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TOPOLOGY DESIGN AND ANALYSIS OF A NOVEL 3-TRANSLATIONAL PARALLEL 

MECHANISM WITH ANALYTICAL DIRECT POSITION SOLUTIONS 

AND PARTIAL MOTION DECOUPLING 

 

ABSTRACT 

According to the topological design theory and method of 

parallel mechanism (PM) based on position and orientation 

characteristic (POC) equations, this paper design a novel 3-

translation (3T) PM that has three advantages, i.e., ① it 

consists on three actuated prismatic joints, ② the PM has 

analytical direct position solutions, and ③ the PM is of 

partial motion decoupling property. Firstly, the main 

topological characteristics such as the POC, degree of freedom 

and coupling degree are calculated for kinematics modelling. 

Due to the special constraint feature of the 3-translation, the 

analytical direct position solutions of the PM can be directly 

obtained without needing to use one-dimensional search 

method. Further, the conditions of the singular configuration of 

the PM, as well as the singularity location inside the workspace 

are analyzed according to the inverse kinematics. 

 

INTRODUCTION 

In many industrial production lines, process operations 

require pure translation movements only. Therefore, the 3-DOF 

translational parallel mechanism (TPM) has a significant 

potential value due to its small number of actuated components, 

relatively simple structure and easily to be controlled. 

 Many scholars have being studied the TPM. For example, 

original design of 3-DOF TPM is the Delta Robot which 

was presented by Clavel [1]. The Delta-based structure 

manipulators of TPM have been developed [2-4]. Tsai et al [5,  

6] presented the 3-DOF TPM, the moving actuators of which 

are prismatic joints and the sub-chain is 4R parallelogram 

mechanism (P is prismatic joint and R is revolute joint). In [7, 

8], the authors suggested a 3-RRC TPM and developed the 
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kinematics and workspace analysis (C is cylindrical joint). 

Kong et al [9] proposed a 3-CRR mechanism with good motion 

performance and no obvious singular position. Li et al [10, 11] 

developed a 3-UPU PM (U is universal joint) and analyzed the 

instantaneous kinematics performance of the TPM. Yu et al [12] 

carried out a comprehensive analysis of the three-dimensional 

TPM configuration based on the screw theory. Lu et al [13] 

proposed a 3-RRRP (4R) three-translation PM and analyzed the 

kinematics and workspace. Yang et al [14-17] based on the 

single opened chains (SOC) units theory to synthesize the 3T0R 

PM, a variety of new TPMs were synthesized and then 

classified, Considering the anisotropy of kinematics, Zhao et al 

[18] analyzed the dimension synthesis and kinematics of the 3-

DOF TPM based on the Delta PM. Zeng et al [19-21] 

introduced a 3-DOF TPM called as Tri-pyramid robot and 

presented a more detailed analytical approach for the Jacobi 

matrix. Prause et al [22] compared the characteristics of 

dimensional synthesis, boundary conditions and workspace for 

various 3-DOF TPM for the better performance. Mahmood et al 

[23] proposed a 3-DOF 3-[P2(US) mechanism and analyzed its 

kinematics and dexterity. 

However, the most previous TPMs generally suffer from 

two major problems: i) the degree of coupling κ of these PMs is 

greater than zero, which means its direct position solution is 

generally not analytical, and ii) these PMs do not have input-

output decoupling characteristics [24], which leads to the 

complexity of motion control and path planning. 

According to topology design theory of PM based on 

position and orientation characteristics (POC) equations [15, 

18], a new TPM is proposed in this paper. The TPM is designed 

with simple structure and features one coupling degree, it 

consists of prismatic and revolute joints, and has analytical 

direct position solutions and partial motion decoupling 

property. The position solutions, singularity, workspace and its 

internal singularity of the PM are analyzed. 

