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Abstract

One of the main issues in the analysis of clinical neonatal brain MRI is the low anisotropic resolution of the data.
In most MRI analysis pipelines, data are first re-sampled using interpolation or single image super-resolution
techniques and then segmented using (semi-)automated approaches. In other words, image reconstruction and
segmentation are then performed separately. In this article, we propose a methodology and a software solution
for carrying out simultaneously high-resolution reconstruction and segmentation of brain MRI data. Our strat-
egy mainly relies on generative adversarial networks. The network architecture is described in details, such as
the associated software tool. We illustrate its behaviour for cortex analysis from neonatal MR images, both in a
quantitative way on a research MRI dataset, and more qualitatively on real clinical data. Results emphasize the

potential of our proposed method / software with respect to practical medical applications.

Keywords: super-resolution, segmentation, 3D generative adversarial networks, neonatal brain MRI, cortex.

1. Introduction

Long-term studies of the outcome of prematurely
born infants have clearly documented that the major-
ity of such infants may have significant motor, cogni-
tive, and behavioral deficits [15, 25]. However, there is
a limited understanding of the nature of the cerebral
abnormality underlying these adverse neurologic out-
comes. In this context, Magnetic Resonance Imaging
(MRI) provides unique opportunities for in vivo inves-
tigation of the early developing human brain. How-
ever, the analysis of these clinical neonatal brain MRI
data remains challenging. This is mainly due to their
low anisotropic resolution. As a consequence, im-
proving morphological data processing such as im-
age resolution enhancement and brain segmentation
is the cornerstone for further providing robust mor-
phometry analysis tools to the scientific and clinical
communities.

When dealing with anisotropic low resolution images,
one of the first key components of the processing
pipeline of clinical MRI data is the upsampling image
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estimation. Super-resolution (SR) is a post-processing
technique that aims at enhancing the resolution of
an imaging system [12]. However, SR is a challeng-
ing inverse problem; in particular the estimation of
texture and details remains difficult. Recently, su-
pervised deep learning-based techniques have shown
great improvement over model-based approaches, for
that purpose. Indeed, applying 3D convolutional
neural networks (CNNs) yields promising results for
MRI data (30, 7]. However, it has been shown that
the use of /,-norm loss leads to smooth, unrealis-
tic high resolution images [17, 20]. In order to tackle
these issues, generative adversarial networks (GANs)
[11] have been considered for estimating textured and
sharper images [20, 6].

Once a high resolution image reconstruction has been
performed, the implementation of an automatic seg-
mentation robust approach is crucial for brain struc-
ture analysis. Dedicated (in general, automatic) seg-
mentation methods can be classified into four types
(see e.g. [23] for a recent survey): unsupervised [29,
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13]; parametric [22]; classification [32, 39, 26, 4, 24]
/ atlas fusion [33, 8, 18, 34]; and deformable models
[36, 37]. In addition, GANs were also recently pro-
posed for brain MRI segmentation purpose [27].
Among the structures of interest, thin ones and in par-
ticular the cortical gray matter, remain difficult to an-
alyze. However, the cortex is a region of interest, as
emphasized by recent works focusing e.g. on brain
folding [10, 21, 28], cortical connectivity [2] and cor-
tical development [3, 40]. Since the cerebral cortex is
a thin surface object, it remains difficult to segment
in neonatal MRI data. In particular, the segmentation
step is generally considered separately from image re-
construction.

Our purpose is to propose an end-to-end methodol-
ogy dedicated to the analysis of anisotropic low reso-
lution MR images. In particular, we aim to deal with
complex anatomical structures, and in particular the
cortex. To this end, we propose a GAN-based ap-
proach, namely SegSRGAN, that generates both the
perceptually super-resolved image and a cortical seg-
mentation map from a single low-resolution (LR) MR
image.

This article, which is an extended and improved ver-
sion of the conference paper [31], is organized as fol-
lows. In Section 2, we describe our SR/segmentation
framework from a methodological point of view. In
Section 3, we provide technical details concerning our
proposed implementation. In Section 4, we describe
experiments carried out on various kinds of data, and
we quantitatively and qualitatively assess the effects
of various parameters. Section 5 provides concluding
remarks on the main contributions and perspective
works.

2. Methodological description

In this section, we focus on the methodological as-
pects of joint reconstruction and cortical segmenta-
tion of clinical LR neonatal brain MR images.

2.1. Formulation of single image super-resolution

The goal of single image SR is to estimate a high-
resolution (HR) image X € R from an observed LR
image Y € R", with m > n. Such SR problem can
be formulated using the following linear observation
model:

Y=H BX+N=0X+N (1)

where N € R” is the additive noise, B € R"**"" is a blur
matrix (depending on the point spread function), H| €

R is a downsampling decimation matrix and © =
H|BeR™™,

A popular way of solving this SR problem is to define
the matrix ©~! as the combination of a restoration op-
erator F € R"™*™ and an upscaling interpolation oper-
ator S € R"*" that computes the interpolated LR im-
age Z € R associated to Y, i.e. Z = S'Y. In the context
of supervised learning, given a set of HR images X; and
their corresponding LR images Y;, the restoration op-
erator F can be estimated by minimizing the following
loss function:

F= arnginZ IX; = F(Zy)II3 @)
i

Once F is estimated, given a LR image Y, the compu-
tation of an HR image X is straighforwardly expressed
as X = F(S'Y). In [30, 7], it was shown that 3D CNNs
could be used to estimate accurately the restoration
mapping F for brain MRI.

However, it is known that the use of a £,-norm may
lead to oversmoothing high resolution images. In or-
der to provide realistic HR images, perceptual loss
function [17] have been used in a GAN [20]. This con-
stitutes a paradigm shift since it is no longer a ques-
tion of minimizing only the reconstruction error but
of estimating a realistic image, i.e. a high resolution
image that corresponds to the observation model with
realistic texture details.

A perceptual loss can be formulated as the weighted
sum of the content loss (based e.g. on pixel-wise mean
squared error loss) and an adversarial loss compo-
nent. In GAN-based approaches, the purpose is to
train a generating network G that estimates for a given
LR input image a corresponding HR image. The goal
of the discriminator network D is to classify real and
simulated HR images.

