
HAL Id: hal-02189136
https://hal.science/hal-02189136v2

Submitted on 17 Oct 2019 (v2), last revised 7 Apr 2020 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

SegSRGAN: Super-resolution and segmentation using
generative adversarial networks - Application to

neonatal brain MRI
Quentin Delannoy, Chi-Hieu Pham, Clément Cazorla, Carlos Tor-Díez,

Guillaume Dollé, Hélène Meunier, Nathalie Bednarek, Ronan Fablet, Nicolas
Passat, François Rousseau

To cite this version:
Quentin Delannoy, Chi-Hieu Pham, Clément Cazorla, Carlos Tor-Díez, Guillaume Dollé, et al.. SegSR-
GAN: Super-resolution and segmentation using generative adversarial networks - Application to neona-
tal brain MRI. Computers in Biology and Medicine, In press. �hal-02189136v2�

https://hal.science/hal-02189136v2
https://hal.archives-ouvertes.fr

SegSRGAN: Super-resolution and segmentation using generative adversarial
networks — Application to neonatal brain MRI

Quentin Delannoya,b, Chi-Hieu Phama,c, Clément Cazorlab, Carlos Tor-Díezc, Guillaume Dolléd, Hélène
Meuniere, Nathalie Bednarekb,e, Ronan Fabletf, Nicolas Passatb, François Rousseauc

aEqual first co-authors
bUniversité de Reims Champagne Ardenne, CReSTIC EA 3804, 51097 Reims, France

cIMT Atlantique, LaTIM U1101 INSERM, UBL, Brest, France
dUniversité de Reims Champagne Ardenne, LMR FRE 2011, 51097 Reims, France

eService de médecine néonatale et réanimation pédiatrique, CHU de Reims, France
fIMT Atlantique, Lab-STICC UMR CNRS 6285, Brest, France

Abstract

Background and objective: One of the main issues in the analysis of clinical neonatal brain MRI is the low
anisotropic resolution of the data. In most MRI analysis pipelines, data are first re-sampled using interpola-
tion or single image super-resolution techniques and then segmented using (semi-)automated approaches. In
other words, image reconstruction and segmentation are then performed separately. In this article, we propose
a methodology and a software solution for carrying out simultaneously high-resolution reconstruction and seg-
mentation of brain MRI data.
Methods: Our strategy mainly relies on generative adversarial networks. The network architecture is described in
details. We provide information about its implementation, focusing on the most crucial technical points (whereas
complementary details are given in a dedicated GitHub repository). We illustrate the behaviour of the proposed
method for cortex analysis from neonatal MR images.
Results: The results of the method, evaluated quantitatively (Dice, peak signal-to-noise ratio, structural similarity,
number of connected components) and qualitatively on a research dataset (dHCP) and a clinical one (Epirmex),
emphasize the relevance of the approach, and its ability to take advantage of data-augmentation strategies.
Conclusions: Results emphasize the potential of our proposed method / software with respect to practical medi-
cal applications. The method is provided as a freely available software tool, which allows one to carry out his/her
own experiments, and involve the method for the super-resolution reconstruction and segmentation of arbitrary
cerebral structures from any MR image dataset.

Keywords: super-resolution, segmentation, 3D generative adversarial networks, neonatal brain MRI, cortex.

1. Introduction

Long-term studies of the outcome of prematurely
born infants have clearly documented that the major-
ity of such infants may have significant motor, cogni-
tive, and behavioral deficits [13, 26]. However, there is
a limited understanding of the nature of the cerebral
abnormality underlying these adverse neurologic out-
comes. In this context, Magnetic Resonance Imaging
(MRI) provides unique opportunities for in vivo inves-
tigation of the early developing human brain. How-
ever, the analysis of these clinical neonatal brain MRI
data remains challenging. This is mainly due to their
low anisotropic resolution. As a consequence, im-

proving morphological data processing such as im-
age resolution enhancement and brain segmentation
is the cornerstone for further providing robust mor-
phometry analysis tools to the scientific and clinical
communities.

When dealing with anisotropic low resolution images,
one of the first key components of the processing
pipeline of clinical MRI data is the upsampling image
estimation. Super-resolution (SR) is a post-processing
technique that aims at enhancing the resolution of
an imaging system [10]. However, SR is a challeng-
ing inverse problem; in particular the estimation of
texture and details remains difficult. Recently, su-

Preprint submitted to Elsevier October 17, 2019

pervised deep learning-based techniques have shown
great improvement over model-based approaches, for
that purpose. Indeed, applying 3D convolutional neu-
ral networks (CNNs) yields promising results for MRI
data [31, 6].
However, it is known that in this methodological con-
text, the use of a pixel-wise based loss function may
lead to oversmoothing high resolution images [15].
Indeed, a pixel-wise comparison based loss does not
take into account how the image aspect seems real
(e.g., realistic texture, shape of anatomical details). In
order to provide realistic high resolution images, per-
ceptual components will be added to our loss func-
tion. As used in [19] to constitute their perceptual loss,
the GAN loss will be used to constitute our perceptual
loss; in our case, the GAN loss will entirely constitute
our considered perceptual loss. Note that, as for the
HR image, measuring how the estimated segmenta-
tion map is realistic is also relevant. Such GAN net-
works have already been studied for instance in [28]
or [21].
Once a high resolution image reconstruction has been
performed, the implementation of an automatic seg-
mentation robust approach is crucial for brain struc-
ture analysis. Dedicated (in general, automatic) seg-
mentation methods can be classified into four types
(see e.g. [23] for a recent survey): unsupervised [30,
11]; parametric [22]; classification [33, 40, 27, 4, 25]
/ atlas fusion [34, 7, 16, 35]; and deformable models
[37, 38]. In addition, GANs were also recently pro-
posed for brain MRI segmentation purpose [28].
Among the structures of interest, thin ones and in par-
ticular the cortical gray matter, remain difficult to an-
alyze. However, the cortex is a region of interest, as
emphasized by recent works focusing e.g. on brain
folding [9, 20, 29], cortical connectivity [2] and corti-
cal development [3, 41]. Since the cerebral cortex is
a thin surface object, it remains difficult to segment
in neonatal MRI data. In particular, the segmentation
step is generally considered separately from image re-
construction.
Our purpose is to propose an end-to-end methodol-
ogy dedicated to the analysis of anisotropic low reso-
lution MR images. In particular, we aim to deal with
complex anatomical structures, and in particular the
cortex. To this end, we propose a GAN-based ap-
proach, namely SegSRGAN, that generates both the
perceptually super-resolved image and a cortical seg-
mentation map from a single low-resolution (LR) MR
image.
This article, which is an extended and improved ver-
sion of the conference paper [32], is organized as fol-

lows. In Section 2, we describe the formulation of
the super-resolution and segmentation image prob-
lem we aim to tackle. In Section 3, we provide techni-
cal details related to our method, first on the method-
ology and second on the implementation and soft-
ware. In Section 4, we describe experiments carried
out on various kinds of data, and we quantitatively
and qualitatively assess the effects of several param-
eters. Section 5 provides a concluding discussion. For
the sake of reproducibility, additional contents deal-
ing with implementation and used resources are avail-
able in Appendix A

2. Super-resolution and image segmentation prob-
lem formulation

2.1. Formulation of single image super-resolution
problem

The goal of single image SR is to estimate a high-
resolution (HR) image X ∈ Rm from an observed LR
image Y ∈ Rn , with m > n. Such an SR problem can
be formulated using the following linear observation
model:

Y = H↓BX+N =ΘX+N (1)

where N ∈Rn is the additive noise, B ∈Rm×m is a blur
matrix (depending on the point spread function), H↓ ∈
Rn×m is a downsampling decimation matrix and Θ =
H↓B ∈Rn×m .
A popular way of solving this SR problem is to define
the matrixΘ−1 as the combination of a restoration op-
erator F ∈Rm×m and an upscaling interpolation oper-
ator S↑ ∈Rm×n that computes the interpolated LR im-
age Z ∈Rm associated to Y, i.e. Z = S↑Y. In the context
of a supervised learning, given a set of HR images Xi

and their corresponding LR images Yi , the restoration
operator F can be estimated by minimizing a loss of
the following form:

F̂ = argmin
F

∑
i

d(Xi −F (Zi)) (2)

where d can be e.g. a `1 norm, a `2 norm or a Char-
bonnier loss [5] (namely a differentiable variant of `1

norm). As in [18], our model loss will be based on a
Charbonnier loss.
Once F̂ is estimated, given an LR image Y, the compu-
tation of the corresponding estimated HR image X̂ is
straightforwardly expressed as X̂ = F̂ (S↑Y). In [31, 6], it
was shown that 3D CNNs could be used to accurately
estimate the restoration mapping F̂ for brain MRI.
Hereafter, the estimated HR image X̂ will be denoted
as super-resolution (SR) image.