 

DESIGN AND TOPOLOGY ANALYSIS 

Topological design 

The 3T parallel manipulator proposed in this paper is 

illustrated in Fig. 1. The base platform 0 is connected to the 

moving platform 1 by two hybrid chains that contain looped 

Simple-Opened-Chains. Such hybrid chains are called HSOCs, 

their structural and geometric constraints are as follows: 

         

FIGURE 1 KINEMATIC STRUCTURE OF THE 3T PM 

(1) For the 6-bar planar mechanism loop (abbreviation: 2P4R 

planar mechanism) in right side of Fig. 1, two revolute joints R3 

and R4 whose axes are parallel to each other are connected in 

series, where R3 is connected to link 11 and R4 is connected to 

the moving platform 1 to obtain the first HSOC branch 

(denoted as: hybrid chain I). Two prismatic joints P1 and P2 

will be used to be actuated. 

(2) The left side branch is made up of a prismatic joint P3 and 

two 4R parallelogram mechanisms connected in series, and the 

parallelograms connected from P3 to the moving platform 1 are 

respectively recorded as ①, ②, after P3 and the parallelogram 

① are rigidly connected in the same plane, they are connected 

to the parallelogram ② in their orthogonal plane to obtain the 

second HSOC branch (denoted as: hybrid chainⅡ). 

(3) The prismatic joints P1, P2 and P3 are connected to the 

base platform 0; P1 and P2 are arranged coaxially, and 

prismatic P1 is parallel to P2. When the PM is moving, the 

2P4R planar mechanism is always parallel to the plane of the 

parallelogram ①. 

Analysis of topology characteristics 

Analysis of the POC set 

The POC set equations for serial and parallel mechanisms 

are expressed respectively as follows: 

               


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1

              ( 1 ) 
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where  

JiM - POC set generated by the i-
th 

joint. 

biM - POC set generated by the end link of i-
th 

branched chain. 

PaM - POC set generated by the moving platform of PM. 

Obviously, the output motion of the intermediate link 11 of 

the 2P4R planar mechanism on the hybrid chain I is two 

translations and one rotation (2T1R). The output motion of the 

link S of the parallelogram ① on the hybrid chain II is two 

translations (2T), and the output motion of the link T of the 

parallelogram ②  is three translations (3T). Therefore, the 

topological architecture of the hybrid chain I and II of the PM 

can be equivalently denoted as, respectively: 
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The POC sets of the end of the two HSOCS are determined 

according to Eqs. (1) and (2) as follows:  
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The POC set of the moving platform of this PM is 

determined from Eq. (2) by 
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This formula indicates that the moving platform 1 of the 

PM produces three translations motion. It is further known that 

the hybrid chain II in the mechanism itself can realize the 

design requirement of three translations, which simultaneously 

constrains the two rotational outputs of the hybrid chain I. 

Determining the DOF 

The general and full-cycle DOF formula for PMs proposed 

in author’s work [16] is given below: 
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where 

F - DOF of PM. 

fi - DOF of the i
th 

joint. 

m - number of all joints of the PM. 

v - number of independent loops, and v=m-n+1. 

n - number of links.  

jL - number of independent equations of the j
th 

loop.  


j

i
bi

M
1

- POC set generated by the sub-PM formed by the 

former j branches. 

( 1)b jM  - POC set generated by the end link of j+1 sub-chains. 

The PM can be decomposed into two independent loops, 

and their constraint equations are calculated as follows:  

① The first independent loop is consisted of the 2P4R planar 

mechanism in the hybrid chain I, the LOOP1 is deduced as: 

  )42()42(

2

)42(

11 ),( RPRPRP
RPPLOOP  

Obviously, the independent displacement equation number 

3
1
L . 