2.2. Formulation of image segmentation

In this work, image segmentation is viewed as a super-
vised regression problem:

Sx=R(X) 3)

where R denotes a non-linear mapping from the up-
scaled image X to the segmentation map Sx. Similarly
to the SR problem, assuming that we have a set of im-
ages X; and corresponding segmentation maps Sx;, a
general approach for solving this segmentation prob-
lem is to find the mapping R by minimizing the fol-
lowing loss function:

R=argmin} _|ISx; - RXX)I5 )
i



Contrary to the SR problem, the use of £,-norm is less
critical as it is expected to estimate smooth segmenta-
tion maps.

2.3. Joint mapping by generative adversarial networks

We now propose to use a GAN-based approach for es-
timating jointly both a HR image and its correspond-
ing segmentation map from a LR image.

The considered loss function can be split into two dif-
ferent terms:

¢ aterm %, which directly measures the genera-
tor output image distance from the real one (re-
construction loss);

e aterm %,4, which expresses the game between
generator and discriminator (i.e. adversarial
loss).

The convolution-based generator network G takes as
input an interpolated LR image Z and computes a HR
image X and a segmentation map Sx by minimizing
the reconstruction loss:

ZLrec = Ex~py sx~Ps, [0 (X, 80) - G2Z)]  (5)

where the difference is computed voxel-wise, and p is
the robust Charbonnier loss [5] (x € R™):

n
PXL, - Xn) = )/ (X7 +12) 6)
i=1

with v set here to 1073,

Traditionally, the adversarial function is modeled as
minimax objective'. However this loss can suffer from
vanishing gradient, due to discriminator saturation
for instance. Consequently, we propose to alterna-
tively use Wasserstein GAN loss as described in [14].
Indeed, this type of GAN aims to minimize the Earth-
Mover distance between two distribution P, and Py,
defined as:

WErPg = inf Ean-y (11— 1] @
= sup Eyp, [f(0]-Exep, [f(X)] (8)
[fllL=1

where, I1(P;,Py) is the set of all the distributions of
which marginals are P, and Py, respectively, and the

I That is, by solving
IIl(l;l’lInDaXV(D, G) = [Exepdam(x) [logD(x)]+[Ez€pZ(z) [log(1-D(G(2)))]

The solution to this minimax problem can be interpreted as a Nash
equilibrium, a concept from game theory.

supremum is calculated over all the 1-Lipschitz func-
tions f: A—R

In this GAN, the discriminator learns the
parametrized function f and the generator aims
at minimizing this distance. Hence, in practice, the
adversarial part of the loss function is:

Ladav = Ex~py,sx~ps, [D(X, Sx))]
~Ez-p,[D(G(2))] ©)
- AgpEgsl(l (Vg DXS) [|2 —1)%]

where
XS=(1-€)X,Sx) +€G(Z) (10)

is uniformly sampled between (X,Sx) and G(Z),
whereas Ag, > 0 and V denote the gradient penalty
coefficient and gradient operator, respectively.

The images X, Sx and Z are extracted randomly from
the data distributions of HR images Px, HR segmen-
tation maps Ps, and LR images Pz, respectively. The
terms D((X, Sx)), D(G (Z)) and D()/(\S) are the responses
of the discriminator with respect to the real data,
the generated data and the interpolated data, respec-
tively.

Finally, the loss function of the GAN is then:

L =Lrec+ AaagvLaav (11)

where 1,4, > 0.
Finally the game between the generator and the dis-
criminator is modeled as:

minmax % (12)
G D

2.4. Neural network architecture

Generator architecture. The generator network is a
convolution-based network with residual blocks. It
takes as input the interpolated LR image. It is com-
posed of 18 convolutional layers: three for the encod-
ing part, twelve for the residual part and three for the
decoding part.

Let C;.-Sk be a block consisting of the following lay-

ers: a convolution layer of j filters of size i with
stride of k, an instance normalization layer (In-
sNorm) [35] and a rectified linear unit (ReLU). Ry de-
notes a residual block as Conv-InsNorm-ReLU-Conv-
InsNorm that contains 3% convolution layers with
k filters. U denotes layers as Upsampling-Conv-
InsNorm-ReLU layer with k filters of 3% and stride of
1. The generator architecture is then: CJ,-S?, C3,-5?,
C§4-SZ, Re4, Rea, Rs4, Rea, Rea, Re4, U3z, Uss, C27-31 (see
Figure 1(a)).
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Figure 1: Neural network architecture. (a) Generator architecture. (b) Discriminator architecture. See Section 2.4.

During the encoding, the number of kernels is multi-
plied by 2 at each convolution, from 16 to 64. The last
convolutional layer produces two 3D images: the first
will be turned into a class probability map (using a sig-
moid activation); the second will be summed with the
original interpolated image. In order to improve the
training procedure performance, instance normaliza-
tion layers are used on the result of each convolution
(before application of activation function).

Note that summing the prediction of the generator
with the interpolated image implies some constraints
on the interpolated image size. Indeed, the decoder
uses two upsampling layers which multiply the size of
each channel by two. Then, the neural network out-
put size is divisible by 4 in each dimension. Finally, to
have the same dimension between input and output,
we need an input size which is also divisible by 4.

Discriminator architecture. The discriminator net-
work is fully convolutional. It takes as input an HR
image and a segmentation map.

The discriminator contains five convolutional layers
with an increasing number of filter kernels, increas-
ing by a factor of 2 from 32 to 512 kernels. Let Cy. be a
block consisting of the following layers: a convolution
layer of k filters of size 4% with stride of 2 and a Leaky
ReLU with a negative slope of 0.01. The last layer Cf
is a 23 convolution filter with stride of 1. No activa-
tion layer is used after the last layer. The discrimina-
tor then consists of C3», Cgs, Ci28, Cas6, Cs12, Cf (see

Figure 1(b)).

For the generator as for the discriminator, the num-
ber of output channels for each convolutional layer is
multiplied by 2 at each layer. The number of output
channels of the first layer is a parameter of the algo-
rithm, as further discussed in Section 4.