2

2.2. Formulation of image segmentation problem

In order to balance the SR and the segmentation con-
tributions to the loss value, image segmentation is in-
deed viewed as a supervised regression problem:

SX = R (X) (3)

where R denotes a non-linear mapping from the up-
scaled image X to the segmentation map SX. Similarly
to the SR problem, by assuming that we have a set
of images Xi and their corresponding segmentation
maps SXi , a general approach for solving such seg-
mentation problem consists of finding the mapping R
by minimizing the following loss function:

R̂ = argmin
R

∑
i

d(Xi −R(Xi)) (4)

3. Method description

3.1. Network loss function and architecture

We now propose to use a GAN-based approach to es-
timate jointly an HR image and its corresponding seg-
mentation map from an LR image.
In our case, GAN-based approaches consist of train-
ing a generating network G that estimates, for a given
interpolated input image, its corresponding HR image
and a segmentation map. The discriminator network
D is designed to differentiate real HR and segmenta-
tion images couples (real) from generated SR and seg-
mentation images couples (fake).

3.1.1. Loss function: joint mapping by generative ad-
versarial networks

Preliminary remark: in order, to make voxel values
comparable between SR and segmentation images,
the SR and HR images are normalized between 0 and
1.
The considered loss function can be split into two dif-
ferent terms:

• a term Lr ec (reconstruction loss) which directly
measures the generator output image (voxel-
wise) distance from the real one. This first term
is directly linked with the regression view of the
problem, as explained in Sections 2.1 and 2.2;

• a term Lad v (adversarial loss) which expresses
the game between the generator and the discrim-
inator. This term aims to measure how “realistic”
is the generated image (i.e., both the SR and seg-
mentation maps).

The convolution-based generator network G takes as
input an interpolated LR image Z and computes an
HR image X̂ and a segmentation map ŜX by minimiz-
ing the reconstruction loss:

Lr ec = EX∼PX,SX∼PSX

[
ρ ((X,SX)−G(Z))

]
(5)

where the difference is computed voxel-wise, and ρ is
the robust Charbonnier loss [5] (x ∈Rn):

ρ(x1, .., xn) = 1

n

n∑
i=1

√
(x2

i +ν2) (6)

with ν set here to 10−3.
One can note that both segmentation and SR values
lie between 0 and 1. This ensures a balanced contri-
bution of the SR and the segmentation maps to the
definition of the reconstruction loss Lr ec .
Traditionally, the adversarial function is modeled as a
minimax objective1. However this loss can suffer from
vanishing gradient, due e.g. to a discriminator satura-
tion. Consequently, we propose to alternatively use
Wasserstein GAN loss as described in [12].
Indeed, this type of GAN aims to minimize the Earth-
Mover distance between two distributions Pr and Pg ,
defined as:

W (Pr ,Pg) = inf
γ∈Π(Pr ,Pg)

E(x,y)∼γ
[||x − y ||] (7)

= sup
|| f ||L≤1

Ex∼Pr [f (x)]−Ex∼Pg [f (x)] (8)

where, Π(Pr ,Pg) is the set of all the distributions of
which marginals are Pr and Pg , respectively, and the
supremum is calculated over all the 1-Lipschitz func-
tions f : A →R.
In this GAN, the discriminator learns the
parametrized function f and the generator aims
at minimizing this distance. Hence, in practice, the
adversarial part of the loss function is:

Lad v = EX∼PX,SX∼PSX
[D((X,SX))]

−EZ∼PZ [D(G (Z))] (9)

−λg pEX̂S[(∥ (∇X̂SD(X̂S) ∥2 −1)2]

where
X̂S = (1−ε)(X,SX)+εG (Z) (10)

1That is, by solving

min
G

max
D

V (D,G) = Ex∈pd at a (x)[logD(x)]+Ez∈pz (z)[log(1−D(G(z)))]

The solution to this minimax problem can be interpreted as a Nash
equilibrium, a concept from game theory.

3

is uniformly sampled between (X,SX) and G(Z),
whereas λg p > 0 and ∇ denotes the gradient penalty
coefficient and the gradient operator, respectively.
The images X, SX and Z are randomly extracted from
the data distributions of HR images PX, HR segmen-
tation maps PSX and LR images PZ, respectively. The
terms D((X,SX)), D(G (Z)) and D(X̂S) are the responses
of the discriminator with respect to the real data,
the generated data and the interpolated data, respec-
tively.
The loss function of the GAN is then:

L =Lr ec +λad v Lad v (11)

where λad v > 0.
Finally the game between the generator and the dis-
criminator is modeled as:

min
G

max
D

L (12)

3.1.2. Neural network architecture
Generator architecture. The generator network is a
convolution-based network with residual blocks. It
takes as input the interpolated LR image. It is com-
posed of 18 convolutional layers: three for the encod-
ing part, twelve for the residual part and three for the
decoding part.
Let C i

j -Sk be a block consisting of the following lay-

ers: a convolution layer of j filters of size i 3 with
stride of k, an instance normalization layer (In-
sNorm) [36] and a rectified linear unit (ReLU). Rk de-
notes a residual block as Conv-InsNorm-ReLU-Conv-
InsNorm that contains 33 convolution layers with
k filters. Uk denotes layers as Upsampling-Conv-
InsNorm-ReLU layer with k filters of 33 and stride of
1. The generator architecture is then: C 7

16-S1, C 3
32-S2,

C 3
64-S2, R64, R64, R64, R64, R64, R64, U32, U16, C 7

2 -S1 (see
Figure 1(a)).
During the encoding, the number of kernels is multi-
plied by 2 at each convolution, from 16 to 64. The last
convolutional layer produces two 3D images: the first
will be turned into a class probability map (using a sig-
moid activation); the second will be summed with the
original interpolated image. In order to improve the
training procedure performance, instance normaliza-
tion layers are used on the result of each convolution
(before application of activation function).
Note that summing the prediction of the generator
with the interpolated image implies some constraints
on the interpolated image size. Indeed, the decoder
uses two upsampling layers which multiply the size of

each channel by two. Then, the neural network out-
put size is divisible by 4 in each dimension. Finally, to
have the same dimension between input and output,
we need an input size which is also divisible by 4.

Discriminator architecture. The discriminator net-
work is fully convolutional. It takes as input an HR
image and a segmentation map.
The discriminator contains five convolutional layers
with an increasing number of filter kernels, increas-
ing by a factor of 2 from 32 to 512 kernels. Let Ck be a
block consisting of the following layers: a convolution
layer of k filters of size 43 with stride of 2 and a Leaky
ReLU with a negative slope of 0.01. The last layer C 2

1
is a 23 convolution filter with stride of 1. No activa-
tion layer is used after the last layer. The discrimina-
tor then consists of C32, C64, C128, C256, C512, C 2

1 (see
Figure 1(b)).
For the generator as for the discriminator, the num-
ber of output channels for each convolutional layer is
multiplied by 2 at each layer. The number of output
channels of the first layer is a parameter of the algo-
rithm, as further discussed in Section 4.

3.1.3. Training and testing

Before each application of the network, the LR im-
ages are normalized within [0,1] and interpolated us-
ing cubic splines. These two steps are common to
both training and testing.
As we will see in the next section, before applying the
neural network, the images are also split into patches
of a given size.
For training purpose, the data can be augmented with
respect to (1) contrast modification (LR and HR im-
ages) and (2) Gaussian noise addition (LR images
only). In particular, this can be of interest when the
data to be processed are distinct from the data used
for training.

Training. Figure 2(a) illustrates the pipeline consid-
ered for designing the training, at each epoch. Practi-
cally, data augmentation is carried out differently for
each epoch and for each image. Indeed, for each im-
age and for each epoch, the coefficient used for con-
trast modification is randomly drawn, such as the ad-
ditive Gaussian noise added to the image.
From these training data, the discriminator and the
generator are trained the following way. For each
generator weights update, the discriminator weights
are updated five times. The training data for the
discriminator are randomly chosen at each iteration,

4

(a) Generator architecture

(b) Discriminator architecture

Figure 1: Neural network architecture. (a) Generator architecture. (b) Discriminator architecture. See Section 3.1.2.

(a) Training

(b) Testing

Figure 2: (a) Training data creation for one epoch, and (b) prediction in the testing pipeline. See Section 3.1.3.

5

whereas the generator training data successively pass
over each batch.
The parameters used for the training are the following:

• Adam optimizer parameters similar as in the
original Adam paper [17];

• batch size of 32 patches;

• λg p = 100 and λad v = 0.001;

• patch size of 643 with a 20 voxels shifting.

For each training carried out, the maximal number of
epochs is set to 200 and the final weights are those
which maximize the performance on a testing data
set.

Testing. Figure 2(b) illustrates the testing pipeline.

3.2. Implementation and software

The method is implemented in Python 3.6 but the
code can also be used in Python 2.7. It was packaged
in Pipy2 and can be easily installed using the following
command:

1 pip i n s t a l l SegSRGAN

However, if GPUs are available, one should install
tensorflow-gpu (see installation tutorial3) manually.
This implementation is also available on a GitHub
repository4 which also contains all the weights that we
have trained.
The proposed implementation has been developed in
order to allow one to train and test arbitrarily any de-
rived model from the one initially proposed. This im-
plies that the executable Python file (described in Sec-
tion 3.2.2), and especially the training one, authorizes
the tuning of various parameters (see the readme file
of the GitHub repository4 for more details). Neverthe-
less, for the sake of reproducibility, one can find in Ap-
pendix A the parameters that will allow to reproduce
the results presented in Section 4 (training and test-
ing).
Hereafter, two main aspects of the implementation
will be investigated :

• How one can make quick test of the method.