② The above 2P4R planar mechanism and the following sub-

string 43 || RR plus HSOC2 will form the second independent 

loop, that is 

  3

)4()4(

432 || PPPRRLOOP RR
 

In accordance with Eq.(4), the independent displacement 

equation number 
2L of the second loop can be obtained as 

follows: 
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Thus, the DOF of the PM is calculated from Eq. (3) as
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Therefore, the DOF of the PM is 3, and when the prismatic 

joints P1, P2 and P3 on the base platform 0 are the actuated 

joints, the moving platform 1 can realize 3-translational motion 

outputs. 

Determining the coupling degree 

  According to the composition principle of mechanism 

based on single-opened-chains (SOC) units, any PM can be 

decomposed into a series of Assur kinematics chains (AKC), 

and an AKC with v independent loops can be decomposed into 

v SOC. The constraint of the j
th

 SOC is defined [16,17] by 
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where 

jm - number of joints contained in the j
th

 SOCj.  

if - DOF of the i
th 

joints. 

jI - number of actuated joints in the j
th

 SOCj . 

jL - number of independent equations of the j
th 

loop. 

For an AKC, it must be satisfied 
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then, the coupling degree of AKC [16,17] is 
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The physical meaning of the coupling degree κ can be 

explained in this way. The coupling degree κ reflects the 

correlation and dependence between kinematic variables of 

each independent loop of the mechanism. It has been proved 

that the higher κ, the greater the complexity of the kinematic 

and dynamic solutions of the mechanism will be. 

The independent displacement equations of LOOP1 and 

LOOP2 have been calculated in the previous section 

Determining the DOF, i.e., 3
1
L , 5

2
L , thus, the degree 

of constraint of the two independent loops are calculated by Eq. 

(5), respectively, can be obtained as follows: 
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The coupling degrees of the AKC is calculated by Eq. (6) 

as

 

1)11(
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Thus, the PM contains only one AKC, and its coupling 

degrees equals to 1. Therefore, when solving the direct position 

solutions of the PM, it is necessary to set only one virtual 

variable in the loop whose degree of constraint is positive

)0(  j . Then, a position constraint equation with this 

virtual variable is established in the loop with the negative 

constraint )0(  j , and the real value of the virtual variable 

can be obtained by the one-dimensional search method, 

accordingly to obtain the direct position solutions of the PM. 

However, owing to the special 3-translational feature 

constraint of the PM, the loop with the negative degree of 

constraint )0(  j can be directly applied to the geometric 

constraint of the loop with the positive degree of constraint 

)0(  j , i.e., The motion of the link 11 is always parallel to 

the base platform 0, from which the virtual variable is easily 

obtained, and there is no need to solve the virtual variable by 

one-dimensional search method. Therefore, the analytical direct 

position solutions of the PM can be directly obtained in the 

following section, which greatly simplifies the process of the 

direct solutions. This method of solving the direct solutions of 

the virtual variable directly by special geometric constraints is 

of general. 

 

POSITION ANALYSIS 

The coordinate system and parameterization 

The kinematics modeling of the PM is shown in Fig. 2. 

The base platform 0 is a rectangle having a length and a width 

of 2a and 2b respectively. The frame coordinate system O-

XYZ is established on the geometric center of the base platform 
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0, the X and Y axes of which are perpendicular and parallel to 

the line A1A2, and the Z axis is determined by the right hand 

Cartesian coordinate rule. The moving coordinate system O'-

X'Y'Z' is established at the center of the moving platform 1, the 

X' and Y' axes of which are coincide and perpendicular to the 

line D2F3, and the Z' axis is determined the right hand 

Cartesian coordinate rule. 

The length of the three driving links 2 is l1, the length of 

the connecting links 9 and 10 on the hybrid chain I is l2, and the 

lengths of the intermediate links 11 and 12 are l3, l4 

respectively. 

    The length of the parallelogram short links 3, 6 on the 

hybrid chain II is l5. the point B3, C3, D3 and E3 are the 

midpoint of the short edge, the length of the long links 4, 7 is 

l6, The length of the connecting link 5 between the 

parallelograms is l7. The length of the connecting link 8 is l8, 

and the length of the line D2F3 on the moving platform 1 is 

2d. 