2.5. Training and testing

Before each application of the network, the LR im-
ages are normalized within [0, 1] and interpolated us-
ing cubic splines. These two steps are common to
both training and testing.

As we will see in the next section, before applying the
neural network, the images are also split into patches
of a given size.

For training purpose, the data can also be augmented
with respect to (1) contrast modification (LR and HR
images) and (2) Gaussian noise addition (LR images
only). In particular, this can be of particular interest
when the data to be processed are distinct from the
data used for training.

Training. Figure 2(a) illustrates the pipeline consid-
ered for designing the training, at each epoch. Practi-
cally, data augmentation is carried out differently for
each epoch and for each image. Indeed, for each im-
age and for each epoch, the coefficient used for con-
trast modification is randomly drawn, such as the ad-
ditive Gaussian noise added to the image.




LR image

Additive Gaussian noise
Contrast madification

‘m“
. LRimage |

Normalization and
interpolatlon

‘ ‘Interpolated LR ‘
~___image

Patches creation

| .Blur + downsampling (

. HRimage \
Contrast modification

data-augmented |
HR image

Normalization

‘data-augmented ‘
HR image

Patches creation

Patches of HR, LR and
segmentation map (training

data)

Patches creation

Segmentation map

(a) Training

For each patch —_— T
Segmentation map Final segmentation ‘

_ prediction for the patch map prediction
. Predictions —_— —_—

Interpolated image ‘ Patch Mean for each voxel
e HR prediction for the ‘ Final HR prediction ‘
patch | J
(b) Testing

Figure 2: (a) Training data creation for one epoch, and (b) prediction in the testing pipeline. See Section 2.5.

From these training data, the discriminator and the
generator are trained the following way. For each
generator weights update, the discriminator weights
are updated five times. The training data for the
discriminator are randomly chosen at each iteration,
whereas the generator training data successively pass
over each batch.

The parameters used for the training are the following:

¢ Adam optimizer parameters similar as in the
original Adam paper [19];

¢ batch size of 32 patches;
* Agp=100and Auq, = 0.001;
* patch size of 64% with a 20 voxels shifting.

For each training carried out, the maximal number of
epochs is set to 200 and the final weights are those
which maximize the performance on a testing data
set.

Testing. Figure 2(b) illustrates the testing pipeline.

3. Technical description

3.1. General statements

The proposed code is written in Python 3.6 (but it also
works in Python 2.7). It was packaged on Pipy® and
can be easily installed using:

pip install SegSRGAN

It depends on several packages, all of which are auto-
matically installed when installing the SegSRGAN pip
package. The dependencies are mainstream, widely
used libraries such as Numpy®, Tensorflow?, Keras®,
Pandas®, or SimpleITK7.

thtps:
3https:
4https:

//pypi.org/project/SegSRGAN
//www .numpy . org
//www.tensorflow.org
Shttps://keras.io
6https://pandas.pydata.org
"http://www.simpleitk.org
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Table 1: Example of a csv file used for training.

HR_image Label_image Base
/home/user/data/HR/1.nii.gz | /home/user/data/Label/1.nii.gz | Train
/home/user/data/HR/2.nii.gz | /home/user/data/Label/2.nii.gz | Test
/home/user/data/HR/3.nii.gz | /home/user/data/Label/3.nii.gz | Test
/home/user/data/HR/4.nii.gz | /home/user/data/Label/4.nii.gz | Train
/home/user/data/HR/5.nii.gz | /home/user/data/Label/5.nii.gz | Test

Since we use tensorflow-gpu dependency, the pro-
gram can be computed on several GPUs. It is in-
deed recommended to run the code on GPUs instead
of CPUs whenever possible, for the sake of computa-
tional efficiency.

Trained weights for the SegSRGAN networks are avail-
able in a Github repository®. When installing the pip
package, these weights are locally downloaded while
importing the SegSRGAN package in Python. (The
weights folder is contained in the SegSRGAN package
directory.) In particular, all the test results presented
in Section 4 were obtained with these weights, for the
sake of reproducibility.

All the Python files and the weights considered here-
after can be found in the Python package directory.
The path of this folder is obtained by executing the fol-
lowing Python command:

import imp

> imp.find_module ( 'SegSRGAN ")

and then entering the subdirectory “SegSRGAN” in
the path returned by the result of this command.

3.2. Training

The code runs on multiple GPUs thanks to the Keras
library (a parameter allows to use all available GPUs).
In our models of generator and discriminator, we
used the multi_gpu_model function®. It is optimized
for the merging of the results when the GPUs are
connected via NVLinks (wire-based communications
protocol serial multi-lane near-range communication
link developed by NVIDIA).

3.2.1. An example of basic command line

The package contains a file name “SegSR-
GAN_training.py” that allows one to train a SegSRGAN
model. This file is located in the package folder which
can be found as explained in Section 3.1. The basic
command for performing the training from an image
training database is for instance:

8https://github.com/koopa31l/SegSRGAN
Ihttps://keras.io/utils

1 python SegSRGAN_training.py —new_low_res 0.5,0.5,3
——csv /home/user/data.csv ——snapshot_folder /
home/user/training_weights —dice_file /home/
user/dice.csv —mse_file /home/user/
mse_example_for_article.csv —
folder_training _data /home/user/
temporary_file_for_training

The only requirement to be fulfilled beforehand is the
definition of an appropriate csv file. One can find an
example of such file in Table 1. Here, the “HR_image”
column must contain all paths to the HR images; the
“Label_image” column must contain all paths to seg-
mentation maps; and finally, the “Base” column must
contain either the “Train” or “Test” label.

The learned weights are saved into the folder “/home-
/user/training weights” that contains one dedicated
file per epoch. At the end of each epoch, the dice and
mse file (containing the Dice and the MSE scores, re-
spectively) are also saved.

Warning — The argument “folder_training data” cor-
responds to a folder, created during the script exe-
cution, in which all the training data are split into
patches and organized by batch. This folder, which
can belarge (20 to 60 GB, depending on the chosen ar-
guments) is deleted at the end of each epoch. In case
of unexpected interruption of the script, it may be re-
quired to delete it manually.

