the analytic
semigroups generated by the operators B′p and C ′p.

Remark 7.12. By (7.39) and (7.45), the functions u obtained in Theorem 7.11 solve
Problem (7.1) and satisfy condition (1.5). Then, for all π ∈ R, (u, π) is a solution of the
Stokes problem with flux (1.1), (1.3), (1.5).
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7.2 The inhomogeneous problem

Given the Cauchy-Problem:{
∂u
∂t + Au(t) = f(t) 0 ≤ t ≤ T

u(0) = 0,
(7.49)

where −A is the infinitesimal generator of an analytic semi-group on a Banach space
X and f ∈ Lp(0, T ; X), the analyticity of −A is not enough in general to ensure that
solutions to Problem (7.49) satisfy

u ∈W 1,p(0, T ; X) ∩ Lp(0, T ; D(A)). (7.50)

Although it is enough when X is a Hilbert space, (see [16, 66] for instance), in general it
is necessary to impose some further regularity condition on f such as Hölder continuity,
(see [57] for instance). However, using the concept of ζ-convexity and a perturbation
argument, the existence of a solution to Problem (7.49) satisfying (7.50), when the pure
imaginary powers of A satisfy estimate (2.10) is proved in [29, 43]. Moreover, [43, Theo-
rem 2.1] extends [29, Theorem 3.2] in two directions: First, the operator A may not have
bounded inverse and second, the maximal interval of time T may be infinite. In the case
of a Hilbert space it was proved in [47, 48] that the pure imaginary powers of a maximal
accretive operator are bounded and satisfy estimates of type (2.10).

For the sake of completeness we state the following theorem that is proved in [43] (cf.
Theorem 2.1).

Theorem 7.13. Let X be a ζ-convex Banach space. Assume that 0 < T ≤ ∞, 1 < p <∞
and that A ∈ EθK(X) for some K ≥ 1, 0 ≤ θ < π/2 and EθK(X) as in Definition 2.9.
Then for every f ∈ Lp(0, T ; X) there exists a unique solution u of the Cauchy-Problem
(7.49) satisfying the properties:

u ∈ Lp(0, T0; D(A)), T0 ≤ T if T <∞ and T0 < T if T =∞,

∂u

∂t
∈ Lp(0, T ; X)

and ∫ T

0

∥∥∥∂u
∂t

∥∥∥p
X

d t +

∫ T

0
‖Au(t)‖pX d t ≤ C

∫ T

0
‖f(t)‖pX d t

with C = C(p, θ,K,X) independent of f and T .

Let us consider now the non homogeneous Problem:
∂u
∂t −∆u = f , divu = 0 in Ω× (0, T ),
u · n = 0, curlu× n = 0 on Γ× (0, T ),

〈u(t) · n , 1〉Σj = 0, 1 ≤ j ≤ J, t ∈ (0, T ),
u(0) = 0 in Ω,

(7.51)

where f ∈ Lq(0, T ; Xp) and 1 < p, q <∞.
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We treat now the Stokes problem with flux condition (1.1), (1.3), (1.5). Since the
system (7.51)–(1.5) is equivalent to the Stokes Problem with flux condition (1.1), (1.3),
(1.5), we deduce in that way the existence and maximal regularity of strong, weak and
very weak solution for the Stokes Problem with flux condition (1.1), (1.3), (1.5).

Theorem 7.14 (Strong Solutions for the inhomogeneous Stokes Problem with flux). Let
T ∈ (0,∞], 1 < p, q <∞. For all f ∈ Lq(0, T ; Xp), there exists a unique solution u of
(7.51) such that

u ∈ Lq(0, T0; D(A′p)), T0 ≤ T if T <∞ and T0 < T if T =∞, (7.52)

∂u

∂t
∈ Lq(0, T ; Xp) (7.53)∫ T

0

∥∥∥∂u
∂t

∥∥∥q
Lp(Ω)

d t +

∫ T

0
‖∆u(t)‖qLp(Ω) d t ≤ C(p, q,Ω)

∫ T

0
‖f(t)‖qLp(Ω) d t. (7.54)

and such that (u, π) is a solution of the inhomogeneous Stokes Problem (1.1), (1.3) ,
(1.5) for all π ∈ R.

Proof. The space Xp is ζ-convex, and by Theorem 6.6 the pure imaginary powers of
the operators A′p are bounded in Xp. It is then possible to apply Theorem 7.13 to the
operator A′p itself in Xp and Theorem 7.14 follows.

Remark 7.15. The spaces Y p and Zp are also ζ-convex, and by Theorem 6.6 the pure
imaginary powers of the operators B′p and C ′p are bounded in Y p and Zp respectively.
It is then possible to apply Theorem 7.13 to the operator B′p and C ′p in Y p and Zp.
We obtain in this way the existence, uniqueness and maxial regularity of weak and
very weak solutions for the Stokes problem with flux condition (1.1), (1.3) , (1.5). The
corresponding Theorems are very similar to Theorem 7.14 and we do not write their
statements in detail.
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