• How one can improve the code.

2https://pypi.org/project/SegSRGAN
3https://www.tensorflow.org/install/gpu
4https://github.com/koopa31/SegSRGAN

3.2.1. The makefile: a solution to quickly run the pro-
vided code

One can find in the folder “Test_package_and_local”
of the GitHub repository4, a Makefile allowing one to
perform quick tests of the method. The Python ver-
sion with which one can make the test can be modi-
fied in the provided Makefile by changing the value of
the $python variable (default value: 3.7).

The only needed external dependency is therefore the
Python package “virtualenv” which can be installed
using the following command:

1 pip i n s t a l l v irtualenv

All the implemented commands can be executed in
command line, once the working directory of the ter-
minal is set to the Test folder:

1 cd /path_to_SegSRGAN_folder/ Test_package_and_local

Then, one can install the package dependencies, as
follows:

1 make create_venv_and_install_SegSRGAN

This command creates a virtual environment and in-
stalls all the necessary dependencies. All commands,
explained below, use the Python interpreter of this
virtual environment (“venv_x” folder where x is the
Python version).

Finally, the makefile allows one to test several applica-
tions of the provided implementation:

1. testing task (prediction) using the provided
trained weights on command line;

2. training task from scratch.

The last requirement before carrying out tests
is to add images in the corresponding folders:
“Image_for_testing” for testing tasks and “Im-
age_for_training” for training ones.

Testing. For testing task, one need to place one or
many images in the “Image_for_testing folder”. Each
image need to be placed it in own folder. The com-
puted result will be saved in a specific folder, created
during the script execution.

Then, one can use the following command to test on
the images in the “Image_for_testing” folder as fol-
lows:

1 make test_job_model_on_image_absolute

6

https://pypi.org/project/SegSRGAN
https://www.tensorflow.org/install/gpu
https://github.com/koopa31/SegSRGAN

Training. For training task, the corresponding folder
“Image_for_training” contains two folders named
“Label” and “HR”. The training test provided has been
designed for training on a sample size of two images
(two HR and segmentation maps). The two HR images
need to be placed in the “HR” folder whereas the two
segmentation maps need to be placed in the “Label”
folder.
Then, one can use the following command to test on
the images in the “Image_for_testing” folder as fol-
lows:

1 make t e s t _ t r a i n i n g

Note that the default parameters for these tests have
been chosen in order to ensure acceptable computa-
tion times (even with CPUs), but not to obtain the best
results.

3.2.2. Scalability and flexibility
In order to make the implementation scalable, the
code is organized in multiple files, classes and func-
tions. A summary of the code organization is pre-
sented below.
In the first level of the package folder (namely “SegSR-
GAN/SegSRGAN”) are located the files which can be
directly applied to perform a defined task:

• Function_for_application_test_python3.py: pro-
vides a Python function for predicting an image;

• job_model.py: provides a command line
executable file for predicting multiple im-
ages. This file provides an overlay of Func-
tion_for_application_test_python3.py;

• SegSRGAN_training.py: provides a command
line executable file for training a SegSRGAN
model.

In the second level of the package folder (namely
“SegSRGAN/SegSRGAN/utils”) are located all the
functions used by the three functions presented
above.
In the package, one also finds some files / classes
which provide a certain scalability to the proposed
implementation. The SegSRGAN, ImageReader, nor-
malization and interpolation Python files have been
designed for such purpose. We now give a short de-
scription of these files.

utils/SegSRGAN.py. Used in Func-
tion_for_application_test_python3.py (for testing
task) and SegSRGAN_training.py (for training task),
this file contains a class containing all the information

about the generator and discriminator architecture.
All the functions with a name containing “genera-
tor_block” or “discriminator_block” correspond to the
implementation of the architecture of the generator
and the discriminator, respectively. Thanks to the
use of functions, one can easily implement a new
architecture (for the discriminator and/or generator)
to replace the provided ones.

utils/ImageReader.py. Used in “utils/-
patches.py” (for training task) and “Func-
tion_for_application_test_python3.py” (for testing
task), this file contains all the image readers im-
plemented. Each image reader corresponds to a
class, whereas an abstract class exemplifies how to
implement a new one.

utils/interpolation.py. Used in “utils/-
patches.py” (for training task) and “Func-
tion_for_application_test_python3.py” (for testing
task), this file contains a class which has been de-
signed to contain the interpolation methods. Each
image interpolation method corresponds to a specific
function.

utils/normalization.py. Used in “utils/-
patc‘hes.py” (for training task) and ‘Func-
tion_for_application_test_python3.py” (for testing
task), this file contains a class which has been de-
signed to contain the normalization and inverse
normalization methods (to put the result image in the
same range as the LR image in test).

4. Results

4.1. Data

4.1.1. Datasets
We work on two MRI datasets, namely dHCP5 [14],
and the French Epirmex6 dataset whose specificities
are detailed in Table 1.
In particular, the main differences between Epirmex
and dHCP datasets are the following:

• the LR images of dHCP are generated;

• dHCP has real segmentation maps and HR im-
ages (both with axial resolution of 0.5 mm)
whereas Epirmex does not;

5http://www.developingconnectome.org
6Epirmex is part of the French epidemiologic study Epipage 2 [1],

http://epipage2.inserm.fr.

7

http://www.developingconnectome.org
http://epipage2.inserm.fr

dHCP Epirmex
Number of images 40 1500
Coronal resolution

(= Sagittal resolution)
0.5 mm

heterogeneous, mainly
0.45 mm. Histogram of distribution in Fig. 3(a)

Axial resolution
0.5 mm

(which implies the term of HR image)

heterogeneous, mainly
3 mm (which implies the term of LR image).

Histogram of distribution in Fig. 3(b)
HR Yes No

LR
No, generated downsampling HR

from 0.5 mm to 3 mm of axial resolution
Yes

Label
(segmentation ground-truth)

Yes No

Acquisition machine
3T Achieva

scanner
Various machines from

different French hospitals

TR/TE 1200/156 ms
Various, sometimes very different

from dHCP (great
heterogeneity in contrast) see Fig. 4

Table 1: Comparison of dHCP and Epirmex datasets.

0.4 0.6 0.8
0

200

400

600

800

(a) Coronal and sagittal (isotropic) resolution (mm)

3 4 5
0

200

400

600

(b) Axial resolution (mm)

Figure 3: Histograms of the image resolution for the MR images
from Epirmex: (a) coronal and sagittal; (b) axial.

• the TR and TE with which the images have been
acquired are fixed on dHCP but strongly vary on
Epirmex (which induces the motivation to study
the training on augmented data modifying the
contrast);

• some Epirmex images are noisy, whereas dHCP
are not (which induces the motivation to study

Figure 4: Two examples of MR images (axial slices) from the
Epirmex dataset. One can observe the differences in terms of con-
trast.

the training on augmented data by adding ran-
dom noise).

Therefore, in addition to using dHCP for training the
model, using it also for testing is relevant since it al-
lows us to quantitatively evaluate the result of the
method. However, applying the method on Epirmex
also makes sense since the LR images are directly ac-
quired. In particular, applying the method on these
two datasets can provide us with complementary in-
formation.

4.1.2. Preprocessing: LR image generation (dHCP)

The dHCP dataset is composed of HR images
equipped with binary segmentation (ground-truth),
in particular for the cerebral cortex at the same high
resolution. As a consequence, in order to train a
super-resolution model, we need to determine cor-
responding LR images for these couples HR images /
segmentation maps.

8

0 20 40 60 80 100 120 140 160 180
20

21

22

23

24

25

26

27

Epoch

P
SN

R

0.55

0.59

0.64

0.68

0.72

0.76

0.81

0.85

D
ic

e

Figure 5: Dice and PSNR evolution during the training on the dHCP dataset.

From a given HR image X , the associated LR image
XLR is generated using the following model, as pro-
posed in [10]:

XLR = H↓B X (13)

where B is a blur matrix and H↓ is a downsampling
decimation. In particular, we consider a Gaussian fil-
ter B with a standard deviation:

σ= res

2
√

2log2
(14)

where res is the resolution of the HR image.
The generated LR images considered in our experi-
mental study are of resolution 0.5×0.5×3 mm3, which
is compliant with true clinical data, which are usu-
ally strongly anisotropic, as emphasized by the above
Epirmex data description.

4.2. Quality metrics

Segmentation. In order to assess the quality of seg-
mentation results, we consider the Dice score [8],
which is a standard measure for that purpose. In par-
ticular, the adequacy of the computed segmentation S
with respect to the ground-truth G is then given as:

Dice(S,G) = 2|S ∩G|
|S|+ |G| (15)

and lies in [0,1]. The closer the Dice score to 1, the
better the correlation between S and G .
In addition to the quantitative information carried by
the Dice score, we also consider the number of con-
nected components of the segmented results, noted

NCC. By assuming that the cortex is a connected ob-
ject, NCC provide structural information: the higher
this value, the lower the topological quality of the ob-
ject.