3.2.2. Options

The parameters that control the training from scratch
are the following:

¢ new_low_res: resolution of the LR image gen-
erated during the training.  One value is
given per dimension, for fixed resolution (e.g.
“——new_low_res 0.5 0.5 3”). Two values are given
per dimension if the resolutions have to be drawn
between bounds (e.g. “——new_low_res 0.5 0.5 4
——new_low_res 1 1 2” means that for each image
at each epoch, x and y resolutions are uniformly
drawn between 0.5 and 1, whereas z resolution is
uniformly drawn between 2 and 4.
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e csv (string): file that contains the paths to the
files used for training. These files are divided
into two categories: train and test. Consequently,
it must contain 3 columns, called: HR_image,
Label_image and Base (which is equal to either
Train or Test), respectively.

* snapshot_folder (string): path of the folder in
which the weights will be regularly saved after a
given number of epochs (this number is given by
the snapshot (integer) argument).

¢ dice_file (string): CSV file where the Dice scores
are stored at each epoch.

* mse_file (string): MSE file where the Dice scores
are stored at each epoch.

 folder_training data (string): folder where tem-
porary files are written during the training (cre-
ated at the begining of each epoch and deleted at
the end of it).

¢ epoch (integer): number of epochs up to which
the training is performed.

* batch_size (integer):
mini-batch.

number of patches per

e number_of_disciminator_iteration (integer):
how many times the discriminator is trained
before training the generator.

It is also possible to continue a training from weights
saved beforehand, by adding the following parame-
ters:

* init_epoch (integer): number of the first epoch
which will be considered during the continued
training (e.g., 21 if the weights given were those
obtained at the end of the 20t epoch). This is
mainly useful for writing the weights in the same
folder as the training which is continued.

Warning - The number of epochs of the remain-
ing training is then epoch — initepoch +1.

* weights (string): path to the saved weights from
which the training will continue.

Important parameters to set the structure of the net-
work (see Section 2.4) are:

* kernel_gen (integer): number of output chan-
nels of the first convolutional layer of the genera-
tor.

¢ kernel_dis (integer): number of output channels
of the first convolutional layer of the discrimina-
tor.

¢ is_conditional (Boolean): enables to train a con-
ditional network with a condition on the input
resolution (discriminator and generator are con-
ditionnal)

¢ u_net (Boolean): enables to train U-Net network.
This kind of network is not detailed in this arti-
cle. For more information, please check the Pipy
documentation'®.

¢ is_residual (Boolean): determines whether the
structure of the network is residual or not.

Finally, the package also allows one to train from an
augmented dataset, as described in section 2.5, by us-
ing the following parameters :

¢ percent_val_max: multiplicative value that gives
the ratio of the maximal value of the image, for
defining the standard deviation of the additive
Gaussian noise. For instance, a value of 0.03
means that o = 0.03 max(X) where max(X) is the
maximal value of the image X.

¢ contrast_max: controls the modification of con-
trast of each image. For instance, a value of 0.4
means that at each epoch, each image will be set
to a power uniformly drawn between 0.6 and 1.4.

Complementary information about all the parameters
and their default values can be obtained by:

python SegSRGAN_train_avec_base_test.py —help

Warning — The patch size is set to 64 (argument
patch_size). It is possible to change it; however this
requires that the discriminator architecture be modi-
fied too, as it computes successive convolutions until
the output is of size one (see Section 2.4).

3.3. Testing

3.3.1. Testing on one or more images (command line)
We now describe the way of performing segmentation
on a set of many MR images (instead of segmenting
one image many times). This command line works
with NIfTI and DICOM images but the results are re-
turned as NIfTI images (located in the package folder
which can be found as explained in Section 3.1). An
example of corresponding command for such group
processing is:

DOpttps://pypi.org/project/SegSRGAN


https://pypi.org/project/SegSRGAN

1 python job_model.py —path /home/data.csv —patch "
64,128" ——step "32 64,64 128" —
result_folder_name "
weights_without_augmentation" —weights_path "
weights/Perso_without_data_augmentation"

csv path parameter. A csv file, as the one mentioned
in the above example, is used to get the paths of all the
images to be processed. Only the first column of each
entry will be used, and the file it must contain only
paths (i.e. no header).

Step and patch parameters. In this example, we run
steps 32 and 64 for patch 64 and steps 64 and 128 for
patch 128. The list of the paths of the images to be
processed must be stored in a CSV file.

Warning - It is mandatory to respect exactly the same
shape for the given step and patch.

Weights parameter. The implementation of the al-
gorithm allows one two use two different kinds of
weights:

* The weights we have already trained.
¢ Newweights one can obtain through the training.

In order to use the weights we have already
trained, the easiest solution is to provide for the
——weights_path parameters some values as exempli-
fied hereafter:

¢ weights/Perso_without_data_augmentation:
corresponding to the weights without data
augmentation.

* weights/Perso_with_constrast_0.5_and_noise_
0.03_val_max: corresponding to the weights
with data augmentation as described in Sec-
tion 4.

Others weights not presented in this article are avail-
able (the help of SegSRGAN provides the list of all
these available weights).

Organizing the output storage. Each image to be pro-
cessed has to be stored in its own folder. When
processing a given input image (which can be ei-
ther a NIfTT image or a DICOM folder), a dedicated
folder is created for each output. This folder will
be located in the folder of the input image which
has been processed and will be named with respect
to the value of the parameter ——result_folder_name

]
patch 128 step 128

patch 64 step 32 patch 64 step 64 patch 128 step 64

Figure 3: Data organization for the output images of a same input
image.

«

(in our example the folder will be named “re-
sult_with_Weights_without_augmentation”). In Fig-
ure 3, one can see we how the data are organized in the
folder “result_with_Weights_without_augmentation”.
Finally, each folder presented in Figure 3 contains two
NIfTTI file, namely the SR and the segmentation.

3.3.2. Testing code on one image in Python

The command line presented below allows one to seg-
mented one or more images. Practically, it relies on a
Python function that segments one image and write
the result on the disk.

This function, called “segmentation’, is located in the
“Function_for_application_test_python3.py” file and
can be applied as follows:

from SegSRGAN.SegSRGAN.

