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ABSTRACT 

The determination of the mobility of parallel 

mechanisms (PM) is a fundamental problem. An automatic 

and intelligent analysis platform will be a significant tool for 

the design and optimization of mechanical systems. Based 

on the theory of position and orientation characteristics 

(POC) equations, a systematic approach to computer-aided 

mobility analysis of PMs is presented in this paper. First, a 

digital model for topological structures which has a mapping 

relationship with position and orientation characteristics of 
mechanism is proposed. It describes not only the dimension of 

the motion output, but also gives the mapping relationship 

between the output characteristic and the axis of the kinematic 

joints. Secondly, algorithmic rules are established that convert 

the union and intersection operations of POC into the binary 

logical operations and the automatic analysis of POC are 

realized. Then, the algorithm of the automatic mobility analysis 

of PMs and its implementation with VC++ are written .The 

mobility and its properties (POC) will also be analyzed and 

displayed automatically after introducing by users of the data of 

topological structures representation. Finally, typical examples 

are provided to show the effectiveness of the software platform. 

*Corresponding author  

INTRODUCTION 

Mobility analysis is the basis for the research on 

mechanical synthesis, kinematics and dynamics analysis. 

However, it is often difficult due to the fact of dealing with 

linear dependency for complex parallel mechanisms (PMs). 

With the development of computer technology, it would be very 

helpful to develop software for the mobility analysis. To 

evaluate the PMs mobility, several methods have been 

developed based on the screw theory [1, 2], the Lie group 

[3~5], the Position and Orientation Characteristics (POC) 

theory [6, 7] and the geometric algebra [8]. 

The approach upon screw theory has been successfully 

applied in many PMs. The calculation mainly involves the 

linear solution of screws which has the potential advantage of 

automatic analysis. However, it is difficult to obtain screws 

automatically. By establishing a coordinate system for a 

reference leg, Cao Wen’ao [9] realized an automatic analysis of 

the mobility of PMs.  

The mobility analysis of the Lie group is based on the 

multiplication and intersection of displacement 

subgroup/submanifold. There are too many rules involved (over 

107 rules) [4], and not suitable for programming. The other 
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related efforts can also be found in recent works [10, 11]. 

However, most of the existing methods rely on manual and are 

inefficient. So, the study of automatic mobility analysis can 

provide an effective and practical means for designers. 

The mobility analysis method based on the POC theory has 

a clear formula and judgment criteria that are easy to use and 

program [6]. To solve these problems, based on POC theory, a 

general computer-assisted platform for the analysis of PMs 

mobility will be written in this document. A digital model is 

proposed for topological structure that allows the POC to be 

mapped. An algorithm is established for calculation of POC of 

legs and PMs. Then, the principle and algorithm of PM 

mobility analysis are studied and software is developed. 

Finally, typical examples of parallel robots are used to show the 

efficiency of the software. 

THEORY OF POC-BASED 

Definition and related equations of POC 

Definition of POC 

To describe the relative motion characteristics between any 

two components in a mechanism, the POC is defined in [6] as 

t1

r1

t (dir.)
M=

r (dir.)





 
 
 

 

(1) 

ξ = ξt + ξr ≤ F

 

(2) 

where M is the POC, ξ is rank of the POC (i.e. number of 

independent elements), dir means the direction of output axis, F 

is the DOF of the mechanism.  

POC equation for serial mechanisms 

The POC of a serial mechanism is 

m

Li Ji
i=1

M = MU

 

(3) 

where MJi is the POC of the i
th

 kinematic joint, m is the number 

of kinematic joints, ∪  is “Union” operation [6]. 

POC equation for PMs 

The POC of a PM is  

1

pa Lj

j 1

M M

 



 I
 

(4) 

where Mpa is the POC of the moving platform, ν is the number 

of independent loops, MLj is the POC of the j
th

 leg for the same 

base point O', ∩ is “intersection” operation [6]. 

Equation of mobility 

A PM with (v+1) legs can be considered as a combination 

of v independent loops (SLC). The structure composition of 

PMs based on SLC [6] is shown as Fig.1. Two legs are chosen 

to form the first independent loop (SLC1), and the mobile 

platform is considered an active component of the loop; Then, 

SLC1 is regard as a whole (an equivalent sub-PM), and 

combined with another leg to form the second independent loop 

(SLC2); and in the same way, (v+1)th leg combined with SLC(v-

1) to form the vth independent loop (SLCν).  