      

(A) KINEMATIC MODELING 

               

 (B) GEOMETRIC RELATIONSHIP OF THE SECOND   

LOOP (PARTIAL) IN THE XOZ DIRECTION 

FIGURE 2 KINEMATIC MODELING OF THE 3T PM 

The angle between the vectors B1C1 and the Y axis is  , 

and the is assigned as virtual variable. The angles between the 

vectors D1D2, D3E3 and the X axis are and  respectively. 

Direct kinematics 

    To solve the direct kinematics, i.e., to compute the position 

O'(x,y,z) of the moving platform when setting the position 

values of the prismatic joints P1, P2 and P3 (with the 

coordinates 
1Ay , 

2Ay
 

and 
3Ay ). 

1）Solving the first loop with positive degree of constraint 

1LOOP : 222111 ABCCBA   

The coordinates of points A1, A2 and A3 on the base 

platform 0 are respectively 

T

AybA )0,,(
11  ,

T

AybA )0,,(
22  ,

T

AybA )0,,(
33  . 

The coordinates of each end-point of the three same 

actuated links 2, i.e., B1, B2 and B3 are easily calculated as 

T

A lybB ),,( 11 1
 ,

T

A lybB ),,( 12 2
 ,

T

A lybB ),,( 13 3
 . 

Due to the special constraint of the three translations of the 

moving platform 1, during the movement of the PM, the 

intermediate link 11 of the 2P4R planar mechanism is always 

parallel to the base platform 0, that is, C1C2 ||A1A2, then we 

have 

21 CC zz 
               

( 7 ) 

Therefore, the coordinates of points C1 and C2 are 

calculated as 

T

A lllybC )sin,cos,( 2121 1
   

T

A llllybC )sin,cos,( 21322 1
   

Due to the link length constraints defined by 222 lCB  , 

the constraint equation can be deduced as below. 

 
2

2

222 )()()(
222222
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( 8 ) 

Eq. (8) leads to 

0cos 2  BAB   
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① when 0B , the value of  cannot be determined at this 

time, and the PM has parallel singularity, this situation of which 

should be avoided.  

② when 0B , the value of  can be determined at this 

time, there is 

   A

B
 arccos              ( 9 ) 

where 

.,2
21 32 AA ylyBlA   

Thus, the second loop with negative degree of constraint 

acts on the special geometric constraint Eq. (7) on the first loop 

with positive degree of constraint, which is the key to directly 

finding the analytical solutions of the virtual variable  . This 

is an advantage for easy obtaining the analytical direct solutions 

from the topological constraint analysis of the PM. 

2 ） Solving the second loop with negative degree of 

constraint 

2LOOP : 33333321 ABCDEFDD   

The coordinates of points D1 and D2 obtained from points 

C1 and C2 are calculated as 

T

A llllybD )sin,2/cos,( 21321 1
   
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Simultaneously, the coordinates of point O' can be 

calculated as: 
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(10) 

Further, the coordinates of points F3, E3, D3 and C3 are 

represented by the coordinates of point O' defined as: 

TzydxF ),,(3   

TlzydxE ),,( 83   

TllzybD )sin,,( 683   

 
TlllzybC )sin,,( 7683          (11) 

Due to the link length constraints defined by 633 lCB  , 

the constraint equation can be deduced as below. 
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where 

,sin 7821 lllH   .)( 22

62 33 BC yylH   

When the PM is moving, the 2P4R planar mechanism is 

always parallel with the plane of the parallelogram ① , 

therefore, there is always relation as 

   31 DD yy 
  

             (15 ) 
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from Eqs. (13) and (16), there is 
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Finally, putting the values of  and  obtained by Eqs. 

(9) and (17) respectively, into Eq. (10), the coordinates of point 
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O'on the moving platform 1 can be obtained. 

From Eq. (9), ),(
211 AA yyf . 