Super-resolution. Measuring the performance of SR
algorithms is less straightforward. Indeed, for gauging
the visual aspect similarity between two images, a dis-
tance between the intensity of the SR and HR voxels
may not be sufficient. The performance of SR recon-
struction is then measured by two different indices,
namely the PSNR and the SSIM [39], defined respec-
tively as:

PSNR(X ,Y) = 10log10

(
max

i
Xi

)2

1
|X |

∑
i
|Xi −Yi |2

(16)

where Xi and Yi are the values of X and Y at point i ,
respectively, and:

SSIM(X ,Y) =
(
2µXµY + c1

)+ (
2σX Y + c2

)(
µ2

X +µ2
Y + c1

)(
σ2

X +σ2
Y + c2

) (17)

where µX (resp. µY) is the mean of X (resp. Y) values,
σX (resp. σY) is the standard deviation of X (resp. Y)
values, σX Y is the covariance between X and Y val-
ues, and c1, c2 are numerical stabilizers quadratically
linked to the dynamics of the image. For both PSNR
and SSIM indices, the higher the value, the better the
similarity.

4.3. Convergence – Training (dHCP)
First, we observe the evolution the Dice and PSNR
scores, along the training. The values presented here

9

SegSRGAN IMAPA DrawEM
Dice 0.855(±0.014) 0.786(±0.023) 0.730(±0.010)

Table 2: Dice scores mean value (and standard deviation) for seg-
mentation map. Calculated over 8 dHCP images

SegSRGAN Cubic spline interpolation
PSNR 26.96 24.22
SSIM 0.73 0.63

Table 3: PSNR and SSIM mean value. Calculated over 8 dHCP im-
ages

are calculated as follows. The test images are split into
patches of size 643 voxels, using a 20 voxel shifting (the
same used for the training image set). The PSNR and
the Dice scores are then calculated in each patch. The
final PSNR and the Dice scores are obtained by aver-
aging the values computed patch-wise.
The results are depicted in Figure 5, that provides
the evolution of the Dice and the PSNR scores at the
end of each epoch. The initial Dice has a very low
value, close to 0.5, and then increases up to 0.8 rather
smoothly. It seems to converge from the 100th epoch.
The PSNR also converges, but in a more noisy way.
However, the size of the peaks progressively decreases
whereas the score tends to stabilize, following the
same behaviour as the Dice score.

4.4. Results – Testing (dHCP)

The results presented here were computed from the
8 images from dHCP used as testing dataset (see Ap-
pendix A.4) . These results were obtained with patches
of size 1283 voxels, with a 30-voxel shifting.
Table 2 summarizes the Dice scores of SegSRGAN,
IMAPA [35] and DrawEM [24]. As in a typical clini-
cal settings, all these methods have been applied on
interpolated images (using cubic spline). From this
table, one can see that, quantitatively, the proposed
approach leads to the best cortical segmentation re-
sults with significant improvement with respect to the
two other methods. Moreover, as mentioned in [35],
the use of IMAPA applied on original HR dHCP im-
ages leads to a mean Dice score of 0.887 (standard de-
viation of 0.011). Finally, the result obtained on in-
terpolated images, only decreases by 3% compared to
IMAPA applied on HR images.
Table 3 summarizes PSNR and SSIM of SegSRGAN and
cubic spline interpolation. One can observe that the
two quality scores for the SR image reconstruction
exhibit better results with SegSRGAN than with cu-
bic spline interpolation (which constitutes a standard

baseline and is the input of the network).

4.4.1. Impact of patch overlapping
Impact on the computation time. The time cost of the
algorithm is directly influenced by the choice of the
step (that controls patch overlapping). Indeed, the
value of step directly implies the number of patches
which have to pass through the neural network. Ac-
tually, this number of patches depends directly on the
value ∏

?∈{x,y,z}

n?−patch?
step

(18)

where (nx ,ny ,nz) is the size of the smallest image
containing the interpolated image and which allows
to create an integer number of full patches of size
(patchx , patchy , patchz) with step between the suc-
cessive patches.
From Equation (18), it is plain that the number of
patches is calculated from a quantity that evolves like
step−3. Furthermore, even though (nx ,ny ,nz) also
depends on the step, one can approximate the com-
putation time by an affine function of step−3, as con-
firmed by Figure 6.
The computation times presented in this figure were
obtained in the following configuration:

• patch size of 1283;

• on dHCP, which implies that all the HR images
which led to the interpolated images are of size
(290,290,198);

• computation on Tesla P100 GPU and 2 Intel®
Xeon™ Gold “Skylake” 6132 CPU.

Here, the computation time varies from 600 seconds
(10 min) for a step value of 10, to 4 seconds for a
step value of 100, with a step−3 decrease between
these two values. It is worth mentioning that the de-
vice used here processes the patches quickly (approx-
imately 5 patches per second) which tends to reduce
the impact of the variation of (nx ,ny ,nz); this could
not be the same on other kinds of devices.

Impact on algorithm performance. We now investi-
gate the impact of the step value on the algorithm per-
formance.
For segmentation purpose, the Dice scores obtained
on dHCP are provided in Figure 7(a). Here, the
patches are still of size 1283 voxels. We observe that
in any cases, overlapping between patches (i.e. with
steps lower than 128) provides better results than
without (i.e. with a step of 128). In overlapping cases,

10

10 20 30 40 50 60 70 80 90 100

0

100

200

300

400

500

600

Step

C
o

m
p

u
ta

ti
o

n
ti

m
e

(s
)

Figure 6: Computation time (in seconds) against the step value.

the Dice score grows roughly linearly with respect to
the size of the step, for reaching values around 0.86
with maximal overlaps, i.e. for steps close to 1.
This behaviour for segmentation is confirmed by the
behaviour for SR reconstruction, as illustrated by Fig-
ure 7(b–c), which provides the PSNR and SSIM scores
with respect to the step.
The cortex is a continuous ribbon-like structure. In
particular, the connectedness of the segmentation re-
sults provided by SegSRGAN is a relevant property,
in complement to the three considered quantitative
scores. In Figure 8, we show how the value of step
between patches influences the number of connected
components of the segmented cortex. In theory,
only one connected component should be obtained.
In other words, obtaining n connected components
means that n − 1 parts of the segmented cortex are
erroneously disjoint from the topologically correct
structure. Once again, one can observe a linear corre-
lation between the error and the value of the step, with
close to 1 values for the higher overlapping / lower
steps.

4.4.2. Impact of noise

MR images are generally affected by noise. We now
investigate in which extent the performance of the
segmentation and SR reconstruction is impacted by
adding Gaussian noise to the image. In practice, a
Gaussian noise with σ = 2 is added to each voxel of
the 8 test MRI images.

Table 4: Mean SSIM scores for SR reconstruction on noisy and non-
noisy images (dHCP).

Step Non-noisy Noisy
30 0.73 0.49
80 0.69 0.46

128 0.65 0.44

The difference between the Dice scores of the seg-
mentation results with and without noise, respec-
tively, is depicted in Figure 9. As expected, the rela-
tive Dice scores are slightly better for non-noisy im-
ages than for noisy ones, with a gap within [0.03,0.07].
(Note that from a topological point of view, we also
observed that the number of connected components
is approximately two times greater in the noisy im-
ages compared to non-noisy ones.) We observe that
the difference between noisy and non-noisy data in-
creases (i.e. the impact of adding noise increases)
when the step grows. One can then conclude that, the
larger the step (i.e. the lower the patch overlapping),
the lower the robustness of the method versus noise.

In terms of SR reconstruction, we also compared the
evolution of SSIM and PSNR with respect to the step
value. The results are given in Tables 4–5. They em-
phasize a strong degradation of SSIM, and a much
lower degragation of PSNR. As already observed for
segmentation results, when increasing patch over-

11

0 50 100
0.8

0.82

0.84

0.86

Step

D
ic

e
m

ea
n

(a) Dice

0 50 100
24

25

26

27

Step

P
SN

R
m

ea
n

(b) PSNR

0 50 100

0.65

0.7

0.75

Step

SS
IM

m
ea

n

(c) SSIM

Figure 7: (a) Dice scores of segmentation results on dHCP, depend-
ing on the step between successive patches of size 1283 voxels.
PSNR (b) and SSIM (c) scores of SR reconstruction results on dHCP,
depending on the step between successive patches of size 1283 vox-
els.

lapping, both scores are significantly improved. For
SSIM, the gain between steps sizes of 128 and 30 is of

0 50 100
0

50

100

Step

N
C

C
m

ea
n

Figure 8: Number of connected components (NCC) of the seg-
mented cortex, depending on the step between successive patches
of size 1283 voxels; calculated on dHCP database.

0 50 100
0.03

0.04

0.05

0.06

Step

D
ic

e
d

if
fe

re
n

ce
b

et
w

ee
n

n
o

is
y

an
d

o
ri

gn
al

d
at

a

Figure 9: Difference between the Dice scores with non-noisy and
noisy images from dHCP image. Positive values mean that the Dice
scores are higher without than with Gaussian noise.

Table 5: Mean PSNR scores for SR reconstruction on noisy and non-
noisy images (dHCP).

Step Non-noisy Noisy
30 26.96 25.40
80 25.85 24.45

128 24.24 23.24

approximately 10% in both noisy and non-noisy cases.
For PSNR, it is slightly lower (approximately 8%) with
than without noise (approximately 10%).