 

FIGURE 1. THE BASIC INDEPENDENT LOOPS 

COMPOSED OF PMS 

From this point, the number of mobility, i.e., the degree of 

freedom(DOF) of a PM can be calculated by Eq.(5), and the 

POC of the moving platform can be used to convey the 

property of mobility.  

j j

m 1

i L j L

i 1 j 1 j=1 j 1

F J = f
  

  

       
 

(5) 

where, 

j i ( j 1)

j

L b b
i 1

dim.(( M ) M )




  I U
 

(6) 

ν = m–n+1

 

(7) 

where F is the DOF of a PM, Ji is the DOF of the ith joint, fj is 

the DOF of all joints in the jth leg, n is the number of 

components, ξLj is the number of independent displacement 

equations of the jth loop, 
i

j

b
i 1

M


I is the POC of the equivalent 

sub-PM composed by the front j legs, ML(j+1) is the POC of the 

(j+1)th leg. 

Key technologies for automatic mobility analysis 

① The topological description of PMs is one of the most 

significant issues. It should include complete topological 

information of PMs with the most concise representation so that 

it can be recognized and extracted automatically. 

② POC description for a leg and for a PM is a 

fundamental problem in automatic mobility analysis. Although 

the symbolic description as in Eq.(1) is good for expressing the 

geometric meaning, it is difficult to realize the transitivity of 

joint orientation relation. 

③ The most critical issue is how to establish an 

algorithm for POC. In essential, the calculation of POC is to 

deal with linear dependency in complex PMs. 

REPRESENTATION OF MECHANISM AND ITS POC 

Description of the legs and their POC 

Only simple legs constituted by single-DOF joints R and P 

are considered here. In general, joints in a PM are denoted by 

special symbols: R for revolute joint and P for prismatic joint. 

Equivalent sub-PM 



 3  

In a leg, geometric relationship between joints is divided into 

six types: parallel, vertical, coaxial, spatial common point, 

coplanar and arbitrary, denoted by “⊥”, “||”, “/”, “*”, “#” and “-

” respectively. 

Digital matrix of leg 

A kind of ordered topology matrix (L) is developed for 

representing the topological structure of a leg in a PM. The 

diagonal element Ji represents the type of pais from the fixed 

platform to the moving platform. Non-diagonal element Nij 

denotes the geometric relationship between joint i and joint j. 

The ordered topology matrix (L) is 

1 1i 1f

i1 i if

f1 f i f

J

L J

J

N N

N N

N N

 
 
 
 
 
  

L L

M O M

M O M

L L

 

(8) 

For convenience of programming, Nij (6 kinds of geometric 

relationship above-mentioned) is transformed into number 1~5, 

or 0 respectively. Ji (R, P) is represented by 8 or 9. Thus, a leg 

can be expressed as a decimal matrix. Table 1 gives four typical 

legs and their matrices. 

 

TABLE 1. TOPOLOGY MATRIX OF LEGS 

No. 
Schematic 

diagram 
Topology Matrix POC matrix 

(a) UP leg 

(RRP) 
 

8 2 2

L 2 8 2

2 2 9

 
 
 
 

 

La
0 0 1

M
1 1 0
 

   

 

(b) RRC  

leg 

(RRRP) 

 

8 1 1 1

1 8 1 1
L

1 1 8 1

1 1 1 9

 
 

  
 
 

 
Lb

3 0 0 0
M

1 0 0 0
 

   

 

(c) PRRRR

 leg 

 

9 2 2 1 1

2 8 1 2 2

L 2 1 8 2 2

1 2 2 8 1

1 2 2 1 8

 
 
 
 
 
  

 

Lc
3 0 0 0 0

M
0 1 0 1 0
 

   

 

(d)UPS leg 

(RRPRRR) 

 

8 2 0 0 0 0

2 8 0 0 0 0

0 0 9 0 0 0
L

0 0 0 8 2 2

0 0 0 2 8 2

0 0 0 2 2 8

 
 
 
 
 
 
 
   

Ld
3 0 0 0 0 0

M
3 0 0 0 0 0
 

   

 
 

Definition of POC matrix of a leg 

The POC matrix of a leg should include not only the 

dimension of output, but also the direction of output. So, a kind 

of 2×f matrix (M) is proposed to map the POC of the leg to its 

topology matrix, that is 

1 f

1 f

t t
M

r r
 

   

L

L

 

(9)

 

The rules of the POC matrix of leg are as follows 

① f is the number of the single-DOF joints in a leg.  

② ti or ri (i=1~f) denotes translation and rotation output 

respectively, and values is 0, 1, 2 or 3. 

③ ti or ri≠0 indicates the existence of independent motion. 

④ when ti or ri=3, the dimension of translation/rotation 

output is 3, and the direction is arbitrary in space and 

need not to be specified. 