From Eq. (17), ),,(
3212 AAA yyyf . 

Therefore, it is known from Eq. (10) that 
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I.e., the PM has partial input-output motion decoupling, 

which is advantageous for trajectory planning and motion 

control of the moving platform. 

For the convenience of understanding, the above 

calculation process can be described by Fig. 3. 
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FIGURE 3 FLOW CHART OF DIRECT POSITION 

SOLUTIONS 

It can be seen that the geometric constraint Eqs. (7), (15) 

and (16) are the key to find the analytical formula of the first 

and second loop position equations of the PM. 

Inverse kinematics 

To solve the inverse kinematics, we compute the values of

1Ay , 
2Ay and

3Ay as a function of the coordinate O'(x,y,z) of 

the moving platform. 

For a given position of the moving platform, from Eqs. (10) 

and (16), the angles   and 
 

are calculated as 

  4

arccos
l

dbx 
           (18) 

  6

arccos
l

bdx 
           (19) 

Further, the coordinates of points C1 and C2 are defined 

as:  

TlzlybC )sin,2/,( 431   

TlzlybC )sin,2/,( 432   

In addition, the coordinates of point C3 have been given 

by Eq. (11). Therefore, due to the link length constraints   

defined by 22211 lCBCB  and 633 lCB  , there are three 

constraint equations as below. 
















2

6

222

2

2

222

2

2

222

)()()(

)()()(

)()()(

333333

222222

111111

lzzyyxx

lzzyyxx

lzzyyxx

BCBCBC

BCBCBC

BCBCBC

 

( 2 0 ) 

From Eqs. (20), we can evaluate )3,2,1( iy
iA as 

following 

    
)3,2,1(  iMyy iCA ii       

(21)
    

 

where 

,)(,)( 2

1

2

22

2

1

2

21 21
lzlMlzlM CC   

.)( 2

1

2

63 3
lzlM C   

In summary, when the coordinates of point O' on the 

moving platform 1 are known, each input values
1Ay , 

2Ay and

3Ay has two sets of solutions. Therefore, the inverse solution 

number is 32822  . 

Numerical valuation for direct and inverse solutions 

Direct solutions 

   The dimension parameters of the PM are (unit: mm): 

300a ， 150b ， 50d ， 301 l ， 2802 l ，
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1403 l ， 1804 l ， 905 l ， 2306 l . 

Let the length of the connecting links 5 between the 

parallelograms and the length of the connecting link 8 are 

07 l and 08 l respectively. At this point, the 3D model of 

the PM is shown in Fig. 4. 

        

FIGURE 4  3D CAD DESIGN 

The three input values 
1Ay , 

2Ay and 
3Ay are: 

6776.24,3209.143,6907.162
321

 AAA yyy . 

The direct solutions of the PM is calculated by MATLAB, 

as shown in Table 1. 

TABLE 1 THE VALUES OF DIRECT SOLUTIONS 

    No.   )(mmx    )(mmy   )(mmz  

     1  64.6353   175.6965  370.1818 

     2  -128.8290   175.6965  119.7372 

     3*  -15.4714   9.6849  456.3315 

     4  -128.8290   9.6849  118.2099 

Inverse solutions 

In Table 1, the direct solutions of the No. 3 group is 

substituted into the Eq. (21), and the 8 sets of inverse solution 

values of 
1Ay , 

2Ay and
3Ay are obtained, as shown in Table 2.  

From Eqs. (18) and (19), there are theoretically 32 inverse 

solutions, but for this example, 24 solutions belong to 

the virtual number solutions, which does not exist for the real 

robot. Therefore only 8 numerical solutions exist. 