Function_for_application_test_python3 import
segmentation

; segmentation (input_file_path = "/home/user/data/1/1.

nii.gz",step = 30, new_resolution =
(0.5,0.5,0.5) ,patch=128,path_output_cortex = "/
home/user/1/cortex.nii.gz",path_output_hr = "/
home/user/1/SR. nii.gz", weights_path="/home/
user/anaconda3/lib /python3.7/ site —packages/
SegSRGAN/SegSRGAN/ weights /
Perso_without_data_augmentation")

The main two differences between the function and a
command line invoking it are the following:

¢ only one image can be segmented by the func-
tion, whereas many can be via a command line;

¢ theresult folders need to be created before apply-
ing the Python function.

4. Experiments and results

4.1. Quality metrics

Segmentation. In order to assess the quality of seg-
mentation results, we consider the Dice score [9],
which is a standard measure for that purpose. In par-
ticular, the adequacy of the computed segmentation S
with respect to the ground-truth G is then given as:

2I1SN G

Dice(S,G) =
IS| +1Gl

(13)



and lies in [0,1]. The closer the Dice score to 1, the
better the correlation between S and G.

In addition to the quantitative information carried by
the Dice score, we also consider the number of con-
nected components of the segmented results, noted
NCC. By assuming that the cortex is a connected ob-
ject, NCC provide structural information: the higher
this value, the lower the topological quality of the ob-
ject.

Super-resolution. Measuring the performance of SR
algorithms is less straightforward. Indeed, for gauging
the visual aspect similarity between two images, a dis-
tance between the intensity of the SR and HR voxels
may not be sufficient. The performance of SR recon-
struction is then measured by two different indexes,
namely the PSNR and the SSIM [38], defined respec-
tively as:

(maxx;)*

PSNR(X, Y) =10log,, (14)

1
o 21X = Yil?
1
where X; and Y; are the values of X and Y at point i,
respectively, and:

(prl.ty + Cl) + (ZUXY + Cg)

SSIM(X,Y) =
%, ¥) (W5 + 13 + 1) (0% + 05 +¢2)

(15)

where px (resp. py) is the mean of X (resp. Y) values,
ox (resp. oy) is the standard deviation of X (resp. Y)
values, o xy is the covariance between X and Y val-
ues, and c;, ¢, are numerical stabilizers quadratically
linked to the dynamics of the image. For both PSNR
and SSIM indices, the higher the value, the better the
similarity.

4.2. Data

4.2.1. Datasets
We work on two MRI datasets, namely dHCP'! [16],
and the French Epirmex'? dataset.

dHCP We consider T2-weighted MR images of the
Developing Human Connectome Project, provided by
the Evelina Neonatal Imaging Centre, London, UK.
Forty neonatal data were acquired on a 3T Achieva
scanner with repetition (TR) and echo times (TE) of
12000 ms and 156 ms, respectively. All dHCP images

Uhttp://www.developingconnectome . org
12Epirmex is a part of the French epidemiologic study Epipage 2
[1], http://epipage2.inserm.fr.
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Figure 4: Histograms of the image resolution for the MR images
from Epirmex: (a) coronal and sagittal; (b) axial.

Figure 5: Two examples of MR images (axial slices) from the
Epirmex dataset. One can observe the differences in terms of con-
trast.

have a size of 290 x 290 x 203 voxels, and a resolution
of 0.5 x 0.5 x 0.5 mm?>.

32 images are used for the training and the 8 remain-
ing ones are used to evaluate the model performance
(test). Since dHCP MR images are HR data endowed
with ground-truth, this dataset was mainly consid-
ered in our experiments, and in particular for quan-
titative evaluations.

Epirmex. The Epirmex dataset is composed of 1500
MR images acquired in 11 different French hospitals.
These MR images were acquired with different scan-
ners.

Most of Epirmex images present a number of rows
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Figure 6: Dice and PSNR evolution during the training on the dHCP dataset.

(coronal) and columns (sagittal) comparable to those
of dHCP images. The number of slices (axial) is also
comparable, once the images are modeled at the same
resolution.

Similarly to dHCP, all MR images in Epirmex are
isotropic in their axial slices. One can find histograms
for the resolutions in each dimension in Figure 4.

For half of these images, the resolution of the axial
slices (between 0.4 and 0.6 mm) is comparable to that
of dHCP images. The mode of this distribution is
approximately 0.45 mm, and is much more frequent
than the other values. The mode of the resolution
along the axial dimension is near to 3 mm, and 40% of
the dataset have exactly 3 mm of resolution. (This is
the value which is used to generate LR image in dHCP
database). The particularity of the Epirmex dataset
is indeed its high anisotropy between coronal-sagittal
and axial dimensions.

The TR and TE parameters can exhibit very different
values from one image to another. This heterogene-
ity also constitutes a strong difference with dHCP. In
practice, this implies that the images have different
contrasts, as one can see e.g. in Figure 5.

Since Epirmex MR images are clinical, LR data non-
endowed with ground-truth, this dataset was con-
sidered for more illustrative purpose, and to qualita-
tively emphasize the ability of the SR and segmenta-
tion methods to deal with true clinical applications.

4.2.2. Preprocessing: LR image generation (AHCP)

The dHCP dataset is composed of HR images
equipped with binary segmentation (ground-truth),
in particular for the cerebral cortex at the same high
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resolution. As a consequence, in order to train a
super-resolution model, we need to determine cor-
responding LR images for these couples HR images /
segmentation maps.

From a given HR image X, the associated LR image
Xir is generated using the following model, as pro-
posed in [12]:

Xrp = H BX (16)

where B is a blur matrix and H| is a downsampling
decimation. In particular, we consider a Gaussian fil-
ter B with a standard deviation:

res
2,/2log2

where res is the resolution of the HR image.

The generated LR images considered in our experi-
mental study are of resolution 0.5x 0.5 x 3 mm?, which
is compliant with true clinical data, which are usu-
ally strongly anisotropic, as emphasized by the above
Epirmex data description.

a7

4.3. Convergence — Training (dHCP)

First, we observe the evolution the Dice and PSNR
scores, along the training. The values presented here
are calculated as follows. The test images are split into
patches of size 64> voxels, using a 20 voxel shifting (the
same used for the training image set). The PSNR and
the Dice scores are then calculated in each patch. The
final PSNR and the Dice scores are obtained by aver-
aging the values computed patch-wise.