⑤ The dimension of translation/rotation is 
n

r i
i 1

= r


 / 

n

t i
i 1

= t


 , and the total dimension of output at the end of 

the leg is ξ=ξr+ξt. 

⑥ Output direction of column i is related to the axes of the 

i
th

 joint in the leg. 

a. ti=1 means there is an independent translation along 

the axis of the i
th

 joint (ri=0) or along the normal 

plane of the i
th

 joint (ri=1). 

b. when ti is 2, there are two independent translation in 

the normal plane of the i
th

 joint axis. 

POC matrix of sub-chain 

Planar sub-chain (2-DOF G2 and 3-DOF G3) or spherical 

sub-chain (2-DOF S2 and 3-DOF S3) constitute a leg or part of a 

leg. Based on the definition of POC matrix, there are 7 types 

matrices for 15 sub-chains, as shown in Table 2. 

 

TABLE 2 15 TYPES OF SUB-CHAINS AND THEIR POC 

No. Type Symbol Dimension Topology Matrix POC matrix 

1 

G2 

R||R 2 
8 1

1 8
 
  

 
1 0

1 0
 
  

 

2 R⊥P 2 
8 2

2 9
 
  

 
1 0

1 0
 
  

 

3 P⊥R 2 
9 2

2 8
 
  

 
0 1

0 1
 
  

 

4 

G3 

R//R//R 3 
8 1 1

1 8 1

1 1 8

 
 
 
   

2 0 0

1 0 0
 
    

5 R//R⊥P 3 
8 1 2

1 8 2

2 2 9

 
 
 
   

2 0 0

1 0 0
 
    

6 P⊥R//R 3 
9 2 2

2 8 1

2 1 8

 
 
 
   

0 2 0

0 1 0
 
    

7 R(⊥P)//R 3 
8 2 1

2 9 2

1 2 8

 
 
 
   

2 0 0

1 0 0
 
    

8 R(⊥P)⊥P 3 
8 2 2

2 9 2

2 2 9

 
 
 
   

2 0 0

1 0 0
 
    

9 P(⊥P)⊥R 3 
9 2 2

2 9 2

2 2 8

 
 
 
   

0 0 2

0 0 1
 
    

10 P(⊥R)⊥P 3 
9 2 2

2 8 2

2 2 9

 
 
 
   

0 2 0

0 1 0
 
  

 

11 
S2 

R-R 2 
8 0

0 8
 
  

 

0 0

1 1
 
  

 
12 R⊥R(U) 2 

8 2

2 8
 
  

 

0 0

1 1
 
  

 

13 S3 R1-R2-R3 3 
8 0 0

0 8 0

0 0 8

 
 
 
   

0 0 0

1 1 1
 
  
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No. Type Symbol Dimension Topology Matrix POC matrix 

14 R1,R2,R3(S) 3 
8 5 5

5 8 5

5 5 8

 
 
 
   

0 0 0

1 1 1
 
  

 

15 
R1⊥R2⊥R3

;R1⊥R3 

 

3 
8 2 2

2 8 2

2 2 8

 
 
 
   

0 0 0

1 1 1
 
  

 
 

POC Matrix of legs 

Take the leg UP as an example, it contains R1⊥R2⊥P3. 

Dimension of the output is 3 (2-rotation and 1-translation), and 

the rotation is around R1 axis and R2 axis, and the translation 

along P3 axis. Thus, POC matrix of this leg is 
La

0 0 1
M

1 1 0
 

   
. 

Description for PMs and its POC 

Description for PMs 

To make information concise, a new structural 

representation of PMs is proposed, which consists of legs and 

joints on the two platforms. 

Firstly, legs of a PM are labeled in turn with the numbers 

1~6. Then, all legs are represented using the ordered topology 

matrix L. Finally, the joints on two platforms are regarded as 

two correspond virtual legs, expressed by the ordered topology 

matrices M and B. Therefore, the PM can be described as 

PM=(L1, L2, ..., L(v+1), M, B) (10) 

The PM in Fig.2(A) has 3-UPS legs and 1-UP leg. The 

topological structure is PM=(L1,L2,L3,L4,M,B). The joints on 

the two platforms are arbitrary. 