4.4.3. Impact of data augmentation
Motivation. The experiments described until now
have been carried out on dHCP, i.e. an image dataset

12

designed for research purpose, with good properties
in terms of noise and signal homogeneity. In real, clin-
ical cases, the images forming a dataset are generally
of lower quality both in terms of signal-to-noise ratio
and signal homogeneity. For instance, all the images
in dHCP were acquired with the same TR and TE (im-
plying inter-image signal homogeneity); by contrast
the TR and TE in Epirmex can strongly vary. Moreover,
by contrast with research-oriented datasets, clinical
data are generally not equipped with ground-truths;
indeed, defining such ground-truths is a complex
and time-consuming task that requires heavy work by
medical experts. (The same remark also holds for the
non-availability of HR images associated to the native
LR ones.) Although our final purpose is to be able to
process real, clinical data, it is generally not possible
to perform the training on comparable images. Such
training then need to rely on dHCP-like data. As a con-
sequence, it is indeed relevant to consider data aug-
mentation strategies for increasing the ability of the
trained networks to take into account real noise and
inhomogeneity properties of usual MR images.

Data augmentation. The considered data augmenta-
tion on dHCP images consists of applying contrast
modification uniformly drawn in [0.5,1.5], and adding
Gaussian noise with a standard deviation set to 3% of
the highest value.
Two questions then arise: (1) Does this training im-
prove the result on noisy / signal-biased data? (2)
Does this training make the performance decrease on
the original images? In order to answer these ques-
tions, three supplementary families of images, created
from the original database, are considered during the
testing, namely images:

• with additive Gaussian noise (σ= 2);

• with values increased by a square function;

• with values decreased by a square root function.

Hereafter, these three types of images are denoted as
“augmented test dataset”.

Segmentation. The results obtained for segmentation
purpose are depicted in Figure 10. First, one can ob-
serve that in case of large steps, data augmentation
improves more significantly the segmentation results
(the best example is when the algorithm is applied
without overlapping). However, it is important to keep
in mind that the Dice score decreases with respect
to the step. In other words, data augmentation al-
lows, in a certain extent, to compensate the defects

0 50 100

−0.01

0.00

0.01

0.02

0.03

0.04

0.05

Step

D
ic

e
d

if
fe

re
n

ce
b

et
w

ee
n

th
e

tw
o

tr
ai

n
in

gs

Noisy
Initial

Square rooted
Squared

Figure 10: Difference between the mean Dice scores of segmenta-
tion results when training with and without data augmentation, de-
pending on the step value. Positive (resp. negative) values mean
that the Dice scores are better with (resp. without) data augmenta-
tion. Calculated on dHCP database

caused by the choice of a large step. In the case of
overlapping, the value of step seems to have a neg-
ligible quantitative impact on the improvements. In
most cases, data augmentation allows to slightly in-
crease the robustness of segmentation results, with
Dice scores increase between [0.00,0.03], when con-
sidering augmented test datasets. This is not the case
for the native dHCP dataset, where the Dice scores
are slighly lowered by data augmentation training. In-
deed, data augmentation allows the network to learn
from a wider range of data; making it more robust with
respect to data variability. As a counterpart, such a
versatile network becomes less robust for handling a
homogeneous population of data such as dHCP.

In complement to the relative evaluation provided by
Figure 10, we also propose, in Table 6, an absolute
comparison of the Dice scores between segmentation
performed with and without data augmentation, both
on the dHCP images and their noisy versions. One
can observe that the segmentation results for origi-
nal dHCP images are slightly degraded (Dice decrease
lower than 0.01) with data augmentation, with rea-
sons similar to those evoked in the analysis of Fig-

13

Table 6: Mean values of Dice scores for segmentation of dHCP images (noisy and non-noisy) based on standard or data-augmented training.

Original Noisy
Step 30 80 128 30 80 128

Without data augmentation 0.855 0.831 0.805 0.819 0.785 0.740
With data augmentation 0.849 0.827 0.806 0.836 0.812 0.790

Table 7: Mean number of connected components for segmentation of dHCP images (noisy and non-noisy) based on standard or data-
augmented training.

Original Noisy
Step 30 80 128 30 80 128

Without data augmentation 8.6 45.3 104.3 26.6 98.5 193.1
With data augmentation 5.7 33.6 61.7 5.8 33.5 61.8

0 50 100

−100

−50

0

Step

N
C

C
d

if
fe

re
n

ce
b

et
w

ee
n

th
e

tw
o

tr
ai

n
in

gs

Noisy
Initial

Square rooted
Squared

Figure 11: Difference between the number of connected compo-
nents of segmentation results when training with and without data
augmentation, depending on the step value. Negative values mean
that the number of connected components is lower with data aug-
mentation. Calculated on dHCP database.

ure 10. In the meantime, the segmentation results for
noisy images are improved (Dice increase from 0.015
to 0.050). In particular, in the case of data augmenta-
tion, the difference between Dice scores on standard
and noisy images becomes low (approximately 0.015),
compared to the case without data augmentation (ap-
proximately 0.030 to 0.060). In other words, data aug-
mentation makes the segmentation more robust to
the tested images, at the price of a loss of specializa-
tion with respect to the trained images. However, such
trade-off is relevant with respect to real clinical appli-
cations.

In order to complete this quantitative segmentation

analysis, we also propose, in Figure 11 and Table 7,
a topological analysis of the results, by providing the
mean number of connected components of the seg-
mented cortex. These topological results strengthen
the conclusions obtained for Dice analysis on aug-
mented data. In particular, on original data, an
improvement is also observed from this topological
point of view. Indeed, the number of connected com-
ponents is reduced by data augmentation for all types
of data studied. In particular, the improvement is im-
portant for noisy images. In addition, (see Table 7) as
for Dice analysis, it appears that segmentation results
present very similar topological properties indepen-
dently of the noise level of the input images.

SR reconstruction. Concerning SR reconstruction,
when observing Figures 12(a) and 12(b), it appears
that for both SSIM and PSNR, the training with data
augmentation (noise and contrast variation) slightly
decreases the quality of reconstruction on initial im-
ages. This behaviour, already observed in the case of
segmentation can be explained by the same factors.
However, we also observe that the reconstruction is
slightly improved for noisy data, whereas it is slightly
degraded for contrast-modified data. These results
on noisy images corroborate those of segmentation,
whereas they are antagonistic in the case of contrast
variation. This last point would require to more accu-
rately investigate the specific effects of data augmen-
tation with respect to either noise and contrast varia-
tion.

4.5. Results – Testing (Epirmex)

In this last part of the experimental section, we ap-
ply our SR reconstruction and segmentation method
to the MR images from the Epirmex dataset.

14

0 50 100
−0.06

−0.04

−0.02

0.00

0.02

Step

SS
IM

d
if

fe
re

n
ce

b
et

w
ee

n
th

e
tw

o
tr

ai
n

in
gs

Noisy
Initial

Square rooted
Squared

(a) SSIM

0 50 100

−1.00

−0.80

−0.60

−0.40

−0.20

0.00

0.20

Step

P
SN

R
d

if
fe

re
n

ce
b

et
w

ee
n

th
e

tw
o

tr
ai

n
in

gs

Noisy
Initial

Square rooted
Squared

(b) PSNR

Figure 12: SSIM (a) and PSNR (b) difference of SR reconstruction
between the training with and without data augmentation. Posi-
tive (resp. negative) values mean that the metric (PSNR or SSIM)
is higher with (resp. without) data augmentation. Calculated on
dHCP database

Epirmex contains more than 1500 images, with very
different properties, e.g. the TE and TR values, as dis-
cussed above (see Figure 4). These MR images are
also of low resolution and a strong anisotropy (see Fig-
ure 3).

In addition, Epirmex is endowed neither with ground-
truth nor with HR images associated to the LR ones,
with two main side effects. The first is that the train-

Step 30 50 80 128
NCC with

data augmentation
30 35 96 387

NCC without
data augmentation

36 53 102 720

Table 8: Mean number of connected components (NCC) computed
from 7 Epirmex images.

ing cannot be carried out on Epirmex images, and it is
then mandatory to learn from another dataset, with
a data augmentation paradigm; this is what we did
with dHCP. Second, there is no objective way of as-
sessing the quality of the results, both in terms of seg-
mentation and SR reconstruction. As a consequence,
the results provided hereafter have mainly a qualita-
tive value.

In particular we propose, in Figure 13, some SR re-
construction and cortex segmentation results for an
MR image representative of the data within Epirmex.
Those results were obtained from the parameters
learned during the training on dHCP, with data aug-
mentation. A visual analysis of these results leads to
satisfactory conclusions. In particular, the segmented
cortex is geometrically consistent, with a good visual
correlation to the input MR image. Regarding the
SR reconstruction, the contrast between the cortex
and the surrounding tissues seems higher in the SR
image than in the LR one, even in the axial slices,
where the resolution is however not modified between
LR and SR. Globally, these qualitative experiments
on Epirmex tend to corroborate the quantitative ones
carried out on dHCP, and to suggest that the proposed
method is indeed relevant both for reconstruction and
segmentation in the context of real, clinical data anal-
ysis.