The results are depicted in Figure 6, that provides
the evolution of the Dice and the PSNR scores at the



Table 2: Dice, PSNR and SSIM scores (mean values over 8 images) for SR reconstruction and segmentation, compared with cubic spline inter-

polation on dHCP (see text).

SegSRGAN . LR . Seg.mentatior.l map
interpolation interpolation
Dice | 0.856+0.014 - 0.735+0.012
PSNR 26.96 24.22 -
SSIM 0.73 0.63 -
end of each epoch. The initial Dice has a very low 600 - |
value, close to 0.5, and then increases up to 0.8 rather
smoothly. It seems to converge from the 100" epoch. )
The PSNR also converges, but in a more noisy way. g
However, the size of the peaks progressively decreases i‘ 400 |- |
whereas the score tends to stabilize, following the ks
same behaviour as the Dice score. g
8. 200 .
4.4. Results— Testing (dHCP) §
The results presented here were computed from the
8 images from dHCP used as testing dataset. These Un |
results were obtained with patches of size 1283 voxels, 2‘0 4‘0 6‘0 8‘0 160
with a 30-voxel shifting. Step

Table 2 summarizes the various quality scores for SR
and segmentation. On the one hand, we can observe
that the two quality scores for the SR image recon-
struction exhibit much better results with SegSRGAN
than with cubic spline interpolation (which consti-
tutes a standard baseline and is the input of the net-
work). On the other hand, applying downsampling
and interpolation to the segmentation map allows one
to understand the difficulty to retrieve the informa-
tion actually lost during the downsampling of a high
resolution image, in particular due to blurring effects.

4.4.1. Impact of patch overlapping

Impact on the computation time. The time cost of the
algorithm is directly influenced by the choice of the
step (that controls patch overlapping). Indeed, the
value of step directly implies the number of patches
which have to pass through the neural network. Actu-
ally, this number of patches depends directly from the

value
Ny —patchy

step

(18)
*€{x,y,z}
where (ny, ny,n;) is the size of the smallest image
containing the interpolated image and which allows
to create an integer number of full patches of size
(patchy, patchy, patch;) with step between the suc-
cessive patches.
From Equation (18), it is plain that the number of
patches is calculated from a quantity that evolves like
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Figure 7: Computation time (in seconds) against the step value.

step‘g. Furthermore, even though (ny, ny, n;) also
depends on the step, one can approximate the com-
putation time by an affine function of step™3, as con-
firmed by Figure 7.

The computation times presented in this figure were
obtained in the following configuration:

* patch size of 1283;

¢ on dHCP which implies that all the HR images
which led to the interpolated images are of size
(290,290,198);

e computation on Tesla P100 GPU and 2 Intel®
Xeon™ Gold “Skylake” 6132 CPU.

Here, the computation time varies from 600 seconds
(10 min) for a step value of 10, to 4 seconds for a
step value of 100, with a step~ decrease between
these two values. It is worth mentioning that the de-
vice used here processes the patches quickly (approx-
imately 5 patches per second) which tends to reduce
the impact of the variation of (ny, ny, n.); this could
not be the same on other kinds of devices.

Impact on algorithm performance. We now investi-
gate the impact of the step value on the algorithm per-
formance.
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Figure 8: (a) Dice scores of segmentation results on dHCP, depend-
ing on the step between successive patches of size 1283 voxels.
PSNR (b) and SSIM (c) scores of SR reconstruction results on dHCP,
depending on the step between successive patches of size 1283 vox-
els.

For segmentation purpose, the Dice scores obtained
on dHCP are provided in Figure 8(a). Here, the
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Figure 9: Number of connected components (NCC) of the seg-
mented cortex, depending on the step between successive patches
of size 1283 voxels. Calculated on dHCP database

patches are still of size 128% voxels. We observe that
in any cases, overlapping between patches (i.e. with
steps lower than 128) provides better results than
without (i.e. with a step of 128). In overlapping cases,
the Dice score grows roughly linearly with respect to
the size of the step, for reaching values around 0.86
with maximal overlaps, i.e. for steps close to 1.

This behaviour for segmentation is confirmed by the
behaviour for SR reconstruction, as illustrated by Fig-
ure 8(b—c), which provides the PSNR and SSIM scores
with respect to the step.

The cortex is a continuous ribbon-like structure. In
particular, the connectedness of the segmentation re-
sults provided by SegSRGAN is a relevant property,
in complement to the three considered quantitative
scores. In Figure 9, we show how the value of step
between patches influences the number of connected
components of the segmented cortex. In theory,
only one connected component should be obtained.
In other words, obtaining n connected components
means that n — 1 parts of the segmented cortex are
erroneously disjoint from the topologically correct
structure. Once again, one can observe a linear corre-
lation between the error and the value of the step, with
close to 1 values for the higher overlapping / lower
steps.

4.4.2. Impact of noise

MR images are generally affected by noise. We now
investigate in which extent the performance of the
segmentation and SR reconstruction is impacted by
adding Gaussian noise to the image. In practice, a
Gaussian noise with o = 2 is added to each voxel of
the 8 test MRI images.
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Figure 10: Difference between the Dice scores with non-noisy and
noisy images from dHCP image. Positive values mean that the Dice
scores are higher without than with Gaussian noise.

The difference between the Dice scores of the seg-
mentation results with and without noise, respec-
tively, is depicted in Figure 10. As expected, the rel-
ative Dice scores are slightly better for non-noisy im-
ages than for noisy ones, with a gap within [0.03,0.07].
(Note that from a topological point of view, we also
observed that the number of connected components
is approximately two times greater in the noisy im-
ages compared to non-noisy ones.) We observe that
the difference between noisy and non-noisy data in-
creases (i.e. the impact of adding noise increases)
when the step grows. One can then conclude that, the
larger the step (i.e. the lower the patch overlapping),
the lower the robustness of the method versus noise.
In terms of SR reconstruction, we also compared the
evolution of SSIM and PSNR with respect to the step
value. The results are given in Tables 3-4. They em-
phasize a strong degradation of SSIM, and a much
lower degragation of PSNR. As already observed for
segmentation results, when increasing patch over-
lapping, both scores are significantly improved. For
SSIM, the gain between steps sizes of 128 and 30 is of
approximately 10% in both noisy and non-noisy cases.
For PSNR, it is slightly lower (approximately 8%) with
than without noise (approximately 10%).