        
(A) 3T PM                        (B) 1T2R PM 

FIGURE 2 TWO KINDS OF PMS 

 

The topology matrix Li(i=1~3) for 3-UPS legs and matrix 

L4 for UP leg are respectively 

i

8 2 0 0 0 0

2 8 0 0 0 0

0 0 9 0 0 0
L

0 0 0 8 2 2

0 0 0 2 8 2

0 0 0 2 2 8

 
 
 
 
 
 
 
 

, 4

8 2 2

L 2 8 2

2 2 9

 
 
 
 

 

Matrix M and B are 

8 0 0 0

0 8 0 0
M

0 0 8 0

0 0 0 8

 
 

  
 
 

, 

8 0 0 0

0 8 0 0
B  

0 0 8 0

0 0 0 8

 
 

  
 
 

 

POC matrix of PMs 

According to the intersection property of sets, the direction 

of translation/rotation output of a PM is related to one or more 

joints in a certain leg. Thus the No. of this leg should be 

recorded. So, a column matrix is defined as 

1 n 1
pa

1 n 2

t t l
M

r r l
   

       

L

L
, (n≤6) (11) 

where, l1 and l2 are the No. of the leg specifying the direction of 

translation/rotating output, n is the dimension of independent 

output. 

The PM shown in Fig.2(A) has 2-rotation and 1-

translation. The POC matrix is pa
0 0 1 4

M
1 1 0 4
   

       
, the double 4 

indicate that the PM has a translation along P43 joints, and the 

directions of rotation are around R41 and R42, both in the fourth 

leg. 

AUTOMATIC GENERATION OF POC AND DIMENSION 
OF INDEPENDENT DISPLACEMENT EQUATIONS 

Automatic POC generation of legs 

According to Eq.(3), POC of a leg is the union operation of 

the POC of all joints. Each leg can be considered as a serial of 

independent sub-chains and single-DOF joints. Thus, the sub-

chains are extracted, and union operation of POCs are mapped 

to logical “OR” operation of matrices. 

For convenience of programming, the POC matrix with 

dimension less than 6 is supplemented to the same dimension 

of 2×6 

1 2 3 4 5 6
L

1 2 3 4 5 6

t t t t t t
M

r r r r r r
 

   
 (12)

 

Thus, the POC of a leg can be computed by 

3 2 3 2L G G S S JPOC M POC M M M M M    ( ) ( ） (13) 

where, MG3, MG2, MS3, MS2 and MJ are the supplemented forms 

of the POC matrices of G3, G2, S3, S2 and single-DOF joints. 

 

Here, based on the topology matrices of legs and the 

extracted sub-chains and single-DOF joints, the POC of the leg 

can be generated as follows 

① Recognize topology matrix of the leg, and extract G3, 

G2, S3, S2 successively. 

② Write out the supplemented matrix of G3, G2, S3, S2 and 

single-DOF joints. 

③ Carry out “OR” operation on supplemented matrices of 

G3, G2, S3, S2 and single-DOF joints, and obtain the 

initial POC matrix of the leg, which denoted as 

1 2 3 4 5 60
L

1 2 3 4 5 6

t t t t t t
M

r r r r r r
 

   
,
 

6
0

i r
i 1

r =


 ,
 

6
0

i t
i 1

t =


 . 

④ Process the translational output generated by parallel 

revolute joints. 

a. If ξr
0
>3, then ξr=3 and ξt=ξt

0
+ξr

0
-3, and the 

translation newly generated lies in the normal plane 

of the single-DOF or S2 rotational joints. 

b. If ξr
0 

≤ 3 and ξt
0 

≤ 3, the final POC matrix is 

ML=ML
0
. 
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Table 1. gives the matrices of four typical legs. Here take 

the leg P⊥R//R⊥R//R as an example. 

 

① Recognize and sequentially extract planar and spherical 

sub-chains: one G3 sub-chain P⊥R//R and one G2 planar 

sub-chaines R//R. 

② Generate the supplemented POC matrix of G3 and G2 as 

G3
0 2 0 0 0 0

M
0 1 0 0 0 0
 

   
, G2

0 0 0 1 0 0
M

0 0 0 1 0 0
 

   
. 

③ Carry out “or” operation of MG3 and MG2, and obtain the 

POC: L
0 2 0 1 0 0 3 0 0 0 0 0

M =
0 1 0 1 0 0 0 1 0 1 0 0
   

       
, ξr

0
=2, 

and ξt
0
=3. 

④ ξt
0
= 3 and ξr

0
= 2 ,so ML= ML

0
, that means 

L
3 0 0 0 0 0

M
0 1 0 1 0 0
 

   
, and ξt= 3 indicates that the leg 

has three independent translation outputs, ξr=2 indicates 

that it has two rotation outputs, r2=r4=1 means the two 

rotations are around the axes of R2 and R4 respectively.  

Automatic POC generation of PMs 

According to Eq.(4), the POC of a PM is the intersection 

operation on all legs in the PM. Among them, the translational 

output of the PM is the intersection of translational outputs of 

all legs, and the same goes for the rotating outputs. 