Due to the lack of ground-truth both for segmention
and SR reconstruction, we can rely neither on Dice
nor on SSIM and PSNR for assessing the quality of the
results on Epirmex. From a topological point of view,
it is however possible to assess the structural quality
of the segmented cortex, that is assumed to be fully
connected.

In particular, the results stated in Table 8 confirm
those previously obtained on dHCP (see Table 7).

Indeed, one can observe that, in case of patch overlap-
ping, the number of connected components is better
when training with data augmentation. However, the
highest difference between these two trainings occurs
when the algorithm is used without patch overlapping
(i.e. with a step of 128).

15

(a) LR (initial) MR image

(b) SR (reconstructed) MR image

(c) Segmented image (cortex)

Figure 13: (a) LR image from the Epirmex dataset. (b) SR reconstructed image obtained from (a). (c) Segmentation of the cortex obtained from
(a).

Similarly to the experimental results obtrained on
dHCP, the evolution of the number of connected com-
ponents with respect to the step value argues in favour
of reducing as much as possible the step for improving
the topological coherence of the segmented cortex. In

particular, on Epirmex, the sensitivity of NCC to the
number of steps is higher than with dHCP. This can
be easily explained by the lower quality of the data,
that tends to induce erroneous disconnections, par-
tially avoided by increasing patch overlapping.

16

5. Discussion

In this article, we have proposed a new methodolog-
ical and software solution for performing SR recon-
struction and segmentation from complex 3D MR im-
ages. Our framework, based on generative adversar-
ial networks has been described in details, both from
theoretical and technical points of view. In particular,
a free, documented software version is available, for
dissemination to the scientific and clinical communi-
ties and for the sake of reproducibility of the results.
Although our purpose was not to carry out a compar-
ative work with other methods (we do not claim the
superiority of our method, but its usefulness in cer-
tain contexts), we have proposed a consequent exper-
imental analysis in the case of cortex investigation in
the neonate. This experimental analysis, carried out
on both research and clinical datasets, and from qual-
itative and quantitative points of view, tend to prove
the relevance of our approach, with satisfactory re-
sults both in terms of SR reconstruction and segmen-
tation.
In particular, the ability of the method to take ad-
vantage of data-augmentation strategies allows one
to involve it for SR reconstruction and segmenta-
tion of clinical datasets, which are generally not en-
dowed with ground-truth and/or examples of high-
resolution MR images associated to LR ones. In this
context, it was observed that carrying out a learning
procedure on a research dataset, whereas degrading
the data (e.g. in terms of noise and intensity bias) con-
stitutes a tractable approach.
Of course, the proposed method is not specific to
the cortex, and it could also be used for other kinds
of cerebral structures in MRI. The segmentation re-
sults obtained on the cortex are indeed satisfactory.
However, since the segmentation and SR reconstruc-
tion are handled in a common way, it is possible that
the quality of SR reconstruction may be impacted by
the structure of interest targeted for segmentation.
In other words, it is possible that the SR reconstruc-
tion may be more efficient in the neighbourhood of
the cortical ribbon, compared to other loci in the
brain. A way of tackling this issue would be to con-
sider a more global segmentation purpose, involv-
ing the main cerebral tissues in parallel, leading to
a more global guidance of SR reconstruction by the
information carried by segmentation. In theory, this
is indeed possible, since the method architecture can
allow multi-segmentation, whereas research datasets
are indeed equipped with complete ground-truth de-
fined as atlases.

Regarding perspective works, from a methodological
point of view, we will more deeply investigate the
trade-off between computational cost and result qual-
ity, in particular with respect to data variability within
MR image cohorts. In this context, we will also ex-
perimentally assess the various consequences on data
augmentation with respect to usual features likely to
degrade MR image quality, namely noise, signal bias,
contrast heterogeneity, or movement artifacts. From a
more applicative point of view, our next purpose will
consist of processing large image cohorts for automat-
ically extracting regions of interest, in a clinical con-
text.

Acknowledgements

The research leading to these results has been
supported by the ANR MAIA project, grant ANR-15-
CE23-0009 of the French National Research Agency
(http://recherche.imt-atlantique.fr/maia);
INSERM and Institut Mines Télécom Atlantique
(Chaire “Imagerie médicale en thérapie intervention-
nelle”); the Fondation pour la Recherche Médicale
(grant DIC20161236453); and the American Memorial
Hospital Foundation. We also gratefully acknowledge
the support of NVIDIA Corporation with the donation
of the Titan Xp GPU used for this research.

References

[1] P.-Y. Ancel, F. Goffinet, and EPIPAGE 2 Writing Group. EPIPAGE
2: A preterm birth cohort in France in 2011. BMC Pediatrics,
14:97, 2014.

[2] G. Ball, J. P. Boardman, P. Aljabar, A. Pandit, T. Arichi, N. Mer-
chant, D. Rueckert, A. D. Edwards, and S. J. Counsell. The
influence of preterm birth on the developing thalamocortical
connectome. Cortex, 49(6):1711–1721, 2013.

[3] G. Ball, L. Srinivasan, P. Aljabar, S. J. Counsell, G. Durighel, J. V.
Hajnal, M. A. Rutherford, and A. D. Edwards. Development of
cortical microstructure in the preterm human brain. Proceed-
ings of the National Academy of Sciences of the United States of
America, 110(23):9541–9546, 2013.

[4] M. J. Cardoso, A. Melbourne, G. S. Kendall, M. Modat, N. J.
Robertson, N. Marlow, and S. Ourselin. AdaPT: An adaptive
preterm segmentation algorithm for neonatal brain MRI. Neu-
roImage, 65:97–108, 2013.

[5] P. Charbonnier, L. Blanc-Féraud, G. Aubert, and M. Barlaud.
Deterministic edge-preserving regularization in computed
imaging. IEEE Transactions on Image Processing, 6(2):298–311,
1997.

[6] Y. Chen, Y. Xie, Z. Zhou, F. Shi, A. G. Christodoulou, and D. Li.
Brain MRI super resolution using 3D deep densely connected
neural networks. In ISBI, Proceedings, pages 739–742, 2018.

[7] P. Coupé, J. V. Manjón, V. Fonov, J. Pruessner, M. Robles, and
D. L. Collins. Patch-based segmentation using expert pri-
ors: Application to hippocampus and ventricle segmentation.
NeuroImage, 54:940–954, 2011.

17

http://recherche.imt-atlantique.fr/maia

[8] L.R. Dice. Measures of the amount of ecologic association be-
tween species. Ecology, 26:297–302, 1945.

[9] J. Dubois, M. Benders, A. Cachia, F. Lazeyras, R. Ha-
Vinh Leuchter, S. V. Sizonenko, C. Borradori-Tolsa, J. F. Man-
gin, and P. S. Hüppi. Mapping the early cortical folding process
in the preterm newborn brain. Cerebral Cortex, 18(6):1444–
1454, 2008.

[10] H. Greenspan. Super-resolution in medical imaging. The
Computer Journal, 52(1):43–63, 2008.

[11] L. Gui, R. Lisowski, T. Faundez, P. Hüppi, F. Lazeyras, and
M. Kocher. Morphology-based segmentation of newborn
brain MR images. In MICCAI NeoBrainS12, Proceedings, pages
1–8, 2012.

[12] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C.
Courville. Improved training of Wasserstein GANs. In NIPS,
Proceedings, pages 5769–5779, 2017.

[13] M. Hack and A. A. Fanaroff. Outcomes of children of extremely
low birthweight and gestational age in the 1990s. Seminars in
Neonatology, 5:89–106, 2000.

[14] E. Hughes, L. Cordero-Grande, M. Murgasova, J. Hutter,
A. Price, A. Santos Gomes, J. Allsop, J. Steinweg, N. Tu-
sor, J. Wurie, J. Bueno-Conde, J.-D. Tournier, M. Abaei,
S. Counsell, M. Rutherford, M. Pietsch, D. Edwards, J. Haj-
nal, S. Fitzgibbon, E. Duff, M. Bastiani, J. Andersson, S. Jbabdi,
S. Sotiropoulos, M. Jenkinson, S. Smith, S. Harrison, L. Grif-
fanti, R. Wright, J. Bozek, C. Beckmann, A. Makropoulos,
E. Robinson, A. Schuh, J. Passerat Palmbach, G. Lenz, F. Mor-
tari, T. Tenev, and D. Rueckert. The Developing Human Con-
nectome: Announcing the first release of open access neona-
tal brain imaging. In OHBM, Proceedings, 2017.

[15] J. Johnson, A. Alahi, and L. Fei-Fei. Perceptual losses for real-
time style transfer and super-resolution. In ECCV, Proceedings,
pages 694–711, 2016.

[16] H. Kim, C. Lepage, A. C. Evans, J. Barkovich, and D. Xu. NEO-
CIVET: Extraction of cortical surface and analysis of neonatal
gyrification using a modified CIVET pipeline. In MICCAI, Pro-
ceedings, pages 571–579, 2015.

[17] D. P. Kingma and J. Ba. Adam: A method for stochastic opti-
mization. CoRR, abs/1412.6980, 2014.

[18] W.-S. Lai, J.-B. Huang, N. Ahuja, and M.-H. Yang. Deep Lapla-
cian pyramid networks for fast and accurate super-resolution.
CoRR, abs/1704.03915, 2017.