4.4.3. Impact of data augmentation

Motivation. The experiments described until now
have been carried out on dHCP, i.e. an image dataset
designed for research purpose, with good properties
in terms of noise and signal homogeneity. In real, clin-
ical cases, the images forming a dataset are generally
of lower quality both in terms of signal-to-noise ratio
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Table 3: Mean SSIM scores for SR reconstruction on noisy and non-
noisy images (dHCP).

Step | Non-noisy | Noisy
30 0.73 0.49
80 0.69 0.46
128 0.65 0.44

Table 4: Mean PSNR scores for SR reconstruction on noisy and non-
noisy images (dHCP).

Step | Non-noisy | Noisy
30 26.96 25.40
80 25.85 24.45
128 24.24 23.24

and signal homogeneity. For instance, all the images
in dHCP were acquired with the same TR and TE (im-
plying inter-image signal homogeneity); by contrast
the TR and TE in Epirmex can strongly vary. Moreover,
by contrast with research-oriented datasets, clinical
data are generally not equipped with ground-truths;
indeed, defining such ground-truths is a complex
and time-consuming task that requires heavy work by
medical experts. (The same remark also holds for the
non-availability of HR images associated to the native
LR ones.) Although our final purpose is to be able to
process real, clinical data, it is generally not possible
to perform the training on comparable images. Such
training then need to rely on dHCP-like data. As a con-
sequence, it is indeed relevant to consider data aug-
mentation strategies for increasing the ability of the
trained networks to take into account real noise and
inhomogeneity properties of usual MR images.

Data augmentation. The considered data augmenta-
tion on dHCP images consists of applying contrast
modification uniformly drawn in [0.5,1.5], and adding
Gaussian noise with a standard deviation set to 3% of
the highest value.

Two questions then arise: (1) Does this training im-
prove the result on noisy / signal-biased data? (2)
Does this training make the performance decrease on
the original images? In order to answer these ques-
tions, three supplementary families of images, created
from the original database, are considered during the
testing, namely images:

¢ with additive Gaussian noise (o = 2);



Table 5: Mean values of Dice scores for segmentation of dHCP images (noisy and non-noisy) based on standard or data-augmented training.

Original Noisy
Step 30 80 128 30 80 128
Without data augmentation | 0.855 | 0.831 | 0.805 | 0.819 | 0.785 | 0.740
With data augmentation 0.849 | 0.827 | 0.806 | 0.836 | 0.812 | 0.790
¢ with values increased by a square function; ‘ - ‘
, 00507 Noisy —
¢ with values decreased by a square root function. > 4 Initial
= x Square rooted

Hereafter, these three types of images are denoted as g 004114+ squared :
“augmented test dataset”. g
S . . . L 0.031 -

egmentation. The results obtained for segmentation = . +
purpose are depicted in Figure 11. First, one can ob- § * + T, e ¢
serve that in case of large steps, data augmentation 2 0.02 T B
improves more significantly the segmentation results 8 * + T, MRS e eet
(the best example is when the algorithm is applied 8 totet :’i“ ot x
without overlapping). However, it is important to keep 5 0.01}- ot 7
in mind that the Dice score decreases with respect % WX oxx X <
to the step. In other words, data augmentation al- g 0.00 |- < x X - A
lows, in a certain extent, to compensate the defects E Xxax S, A, adasad
caused by the choice of a large step. In the case of RN
overlapping, the value of step seems to have a neg- —0.01 [ ‘ ‘ 3
ligible quantitative impact on the improvements. In 0 50 100

most cases, data augmentation allows to slightly in-
crease the robustness of segmentation results, with
Dice scores increase between [0.00,0.03], when con-
sidering augmented test datasets. This is not the case
for the native dHCP dataset, where the Dice scores
are slighly lowered by data augmentation training. In-
deed, data augmentation allows the network to learn
from a wider range of data; making it more robust with
respect to data variability. As a counterpart, a such
versatile network becomes less robust for handling a
homogeneous population of data such as dHCP.

In complement to the relative evaluation provided by
Figure 11, we also propose, in Table 5, an absolute
comparison of the Dice scores between segmentation
performed with and without data augmentation, both
on the dHCP images and their noisy versions. One
can observe that the segmentation results for origi-
nal dHCP images are slightly degraded (Dice decrease
lower than 0.01) with data augmentation, with rea-
sons similar to those evoked in the analysis of Fig-
ure 11. In the meantime, the segmentation results for
noisy images are improved (Dice increase from 0.015
to 0.050). In particular, in the case of data augmenta-
tion, the difference between Dice scores on standard
and noisy images becomes low (approximately 0.015),
compared to the case without data augmentation (ap-
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Step

Figure 11: Difference between the mean Dice scores of segmenta-
tion results when training with and without data augmentation, de-
pending on the step value. Positive (resp. negative) values mean
that the Dice scores are better with (resp. without) data augmenta-
tion. Calculated on dHCP database

proximately 0.030 to 0.060). In other words, data aug-
mentation makes the segmentation more robust to
the tested images, at the price of a loss of specializa-
tion with respect to the trained images. However, such
trade-off is relevant with respect to real clinical appli-
cations.

In order to complete this quantitative segmentation
analysis, we also propose, in Figure 12 and Table 6,
a topological analysis of the results, by providing the
mean number of connected components of the seg-
mented cortex. These topological results strengthen
the conclusions obtained for Dice analysis on aug-
mented data. In particular, on orignal data, an
improvement is also observed from this topological
point of view. Indeed, the number of connected com-
ponents is reduced by data augmentation for all types
of data studied. In particular, the improvement is im-
portant for noisy images. In addition, (see Table 6) as



Table 6: Mean number of connected components for segmentation of dHCP images (noisy and non-noisy) based on standard or data-

augmented training.
Original Noisy
Step 30 | 80 128 30 80 128
Without data augmentation | 8.6 | 45.3 | 104.3 | 26.6 | 98.5 | 193.1
With data augmentation 571|336 | 61.7 | 5.8 | 335 | 61.8
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Figure 12: Difference between the number of connected compo-
nents of segmentation results when training with and without data
augmentation, depending on the step value. Negative values mean
that the number of connected components is lower with data aug-
mentation. Calculated on dHCP database

for Dice analysis, it appears that segmentation results
present very similar topological properties indepen-
dently of the noise level of the input images.