TABLE 2 THE VALUES OF INVERSE SOLUTIONS 

    No.     
1Ay      

2Ay      
3Ay  

     1    162.6909   22.6909   44.0476 

     2    162.6909   22.6909   -24.6778 

     3    162.6909 -143.3211   44.0476 

     4*    162.6909   -143.3211   -24.6778 

     5    -3.3211   22.6909   44.0476 

     6    -3.3211   22.6909   -24.6778 

     7    -3.3211   -143.3211   44.0476 

     8    -3.3211   -143.3211   -24.6778 

It can be seen that the inverse solutions data of the No. 4 

group in Table 2 is consistent with the three input values given 

when the direct solution is solved, which proves the correctness 

of the direct and inverse solutions. 

 

SINGULARITY ANALYSIS 

Method of singularity analysis 

   This paper uses the Jacobian matrix method to analyze the 

singularity configuration of the PM. Taking the first derivative 

of time t from Eqs. (18) and (19), we have 

    



sin4l

x




              (22) 

    



sin6l

x




              (23) 

Then, taking the first derivative of time t from length 

constraint Eq. (20), and then substituting Eqs. (22) and (23) into 

the equations, there are 

   
)3,2,1(0321 



iyuzfyfxf
iAiiiii

    ( 2 4 ) 

where 

.,,
332211 332211 BCBCBC yyuyyuyyu   

).(),(),(cot
111111 131211 BCBCBC zzfyyfzzf  

 
).(),(),(cot

222222 232221 BCBCBC zzfyyfzzf  
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).(),(),(cot
333333 333231 BCBCBC zzfyyfzzf    

Therefore, the relationship between the output speed 
T

zyxv 









1
of the end effector and the actuated joint input 

speed 

T

AAA yyyv 









3212
is 

            21 vJvJ qP                  (25)   

where 



















333231

232221

131211

fff

fff

fff

J p

  


















33

22

11

u

u

u

Jq  

  Whether the matrices pJ and qJ are singular, the 

singularity of the PM is divided into the following three 

categories: 

(1) When 0)det( qJ , the PM has serial singularity . 

(2) When 0)det( pJ , the PM has parallel singularity. 

(3) When 0)det()det(  pq JJ , the PM has comprehensive 

singularity. 

The result of singularity analysis 

(1) Serial singularity: When the PM has serial singularity, it 

means that each of the two branches near the drive link is 

folded or fully deployed. At this movement, 0)det( qJ , the 

DOF of the moving platform is reduced, and the set W of the 

equation solution is: 

  
 321 WWWW               (26) 

where 

 0
111  BC yyW , that is, the three points A1, B1 and 

C1 are collinear. 

 0
222  BC yyW , that is, the three points A2, B2 and 

C2 are collinear.
 

 0
333  BC yyW , that is, the three points A3, B3 and 

C3 are collinear. 

Example: The 3D configuration of satisfying condition W3 

is shown in Fig. 5. 

            

FIGURE 5 EXAMPLE OF SERIAL SINGULARITY 

CONFIGURATION 

(2) Parallel singularity: When the PM has parallel singularity, 

it means that each branch is close to the link of the moving 

platform in a state of being folded together or fully deployed. 

At this movement, the DOF of the moving platform is increased, 

and even if the input link is locked, there may be has DOF 

output on the moving platform, assuming: 

  )3,2,1(321 


iefff iiii  

If 0)det( pJ , the vectors


1e ,


2e and


3e have the 

following two cases: 

(i) There are two vectors linear correlations 

a) If 


 21 eke , that is,    232221131211 fffkfff 
 

is 

satisfied, the 3D configuration is that the vectors 
11CB

 
and 

22CB
 

are parallel in space, as shown in Fig. 6. 

       

 FIGURE 6 EXAMPLE OF PARALLEL SINGULARITY  

CONFIGURATION 
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b) If 


 31 eke , that is,    333231131211 fffkfff 
 

is 

satisfied, there are: 

),(cot)(cot
3311 BCBC zzkzz    

).()(
3311 BCBC zzkzz   

then, there is  cotcot  . 