[19] C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham,
A. Acosta, A. Aitken, A. Tejani, J. Totz, Z. Wang, and W. Shi.
Photo-realistic single image super-resolution using a genera-
tive adversarial network. In CVPR, Proceedings, pages 105–114,
2017.

[20] J. Lefèvre, D. Germanaud, J. Dubois, F. Rousseau,
I. de Macedo Santos, H. Angleys, J.-F. Mangin, P. S. Hüppi,
N. Girard, and F. De Guio. Are developmental trajectories
of cortical folding comparable between cross-sectional
datasets of fetuses and preterm newborns? Cerebral Cortex,
26(7):3023–3035, 2016.

[21] P. Luc, C. Couprie, S. Chintala, and J. Verbeek. Semantic seg-
mentation using adversarial networks. CoRR, abs/1611.08408,
2016.

[22] D. Mahapatra. Skull stripping of neonatal brain MRI: Using
prior shape information with graph cuts. Journal of Digital
Imaging, 25:802–814, 2012.

[23] A. Makropoulos, S. J. Counsell, and D. Rueckert. A review on
automatic fetal and neonatal brain MRI segmentation. Neu-
roImage, 170:231–248, 2017.

[24] A. Makropoulos, I. S. Gousias, C. Ledig, P. Aljabar, A. Serag,
J. V. Hajnal, A. D. Edwards, S. J. Counsell, and D. Rueck-
ert. Automatic whole brain MRI segmentation of the devel-

oping neonatal brain. IEEE Transactions on Medical Imaging,
33(9):1818–1831, 2014.

[25] A. Makropoulos, C. Ledig, P. Aljabar, A. Serag, J. V. Hajnal,
A. D. Edwards, S. J. Counsell, and D. Rueckert. Automatic tis-
sue and structural segmentation of neonatal brain MRI using
Expectation-Maximization. In MICCAI NeoBrainS12, Proceed-
ings, pages 9–15, 2012.

[26] N. Marlow, D. Wolke, M. A. Bracewell, M. Samara, and EPI-
Cure Study Group. Neurologic and developmental disability
at six years of age after extremely preterm birth. The New Eng-
land Journal of Medicine, 352:9–19, 2005.

[27] A. Melbourne, M. J. Cardoso, G. S. Kendall, N. J. Robertson,
N. Marlow, and S. Ourselin. NeoBrainS12 Challenge: Adap-
tive neonatal MRI brain segmentation with myelinated white
matter class and automated extraction of ventricles I-IV. In
MICCAI NeoBrainS12, Proceedings, pages 16–21, 2012.

[28] P. Moeskops, M. Veta, M. W. Lafarge, K. A. J. Eppenhof, and
J. P. W. Pluim. Adversarial training and dilated convolutions for
brain MRI segmentation. In DLMIA and ML-CDS, Proceedings,
pages 56–64. 2017.

[29] E. Orasanu, A. Melbourne, M. J. Cardoso, H. Lomabert, G. S.
Kendall, N. J. Robertson, N. Marlow, and S. Ourselin. Cor-
tical folding of the preterm brain: A longitudinal analysis of
extremely preterm born neonates using spectral matching.
Brain and Behavior, 6(8):e00488, 2016.

[30] M. Péporté, D. E. I. Ghita, E. Twomey, and P. F. Whelan. A hy-
brid approach to brain extraction from premature infant MRI.
In SCIA, Proceedings, pages 719–730, 2011.

[31] C.-H. Pham, A. Ducournau, R. Fablet, and F. Rousseau. Brain
MRI super-resolution using deep 3D convolutional networks.
In ISBI, Proceedings, pages 197–200, 2017.

[32] C.-H. Pham, C. Tor-Díez, H. Meunier, N. Bednarek, R. Fablet,
N. Passat, and F. Rousseau. Simultaneous super-resolution
and segmentation using a generative adversarial network: Ap-
plication to neonatal brain MRI. In ISBI, Proceedings, pages
991–994, 2019.

[33] M. Prastawa, J. H. Gilmore, W. Lin, and G. Gerig. Automatic
segmentation of MR images of the developing newborn brain.
Medical Image Analysis, 9:457–466, 2005.

[34] A. Serag, M. Blesa, E. J. Moore, R. Pataky, S. A. Sparrow, A. G.
Wilkinson, G. Macnaught, S. I. Semple, and J. P. Boardman.
Accurate learning with few atlases (ALFA): An algorithm for
MRI neonatal brain extraction and comparison with 11 pub-
licly available methods. Scientific Reports, 6:23470, 2016.

[35] C. Tor-Díez, N. Passat, I. Bloch, S. Faisan, N. Bednarek, and
F. Rousseau. An iterative multi-atlas patch-based approach for
cortex segmentation from neonatal MRI. Computerized Med-
ical Imaging and Graphics, 70:73–82, 2018.

[36] D. Ulyanov, A. Vedaldi, and V. S. Lempitsky. Improved texture
networks: Maximizing quality and diversity in feed-forward
stylization and texture synthesis. In CVPR, Proceedings, pages
4105–4113, 2017.

[37] L. Wang, F. Shi, W. Lin, J. H. Gilmore, and D. Shen. Automatic
segmentation of neonatal images using convex optimization
and coupled level sets. NeuroImage, 58:805–817, 2011.

[38] L. Wang, F. Shi, P.-T. Yap, J. H. Gilmore, W. Lin, and D. Shen.
4D multi-modality tissue segmentation of serial infant images.
PLoS One, 7:e44596, 2012.

[39] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. Im-
age quality assessment: From error visibility to structural sim-
ilarity. IEEE Transactions on Image Processing, 13(4):600–612,
2004.

[40] H. Xue, L. Srinivasan, S. Jiang, M. Rutherford, A. D. Edwards,
D. Rueckert, and J. V. Hajnal. Automatic segmentation and re-
construction of the cortex from neonatal MRI. NeuroImage,

18

38:461–477, 2007.
[41] Q. Yu, A. Ouyang, L. Chalak, T. Jeon, J. Chia, V. Mishra,

M. Sivarajan, G. Jackson, N. Rollins, S. Liu, and H. Huang.
Structural development of Human fetal and preterm brain
cortical plate based on population-averaged templates. Cere-
bral Cortex, 26(11):4381–4391, 2016.

Appendix A. Technical description

Appendix A.1. General statements

The proposed code is written in Python 3.6 (but it also
works in Python 2.7). It was packaged in Pipy7 and can
be easily installed using:

1 pip i n s t a l l SegSRGAN

It depends on several packages, all of which are auto-
matically installed when installing the SegSRGAN pip
package. The dependencies are mainstream, widely
used libraries such as Numpy8, Tensorflow9, Keras10,
Pandas11, or SimpleITK12.
Since we use tensorflow-gpu dependency, the pro-
gram can be computed on several GPUs. It is in-
deed recommended to run the code on GPUs instead
of CPUs whenever possible, for the sake of computa-
tional efficiency. However, if GPUs are available, one
should install tensorflow-gpu (see installation tuto-
rial13) manually. Trained weights for the SegSRGAN
networks are available in a GitHub repository14. When
installing the pip package, these weights are locally
downloaded while importing the SegSRGAN package
in Python. (The weights folder is contained in the
SegSRGAN package directory.) In particular, all the
test results presented in Section 4 were obtained with
these weights, for the sake of reproducibility.
All the Python files and the weights considered here-
after can be found in the Python package directory.
The path of this folder is obtained by executing the fol-
lowing Python command:

1 import importlib
2 importlib . u t i l . find_spec ("SegSRGAN") .

submodule_search_locations [0]

and then entering the subdirectory “SegSRGAN” in
the path returned by the result of this command.

7https://pypi.org/project/SegSRGAN
8https://www.numpy.org
9https://www.tensorflow.org

10https://keras.io
11https://pandas.pydata.org
12http://www.simpleitk.org
13https://www.tensorflow.org/install/gpu
14https://github.com/koopa31/SegSRGAN

Appendix A.2. Training

The code runs on multiple GPUs thanks to the Keras
library (a parameter allows to use all available GPUs).
In our models of generator and discriminator, we
used the multi_gpu_model function15. It is optimized
for the merging of the results when the GPUs are
connected via NVLinks (wire-based communications
protocol serial multi-lane near-range communication
link developed by NVIDIA).

An example of basic command line. The package con-
tains a file name “SegSRGAN_training.py” that allows
one to train a SegSRGAN model. This file is located in
the package folder which can be found as explained
in Appendix A.1. The basic command for performing
the training from an image training database is for in-
stance:

1 python SegSRGAN_training . py −−new_low_res 0.5 0.5 3
−−csv /home/ user / data . csv −−snapshot_folder /
home/ user / training_weights −−d i c e _ f i l e /home/
user / dice . csv −−mse_file /home/ user /
mse_example_for_article . csv −−
folder_training_data /home/ user /
temporary_fi le_for_training

The only requirement to be fulfilled beforehand is
the definition of an appropriate csv file. One can
find an example of such file in Table A.9. Here, the
“HR_image” column must contain all the paths to the
HR images; the “Label_image” column must contain
all the paths to the segmentation maps; and finally,
the “Base” column must contain either the “Train” or
“Test” label.
The learned weights are saved into the folder “/home-
/user/training_weights” that contains one dedicated
file per epoch. At the end of each epoch, the dice and
mse file (containing the Dice and the MSE scores, re-
spectively) are also saved.
Warning – The argument “folder_training_data” cor-
responds to a folder, created during the script exe-
cution, in which all the training data are split into
patches and organized by batch. This folder, which
can be large (20 to 60 GB, depending on the chosen ar-
guments) is deleted at the end of each epoch. In case
of unexpected interruption of the script, it may be re-
quired to delete it manually.