SR reconstruction. Concerning SR reconstruction,
when observing Figures 13 and 14, it appears that for
both SSIM and PSNR, the training with data augmen-
tation (noise and contrast variation) slightly decreases
the quality of reconstruction on initial images. This
behaviour, already observed in the case of segmenta-
tion can be explained by the same factors. However,
we also observe that the reconstruction is slightly im-
proved for noisy data, whereas it is slightly degraded
for contrast-modified data. These results on noisy im-
ages corroborate those of segmentation, whereas they
are antagonistic in the case of contrast variation. This
last point would require to more accurately investi-
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Figure 13: SSIM difference of SR reconstruction between the train-
ing with and without data augmentation. Positive (resp. negative)
values mean that the SSIM is higher with (resp. without) data aug-
mentation. Calculated on dHCP database

gate the specific effects of data augmentation with re-
spect to either noise and contrast variation.

4.5. Results — Testing (Epirmex)

In this last part of the experimental section, we ap-
ply our SR reconstruction and segmentation method
to the MR images from the Epirmex dataset.

Epirmex contains more than 1500 images, with very
different properties, e.g. the TE and TR values, as dis-
cussed above (see Figure 5). These MR images are
also of low resolution and a strong anisotropy (see Fig-
ure 4).

In addition, Epirmex is endowed neither with ground-
truth nor with HR images associated to the LR ones,
with two main side effects. The first is that the train-
ing cannot be carried out on Epirmex images, and it is
then mandatory to learn from another dataset, with
a data augmentation paradigm; this is what we did
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Figure 14: PSNR difference of SR reconstruction between the train-
ing with and without data augmentation. Positive (resp. negative)
values mean that the PSNR is higher with (resp. without) data aug-
mentation. Calculated on dHCP database

with dHCP. Second, there is no objective way of as-
sessing the quality of the results, both in terms of seg-
mentation and SR reconstruction. As a consequence,
the results provided hereafter have mainly a qualita-
tive value.

In particular we propose ,in Figure 15, some SR re-
construction and cortex segmentation results for an
MR image representative of the data within Epirmex.
Those results were obtained from the parameters
learned during the training on dHCP, with data aug-
mentation. A visual analysis of these results leads to
satisfactory conclusions. In particular, the segmented
cortex is geometrically consistent, with a good visual
correlation to the input MR image. Regarding the
SR reconstruction, the contrast between the cortex
and the surrounding tissues seems higher in the SR
image than in the LR one, even in the axial slices,
where the resolution is however not modified between
LR and SR. Globally, these qualitative experiments
on Epirmex tend to corroborate the quantitative ones
carried out on dHCP and to suggest that the proposed
method is indeed relevant both for reconstruction and
segmentation in the context of real, clinical data anal-
ysis.

Due to the lack of ground-truth both for segmention
and SR reconstruction, we can rely neither on Dice
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Table 7: Mean number of connected components (NCC) computed
from 7 Epirmex images.

Step 30 | 50 | 80 128

NCCwith 01 35 | g6 | 387
data augmentation

NCCwithout 401 5 | 105 | 729
data augmentation

nor on SSIM and PSNR for assessing the quality of the
results on Epirmex. From a topological point of view,
it is however possible to assess the structural quality
of the segmented cortex, that is assumed to be fully
connected.

In particular, the results stated in Table 7 confirm
those previously obtained on dHCP (see Table 6).
Indeed, one can observe that, in case of patch overlap-
ping, the number of connected components is better
when training with data augmentation. However, the
highest difference between this two trainings occurs
when the algorithm is used without patch overlapping
(i.e. with a step of 128).

Similarly to the experimental results obtrained on
dHCP the evolution of the number of connected com-
ponents with respect to the step value argues in favour
of reducing as much as possible the step for improving
the topological coherence of the segmented cortex. In
particular, on Epirmex, the sensitivity of NCC to the
number of steps is higher than with dHCP. This can
be easily explained by the lower quality of the data,
that tends to induce erroneous disconnections, par-
tially avoided by increasing patch overlapping.

5. Conclusion

In this article, we have proposed a new methodolog-
ical and software solution for performing SR recon-
struction and segmentation from complex 3D MR im-
ages. Our framework, based on generative adversar-
ial networks has been described in details, both from
theoretical and technical points of view. In particular,
a free, documented software version is available, for
dissemination to the scientific and clinical communi-
ties and for the sake of reproducibility of the results.

Although our purpose was not to carry out a compar-
ative work with other methods (we do not claim the
superiority of our method, but its usefulness in cer-
tain contexts), we have proposed a consequent exper-
imental analysis in the case of cortex investigation in
the neonate. This experimental analysis, carried out
on both research and clinical datasets, and from qual-
itative and quantitative points of view, tend to prove



(c) Segmented image (cortex)

Figure 15: (a) LR image from the Epirmex dataset. (b) SR reconstructed image obtained from (a). (c) Segmentation of the cortex obtained from

(a).

the relevance of our approach, with satisfactory re-
sults both in terms of SR reconstruction and segmen-
tation. Of course, the proposed approach is not spe-
cific to the cortex, and it could also be used for other
kinds of cerebral structures in MRI. Our first perspec-
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tive indeed will consist of processing large image co-
horts for automatically extracting regions of interest,
in a clinical context.

From a methodological point of view, we will more
deeply investigate the trade-off between computa-



tional cost and result quality, in particular with respect
to data variability within MR image cohorts. In this
context, we will also experimentally assess the vari-
ous consequences on data augmentation with respect
to usual features likely to degrade MR image quality,
namely noise, signal bias, contrast heterogeneity, or
movement artifacts.
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