Given two legs L1 and L2, numbered as l1 and l2, the POC 

matrices are 
i1 i2 i3 i4 i5 i6

Li
i1 i2 i3 i4 i5 i6

t t t t t t
M

r r r r r r
 

   
(i=1,2), the 

dimension of translation/rotating outputs are ξri= 
6

ij
j 1

r

 and 

ξti= 
6

ij
j 1

t

 . 

For convenience of description, the translational output of 

leg i is denoted as Gi=(ξti, ei) and the rotating output as Hi=(ξri, 

si), where ei/si are the direction of translational/rotating output 

of this leg. If ξti=0/ξri=0, ei/si are Φ(empty set); if ξti=1/ξri=1, 

ei/si are spatial lines; if ξti=2/ξri=2, ei/si are plane; if ξti=3/ξri=3, 

ei/si are “-”. 

Suppose the intersection result is denoted as 

1 2 3 4 5 6
L1 L2

1 2 3 4 5 6

t t t t t t
M

r r r r r r
 

   
I , the dimension of translational/ 

rotating output is
6

i
i 1

r


 /
6

i
i 1

t


 respectively. The translational 

output is G(1∩2)=(ξt, e) and the rotating output is H(1∩2)=(ξr, s), 

where e and s are the direction correspond. 

Note that the legs L1 and L2, which participate in 

computing, can be either the legs constituting the PM or the 

sub-PM composed by several legs. The POC of PMs can be 

calculated as follows. 

 

Algorithm for translational output of PMs 

The intersection operation of translational output of two 

legs is to solve G(1∩2)=G1∩G2, which can be obtained according 

the rules shown in Table 3. 

 

TABLE 3 INTERSECTION RULES FOR TRANSLATION 

   L1 

 L2 
ξt1=0 ξt1=1 ξt1=2 ξt1=3 

ξt2=0 G2 G2 G2 G2 

ξt2=1 G1 

e1||e2 G2 e1||e2 G1 

G2 
e1||e2 ξt=0,e=Φ e1||e2 ξt=0,e=Φ 

ξt2=2 G1 
e1||e2 G1 e1||e2 G2 

G2 
e1||e2 ξt=0, e=φ e1||e2 ξt=1,e=e1∩e2 

ξt2=3 G1 G1 G1 G1 

 

Algorithms for rotating output of PMs  

Similarly, the intersection of rotating output of two POC 

matrices is to solve H(1∩2)=H1∩H2. The intersection rules are 

listed in Table 4. 

TABLE 4 INTERSECTION RULES FOR ROTATION 

   L1 

L2 
ξr1=0 ξr1=1 ξr1=2 ξr1=3 

ξr2=0 H2 H2 H2 H2 

ξr2=1 H1 

s1||s2 H2  s1||s2 H1 

H2 
s1||s2 ξr=0,s=Φ s1||s2 ξr=0,s=Φ 

ξr2=2 H1 
s1||s2 H1 s1||s2 H2 

H2 
s1||s2 ξr=0,s=Φ s1||s2 ξt=1,s=s1∩s2 

ξr2=3 H1 H1 H1 H1 

 

Accordance to the analysis above, the flow of generating 

POC matrices of PMs are as follows 

① Input the number of legs, and POC of each leg. 

② Intersection operation on translational outputs.  

③ Intersection operation on rotating outputs.  

④ Output the result of POC of the PM. 

Here take the PM of 3-RRC as an example. As shown in 

Fig.2(B). The topology matrices of legs, joints on the two 

platforms are described previously. 

① Input the number of legs, and POC of each leg. 

Number of legs is 3, and topology matrices of legs are 

i
Li

i

2 0 0 0 0 0 0 0 0 1 0 0 3 0 0 0 0 0 G
M =

1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 H
       

                
(i=1,2,3).  

Thus, ξti=3 means arbitrary translation in space, and ξri=1 is 

one-dimension rotation around the Ri1 axis in i
th

 leg, i.e. si=Ri1. 

② Intersection operation on translational outputs 

According to Table 3, ξti= 3, then ξL1t= 3, and G(1∩2)= G2. 

③ Intersection operation on rotating outputs 

According to Table 4, ξr1=ξr2=ξr3=1, s1=R11, s2=R21, s3=R31 

and s1||s2||s3, then ξr=0, s=Φ. 
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④ Output the result of POC of this PM 

Mpa=Mpa(1∩2)∩Mb3=
2G 

  φ ∩ 3

3

G

H
 
  

= 3G 
  φ  

The output of 3-RRC PM is 3-translation, and the result is 

consistent with those in Ref [5]. 