Options. The parameters that control the training
from scratch are the following (all the given values are
the values to use in order to reproduce our results) :

15https://keras.io/utils

19

https://pypi.org/project/SegSRGAN
https://www.numpy.org
https://www.tensorflow.org
https://keras.io
https://pandas.pydata.org
http://www.simpleitk.org
https://www.tensorflow.org/install/gpu
https://github.com/koopa31/SegSRGAN
https://keras.io/utils

Table A.9: Example of a csv file used for training.

HR_image Label_image Base
/home/user/data/HR/1.nii.gz /home/user/data/Label/1.nii.gz Train
/home/user/data/HR/2.nii.gz /home/user/data/Label/2.nii.gz Test
/home/user/data/HR/3.nii.gz /home/user/data/Label/3.nii.gz Test
/home/user/data/HR/4.nii.gz /home/user/data/Label/4.nii.gz Train
/home/user/data/HR/5.nii.gz /home/user/data/Label/5.nii.gz Test

• new_low_res: resolution of the LR image gen-
erated during the training. One value is
given per dimension, for fixed resolution (e.g.
“−−new_low_res 0.5 0.5 3”). Test value: 0.5 0.5
3.

• csv (string): file that contains the paths to the
files used for training. These files are divided
into two categories: train and test. Consequently,
it must contain 3 columns, called: HR_image,
Label_image and Base (which is equal to either
Train or Test), respectively. In our case, the test
database was composed of 8 images and the train
one was composed of 32 images all from the first
release of the dHCP database. The list of the file
names is detailed at the end of the Appendix, for
the sake of reproducibility.

• snapshot_folder (string): path of the folder in
which the weights will be regularly saved after a
given number of epochs (this number is given by
the snapshot (integer) argument).

• dice_file (string): csv file where the Dice scores
are stored at each epoch.

• mse_file (string): MSE file where the Dice scores
are stored at each epoch.

• folder_training_data (string): folder where tem-
porary files are written during the training (cre-
ated at the begining of each epoch and deleted at
the end of it).

Finally, the package allows one to either train from an
augmented dataset (as described in section 3.1.3) or
not, by using the following parameters:

• percent_val_max: multiplicative value that gives
the ratio of the maximal value of the image, for
defining the standard deviation of the additive
Gaussian noise. For instance, a value of 0.03
means that σ = 0.03max(X) where max(X) is
the maximal value of the image X . Test value:

0 (without data augmentation); 0.03 (with data
augmentation).

• contrast_max: controls the modification of con-
trast of each image. For instance, a value of 0.5
means that at each epoch, each image will be set
to a power uniformly drawn between 0.5 and 1.5.
Test value: 0 (without data augmentation); 0.5
(with data augmentation).

Complementary information about all the parameters
and their default values can be obtained by:

1 python SegSRGAN_train_avec_base_test . py −−help

(In order to know all the possible parameters, see the
readme file.)
Warning – The patch size is set to 64 (argument
patch_size). It is possible to change it; however this
requires that the discriminator architecture be modi-
fied too, as it computes successive convolutions until
the output is of size one (see Section 3.1.2).

Appendix A.3. Testing

Appendix A.3.1. Testing on one or more images (com-
mand line)

We now describe the way of performing segmentation
on a set of many LR images (instead of segmenting
one image many times). This command line works
with NIfTI and DICOM images but the results are re-
turned as NIfTI images (located in the package folder
which can be found as explained in Appendix A.1). An
example of command for such a group processing is:

1 python job_model . py −−path /home/ data . csv −−patch "
64 ,128 " −−step "32 64 ,64 128" −−
result_folder_name "
weights_without_augmentation " −−weights_path "
weights / Perso_without_data_augmentation "

csv path parameter. A csv file, as the one mentioned
in the above example, is used to get the paths of all
the images to be processed. Only the first column of
each entry will be used, and the file must contain only
paths (i.e. no header).

20

Figure A.14: Data organization for the output images of a same in-
put image.

Step and patch parameters. In this example, we run
steps 32 and 64 for patch 64 and steps 64 and 128 for
patch 128. The list of the paths of the images to be
processed must be stored in a csv file.
Warning – It is mandatory to respect exactly the same
shape for the given step and patch.

Weights parameter. In this article, two types of
weights provided in the GitHub repository have been
used. These weights correspond to the following pa-
rameters:

• weights/Perso_without_data_augmentation:
corresponding to the weights without data
augmentation.

• weights/Perso_with_constrast_0.5_and_noise_
0.03_val_max: corresponding to the weights
with data augmentation as described in Sec-
tion 4.

Others weights not presented in this article are avail-
able (the help of SegSRGAN provides the list of all
these available weights). (A more detailed description
of all the available weights is given in the readme file.)

Organizing the output storage. Each image to be pro-
cessed has to be stored in its own folder. When
processing a given input image (which can be ei-
ther a NIfTI image or a DICOM folder), a dedicated
folder is created for each output. This folder will
be located in the folder of the input image which
has been processed and will be named with respect
to the value of the parameter −−result_folder_name
(in our example the folder will be named “re-
sult_with_Weights_without_augmentation”). In Fig-
ure A.14, one can see how the data are organized in the
folder “result_with_Weights_without_augmentation”.
Finally, each folder presented in Figure A.14 contains
two NIfTI files, namely the SR and the segmentation.

Appendix A.3.2. Testing code on one image in Python
The command line presented below allows one to seg-
ment one or many images. Practically, it relies on a
Python function that segments one image and writes
the result on the disk.

This function, called “segmentation”, is located in the
“Function_for_application_test_python3.py” file and
can be applied as follows:

1 from SegSRGAN . Function_for_application_test_python3
import segmentation

2

3 segmentation (input_fi le_path , step , new_resolution ,
patch , path_output_cortex , path_output_hr ,
weights_path)

The main two differences between the function and a
command line invoking it are the following:

• only one image can be segmented by the func-
tion, whereas many can be via a command line;

• the result folders need to be created before apply-
ing the Python function.

Appendix A.4. List of the database files

Test database:
sub-CC00122XX07.nii.gz, sub-CC00363XX09.nii.gz,
sub-CC00480XX11.nii.gz, sub-CC00201XX03.nii.gz,
sub-CC00172BN08.nii.gz, sub-CC00237XX15.nii.gz,
sub-CC00162XX06.nii.gz, sub-CC00268XX13.nii.gz

Train database:
sub-CC00367XX13.nii.gz sub-CC00281BN10.nii.gz
sub-CC00170XX06.nii.gz sub-CC00250XX03.nii.gz
sub-CC00338BN17.nii.gz sub-CC00415XX11.nii.gz
sub-CC00099AN18.nii.gz sub-CC00216AN10.nii.gz
sub-CC00421AN09.nii.gz sub-CC00117XX10.nii.gz
sub-CC00205XX07.nii.gz sub-CC00379XX17.nii.gz
sub-CC00347XX18.nii.gz sub-CC00357XX11.nii.gz
sub-CC00126XX11.nii.gz sub-CC00418BN14.nii.gz
sub-CC00217XX11.nii.gz sub-CC00421BN09.nii.gz
sub-CC00422XX10.nii.gz sub-CC00303XX06.nii.gz
sub-CC00164XX08.nii.gz sub-CC00209XX11.nii.gz
sub-CC00206XX08.nii.gz sub-CC00172AN08.nii.gz
sub-CC00138XX15.nii.gz sub-CC00221XX07.nii.gz
sub-CC00413XX09.nii.gz sub-CC00176XX12.nii.gz
sub-CC00069XX12.nii.gz sub-CC00168XX12.nii.gz
sub-CC00313XX08.nii.gz sub-CC00334XX13.nii.gz

These files were downloaded from the dCHP first re-
lease website16.

16http://www.developingconnectome.org/project/
data-release-user-guide/

21

http://www.developingconnectome.org/project/data-release-user-guide/
http://www.developingconnectome.org/project/data-release-user-guide/

	Introduction
	Super-resolution and image segmentation problem formulation
	Formulation of single image super-resolution problem
	Formulation of image segmentation problem

	Method description
	Network loss function and architecture
	Loss function: joint mapping by generative adversarial networks
	Neural network architecture
	Training and testing

	Implementation and software
	The makefile: a solution to quickly run the provided code
	Scalability and flexibility

	Results
	Data
	Datasets
	Preprocessing: LR image generation (dHCP)

	Quality metrics
	Convergence – Training (dHCP)
	Results – Testing (dHCP)
	Impact of patch overlapping
	Impact of noise
	Impact of data augmentation

	Results – Testing (Epirmex)

	Discussion
	Technical description
	General statements
	Training
	Testing
	Testing on one or more images (command line)
	Testing code on one image in Python

	List of the database files