Due to the length of the link set by the PM, during the 

movement of the PM, there is always   , that is, 

 cotcot  , then 


 31 eke , similarly, 


 32 eke . 

(ii) There are three vectors linear correlations 

If 


 32112 ekeke  021 kk , then, there is: 

     33323121312111232221 fffkfffkfff   

The calculation by MATLAB shows that the solution of 

1k and 2k cannot be solved in this case, Therefore, this situation 

does not exist. 

(3) Comprehensive singularity: 0)det()det(  pq JJ , the 

serial singularity and the parallel singularity occur 

simultaneously. In this configuration, the actuated joints and the 

end effector of the PM have non-zero inputs and outputs that do 

not affect each other instantaneously, and the corresponding 

pose is the third kind of singularity. In this kind of singularity, 

the PM will lose the freedom and it should be avoided during 

the design phase of the PM. 

 

WORKSPACE ANALYSIS 

This paper uses the limit boundary search method to 

analyze the workspace of the PM, that is, the search range of 

the workspace is first assigned according to the length of the 

link. Then, based on the inverse position solution, all the points 

satisfying the constraint are searched, and the 3D map 

composed of these points is the workspace of the PM.  

  Determine the 3D search range of the workspace: 

90110  x , 250250  y , 480180  z  (unit: 

mm). The 3D workspace of the PM is obtained by MATLAB 

programming. 

The serial singularity can be avoided by actual control, so 

this paper mainly discusses the parallel singularity trajectory. 

According to the link length constraint of Eq. (20) and the 

discriminant 0)det( pJ , the parallel singularity trajectory can 

be obtained, as shown in Fig. 7. Among them, the green part is 

the non-singularity workspace, and the red part is the 

singularity area, which indicates that there is a large non-

singularity area inside the workspace. Fig. 8 is the projection 

view of the workspace in the XOZ and YOZ directions. 

       

FIGURE 7 WORKSPACE AND THE PARALLEL 

SINGULARITY SITUATION 

  

(A) XOZ PROJECTION     (B) YOZ PROJECTION 

FIGURE 8 PROJECTION VIEW OF THE WORKSPACE IN 

THE XOZ AND YOZ DIRECTION 

Fig. 9 shows four X-Y cross-sections in the Z direction of 

the workspace, which shows that the singularity and non-

singularity workspace in each section also change with the 

change of Z value. 
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(A) Z=300                   (B) Z=350 

  

(C) Z=400                   (D) Z=450 

FIGURE 9 DIFFERENT X-Y CROSS-SECTIONS IN THE 

WORKSPACE 

 

CONCLUSIONS 

    The new 3-translational (3T) PM proposed in this paper 

has three advantages: (1) it is only composed of three actuated 

prismatic joints and other passive revolute joints, which is easy 

to be manufactured and assembled; (2) it has analytical direct 

position solutions, which brings the great convenience to error 

analysis, dimensional synthesis, stiffness and dynamics 

research; and (3) it has partial input-output motion decoupling, 

which is very beneficial to the trajectory planning and motion 

control of the PM. 

According to the kinematics modeling principle proposed 

by the author based on the single-opened-chains method, in the 

first loop with positive constraint, the set one virtual variable
can be directly obtained by the special geometric constraint 

condition that the output link of the first loop always maintains 

the horizontal position (the condition is provided by the second 

loop with negative constraint). Therefore, the entire analytical 

position solutions are obtained without solving the virtual 

variable by the geometric constraint equation in the second 

loop with negative constraint. This is the advantage of the 

topology of the PM being different from other PM, and it has 

analytical direct solutions. The method has clear physical 

meaning and simple calculation. 

    Based on the inverse solution, the conditions and locations 

of the three types of singularity configurations of the PM are 

obtained, and the size of the workspace of the PM and its 

parallel singularity area are given. The work of this paper lays 

the foundation for the stiffness, trajectory planning, motion 

control, dynamics analysis and prototype design of the PM. 
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