Calculating the number of independent displacement 

equations 

Eq(6) shows that solving the number of independent 

displacement equations of an independent loop (SLC) involves 

the union operation of POC matrices. For the legs L1 and L2 

mentioned above, supposing that the result matrix of union is 

1 2 3 4 5 6
L1 L2

1 2 3 4 5 6

t t t t t t
M

r r r r r r
 

     
The dimension of independent output is  

 

        ξLr=          ξLt= 

Translational output is G(1∪2)= (ξLt, e) and rotating output 

is H(1∪2)= (ξLr, s), where e/s is the direction of 

translation/rotation. Then the number of the independent 

displacement equations of the independent loop is ξL= ξLt + ξLr. 

 

Algorithms for the dimension of translation output of SLC 

Solving the dimension of translational output of a SLC is 

essentially to calculate ξLt=dim(G1∪G2), whose operation rules 

are shown in Table 5. 

 

TABLE 5. ALGORITHMS FOR THE DIMENSION OF 

TRANSLATIONAL OUTPUT  

    L1 

 L2 

ξt1=0 ξt1=1 ξt1=2 ξt1=3 

ξt2=0 0 1 2 3 

ξt2=1 1 
e1||e2 ξLt=1 e1||e2 ξLt=2 

3 
e1||e2 ξLt=2 e1||e2 ξLt=3 

ξt2=2 2 
e1||e2 ξLt=2 e1||e2 ξLt=2 

3 

e1||e2 ξLt=3 e1||e2 ξLt=3 

ξt2=3 3 3 3 3 

Similarly, the dimension of rotating output of a SLC is to 

calculate ξLr=dim(H1∪H2), and its operation rules are shown in 

Table 6. 

 

TABLE 6. ALGORITHMS FOR THE DIMENSION OF 

ROTATING OUTPUT 

    L1 

 L2 
ξt1=0 ξt1=1 ξt1=2 ξt1=3 

ξt2=0 0 1 2 3 

ξt2=1 1 
s1||s2 ξLr=1 s1||s2 ξLr=2 

3 
s1||s2 ξLr=2 s1||s2 ξLr= 

ξt2=2 2 
s1||s2 ξLr=2 s1||s2 ξLr=2 

3 
s1||s2 ξLr=3 s1||s2 ξLr=3 

ξt2=3 3 3 3 3 

PROCEDURE OF AUTOMATIC MOBILITY ANALYSIS 
OF PMS 

Based on the algorithm for POC of legs and PMs and for 

the number of the independent displacement equations, the 

mobility analysis flow for PMs is established as shown in Fig.3. 

Step1. Input topological structure of the PM. 

Input topology matrices L1, …, L(ν+1) and number leg in 

sequence automatically, and input the axis relation 

matrix M and B on the moving platform and fixed 

platform. Obtain the number of the joints fi and the 

number of ν+1 legs. 

Step2. Calculate (ν+1) POC matrix of legs: ML1,...ML(ν+1). 

Step3. Calculate the sum of all joints in the PM: f(1~(ν+1))=
+1

i
1

f
i




 . 

Step4. Calculate the number of the independent displacement 

equations of the 1
st
 loop SLC1: ξ1 

① Calculate the dimension of the independent 

translational output of SLC1: ξL1t= dim(G1∪G2). 

② Calculate the dimension of te independent rotating 

output of SLC1: ξL1r= dim(H1∪H2). 

③ Calculate ξL1= ξL1t+ξL1r. 

Step5. Calculate the POC matrix MP(1∩2) of the sub-PM P(1-2) 

composed by the 1
th

 and 2
th

 legs. 

① Calculate the translational output G(1∩2)=G1∩G2. 

② Calculate the rotating output H(1∩2)=H1∩H2. 

③ Get 1 2
(1 2)

1 2

G
MP

H





 
  
 

( )

( )
. 

Step6. Calculate the POC matrix Mpa(1~j)= Mpa(1~(j-1))∩Mbj of the 

sub-PM P(1-j) composed by the front j
th

(j=3,...,ν) legs. 

Step7. Calculate the number of the independent displacement 

equations of the j
th 

(j=2,...,ν) independent loop SLCj: 

ξj=dim(Mpa(1~j)∪Mb(j+1)). 

Step8. Calculate the number of DOF:  

ν

i1~(ν+1)
i=1

F=f - ξ . 

Step9. Determine the property of mobility of this PM: 

Mpa=Mpa(1-ν)∩ML(ν+1) .  

 

6

i
i 1

r




6

i
i 1

t



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FIGURE 3 THE FLOW CHART OF MOBILITY ANALYSIS 

BASED ON POC 

 

SOFTWARE IMPLEMENTATION AND CASE STUDY 

Software implementation 

According to the basin principle discussed above, an 

automatic mobility analysis platform for PMs was developed 

by VC++ 6.0. Using the platform, large number of PMs listed 

in [6] have been analyzed automatically based on the input of 

topology matrix and results have proved the validity of the 

software.  

The input information mainly includes the number of legs 

and topology matrix. Using decimal array and easy to operate. 

The analysis results include the DOF, the dimension of the 

independent translational/rotating output of the moving 

platform, and their corresponding axis direction. 

Case study 

Detailed examples of mobility analysis of two PMs are 

presented in this section. 

Mobility analysis of the Tricept PM 

The PM of Tricept shown in Fig.2(A) has 3 DOF which is 

one translation and two rotation. The legs are 3-UPS and 1-UP. 

The axes of joints on the two platforms are of general. 

(1) Input topological structural matrices of the PM 

Topology matrix of UPS leg is i

8 2 1 0 0

2 9 2 0 0

L 1 2 8 0 0

0 0 0 8 5

0 0 0 5 8

 
 
 
 
 
  

, (i=1~3). 

Topology matrix of UP leg is 4

8 2 2

L 2 8 2

2 2 9

 
 
 
 

. 

To the two virtual legs on the platforms, topology matrices M 

and B are 

8 0 0 0

0 8 0 0
M

0 0 8 0

0 0 0 8

 
 

  
 
 

, 

8 0 0 0

0 8 0 0
B  

0 0 8 0

0 0 0 8

 
 

  
 
 

. 

Number of legs ν+1=4 

(2) Calculate POC matrix of legs ML1,...ML4. 

① i
Li

i

3 0 0 0 0 0 G
M =

3 0 0 0 0 0 H
   

       
, ξir=3, and ξit=3 (i=1~3) 

② 4
L4

4

0 0 1 0 0 0 G
M =

1 1 0 0 0 0 H
   

       
,and ξ4t=1, ξ4r=2.  

(3) Get the sum of all joints in this PM: f(1-4)=6+6+6+3=21. 

(4) Calculate the number of the independent displacement 

equations of the first loop (SLC1) 

① ξti=3, as shown in Table 5, ξL1t=3, G(1∪2)=G2 (i=1,2). 

② ξri=3, then ξL1r=3, H(1∪2)=H2 (i=1,2). 

③ So, ξL1=ξL1t+ξL1r=3+3=6. 

(5) Calculate the POC matrix MP(1∩2) of sub-PM constituted by 

1
st
 and 2

nd
 legs. 

① ξti=3, as shown in Table 3, G(1∩2)=G2 (i=1,2). 

② ξri=3, as shown in Table 4, H(1∩2)=H2 (i=1,2). 

③ So, 2
(1 2)

2

G
MP

H
 

   
. 

(6) Calculate the POC matrix of sub-PM composed by the front 

three legs: Mpa(1~3)= Mpa(1~2)∩Mb3= 2 3 3

2 3

G G G
=

H H H
     
          3

∩ . 

(7) Calculate the number of the independent displacement 

equations of SLC2: ξL2=dim(Mpa(1~2)∪Mb3). 

① ξt(1∩2)=3, and ξt3=3, then ξL2t=3. 

② ξr(1∩2)=3, and ξr3=3, then ξL2r=3. 

③ then, ξL2=ξL2t+ξL2r=3+3=6. 

Y 

N 

Calculate Mpa(1~j)==Mpa(1~(j-1))∩Mbj 

j>ν+1 

j=j+1 

Calculate ξLj=dim{Mpa(1~j)∪Mb(j+1)} 

End 

Output:  
F and Mpa 









v

i

Li

v

i

if
1

1

1

F   

Mpa=Mpa(1~ν)∩Mb(ν+1) 

 

Table 5, Table 6  

Table 3, Table 4 

Extract planar sub-chains; 

Get the POC supplement matrix of 

 sub-chains, and single-DOF joints. 

Start 

Calculate ξL1=dim{ML1∪ML2} 

Input: number of legs ν+1; 

Topology matrix Li of ith leg; 

Topology matrix M and B on two platforms. 
Calculate the sum of DOF of joints in PM 

j=2 

Bit “or” operation of the supplement matrix; 

Calculating the POC Mbi (i=1,…,ν+1) of leg. 
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Similarly, the number of the independent displacement 

equations of SLC3 is ξL3=ξL3t+ξL3r=3+3=6. 

(8) Get the number of DOF:  

3

i1~4
i 1

F=f - =21- 6+6+6 =3

 ( ) . 

(9) Get the property of mobility: 

Mpa=Mpa(1-3)∩Mb4=
3G

H
 
  3

∩ 4G

H
 
  4

= 4G

H
 
  4

. 

The results show that this mechanism has 1T2R output, the 

rotating directions are around R41 and R41, and the translational 

direction along P43 joint. The result generated by software is 

shown in Fig.4, which is consistent with those in Ref.[6]. 

 
FIGURE 4. MOBILITY ANALYSIS OF TRICEPT 

 

Mobility analysis of a 3-RRC PM 

Fig.2(B) shows a 3-RRC PM. It has three identical RRC 

legs connecting the two platforms, labeled with the number 

1~3. The topological structure of this PM is 

PM=(L1,L2,L3,M,B). The fixed platform is a triangle, and axes 

of the joints on the two platforms are all coplanar. 

(1) Input topology matrices of the PM 

Topology matrix of RRC leg is i

8 1 1 1

1 8 1 1
L

1 1 8 1

1 1 1 9

 
 

  
 
 

, (i=1~3). 

To two virtual legs on the platforms, topology matrices M 

and B are 
9 5 5

M 5 9 5

5 5 9

 
 
 
 

 and 
8 5 5

B 5 8 5

5 5 8

 
 
 
 

. 

Number of legs ν+1=3. 

(2) Calculate POC matrix of legs ML1,...ML3. 

① Recognize and sequentially extract planar and 

spherical sub-chains: one G3 sub-chain R//R//R and one single-

DOF P joint. 

② Generate the POC supplemented matrices of G3 and P 

as G3
2 0 0 0 0 0

M
1 0 0 0 0 0
 

   
 and P

0 0 0 1 0 0
M

0 0 0 0 0 0
 

   
. 

③ Carry out “OR” operation on POC matrices of all legs 

Li
2 0 0 1 0 0 3 0 0 0 0 0

M =
1 0 0 0 0 0 1 0 0 0 0 0
   

       
, ξr

0
=1, and ξt

0
=3 (i=1~3) 

④ ξt=3 and ξr=1, then ML=MLa
0
, that means  

Li
3 0 0 0 0 0

M
1 0 0 0 0 0
 

   
, and ξit=3 indicate that the leg has three 

translational output along arbitrary direction, ξir=1 indicates 

that it has one rotating output, ri1=1 means that the rotation is 

around the axes of Ri1, i.e. si=Ri1.  

i
Li

i

3 0 0 0 0 0 G
M =

1 0 0 0 0 0 H
   

       
 

(3) Calculate the sum of all joints in this PM: f(1-3)=4+4+4=12. 

(4) Calculate the number of the independent displacement 

equations of the first loop (SLC1)  

① ξti=3, as shown in Table 5, ξL1t=3 (i=1,2). 

② ξri=1, and s1||s2, then, ξL1r=2 (i=1,2). 

③ So, ξL1=ξL1t+ξL1r=3+2=5. 

(5) Calculate the POC matrix MP(1∩2) of sub-PM constituted by 

the 1
st
 and 2

nd
 legs 

① ξti=3, as shown in Table 3, G(1∩2)=G2 (i=1,2). 

② ξri=1, and s1||s2, as shown in Table 4, H(1∩2)=Φ (i=1,2). 

③ So, 2
(1 2)

G
MP 

 
   φ

. 

(6) Calculate the POC matrix of PM constituted by the front 

three legs: Mpa(1~3)=Mpa(1~2)∩ML3=
2G 

  φ
∩ 3G

H
 
  3

= 3G 
  φ

. 

(7) Calculate the number of the independent displacement 

equations of SLC2: ξL2=dim(Mpa(1~2)∪Mb3) 

① ξt3=3, as shown in Table 3, ξL2t=3. 

② ξr(1-2)=0, and ξr3=1, as shown in Table 4, ξL2r=1. 

③ Thus, ξL2=ξL2t+ξL2r=3+1=4. 

(8) Get the number of DOF:  

3

i1~3
1

F=f - =12- 5+4 =3
i



 ( )  

(9) Get the property of mobility: Mpa=Mpa(1-3)= 3G 
  φ

. 

It shows that this PM has 3 DOF, three translation. The 

result automatically generated shown in Fig.5. The result is 

consistent with those in Ref[5]. 

 
FIGURE 5. MOBILITY ANALYSIS OF 3-RRC PM 
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CONCLUSIONS  

A matrix description for mapping the topological structure 

with POC of legs and PMs was established. It includes not only 

the type and size of the translational/rotary output, but also 

represents the orientation of the output axis. By extracting the 

planar and spherical sub-chains orderly, the POC of a leg can be 

transformed into the logical "OR" operation of the matrices. An 

algorithm for POC of a PM was established without manual 

intervention. Algorithm of mobility analysis automatically of 

PMs is proposed. Software for mobility analysis of PMs was 

created and typical examples were provided in detail to show 

its effectiveness.  
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