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Abstract—Future communication networks will be faced with
supporting highly mobile, heterogeneous (including aerial) de-
vices, which calls for new and efficient resource allocation policies
that are able to adapt on-the-fly to the network dynamics while
relying on little and possibly outdated information. The aim of
this paper is twofold: to explicitly take into account the device
mobility, their network connectivity patterns and behavior (which
may be completely arbitrary and unpredictable); and to greatly
reduce the information required at the transmitter. For this, we
exploit the framework of online optimization and exponential
learning to derive a provably efficient and gradient-free online
power allocation algorithm relying only on a scalar-worth of
feedback.

Index Terms—Highly mobile devices, arbitrarily time-varying
networks, online optimization, zeroth-order feedback

I. Introduction

Mobility is expected to become one of the major challenges
in future communication networks due to ambitious objectives
such as ubiquitous 3D connectivity, unmanned aerial vehicles
(UAVs) and flying devices communication, very low latency,
and battery-free communications [1, 2]. This creates the need
of designing flexible, efficient and adaptive resource allocation
algorithms capable of coping with the underlying network
dynamics and unpredictability while relying on little and
strictly causal feedback information.

The wide literature on resource allocation problems in wire-
less networks so far relies (for the most part) on either static
[3–5] or stochastic [6–8] models and on strong assumptions on
the information available at the transmitter (e.g., perfect chan-
nel state information in the form of the signal-to-interference-
plus-noise ratio (SINR) in each band, gradient feedback). The
main aim is to derive efficient algorithms that converge to
an optimal fixed or steady state. However, in highly dynamic
networks that can evolve in an arbitrary and unpredictable way
there is no fixed solution state to converge to and disposing
of significant amount and non-causal information at the device
end is no longer realistic.

Online resource allocation algorithms have been recently
proposed in [9–12] exploiting the online optimization and
regret minimization framework [13, 14]. These works inves-
tigate various system models and problems: rate or energy-
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efficiency maximization in multi-antenna (MIMO) or multi-
carrier interference networks. The derived algorithms have the
advantage of relying on strictly causal information, without
any assumptions on the dynamics that governs the network
evolution, which can even be non-stationary. Moreover, they
provably attain no regret, meaning that their performance is at
least as good as the best fixed policy in hindsight (i.e., having
non-causal knowledge of the network’s entire evolution).

Nevertheless, the above online algorithms have in common
the (potentially large) amount of feedback information re-
quired, i.e., either the perfect or noisy version of the gradient at
each iteration (which can be a vector or matrix). In this paper,
we investigate the power allocation problem over multiple fre-
quency bands in a distributed and dynamic network composed
of multi-user interfering links. Each mobile device wishes to
optimize its power consumption while taking into account a
minimum quality of service (QoS) constraint. The aim of our
work is twofold: to explicitly take into account the device
mobility, their network connectivity patterns and behaviour,
which may be completely arbitrary and unpredictable; and to
greatly reduce the information required at the transmitter.

Our main contributions can be summarized as follows.
Building on the exponential learning algorithm in [12], we
propose a novel gradient-free online power allocation algo-
rithm that only requires scalar feedback, i.e., the value of the
objective function. Based on this feedback, we derive a one-
point stochastic estimator of the gradient [8, 13, 14], which,
however, leads to quite challenging feasibility issues in our
setting. We tackle these issues by appropriately modifying the
exponential mapping step in [12] to fit a shrunk version of
the feasible set. Our resulting algorithm is shown to reach no
regret at a rate of O(T−1/4). This decay rate is slower than the
one of its gradient-based counterpart (O(T−1/2)), highlighting
the tradeoff between the amount of available information and
the speed of reaching no regret.

II. Online Optimization Problem and Framework

We consider a system composed of M transmitters and N re-
ceivers communicating over S orthogonal bands as illustrated
in Fig. 1: each device transmits to only one intended receiver,
but a given receiver may decode several incoming signals.

Since we aim at devising a distributed policy that needs
no central controller, we focus on one particular transmitting-
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Fig. 1. System composed of five mobile devices (D11, D12, etc.) and two
base stations (BS1, BS2). The blue arrows represent the direct links while the
red (double-lined) ones are interfering links.

receiving pair. The received signal for the (arbitrarily chosen)
focal device becomes:

rs(t) = hs(t)xs(t) +
∑

j
hs

j(t)xs
j(t) + zs(t), (1)

where s ∈ {1, . . . , S } is the band index; xs(t) is the transmitted
signal; hs(t) is the direct channel gain between the focal
transmitter and its receiver; xs

j is the transmitted signal of
interferer j; hs

j(t) is the interfering channel gain between device
j and the focal receiver; and zs(t) is the received noise.

We also define the effective channel gain vector w(t) =

(ws(t)) with ws(t) the effective gain in band s:

ws(t) ,
gs(t)

σ2 +
∑

j gs
j(t)ps

j(t)
, ∀s, (2)

where σ2 is the variance of the noise zs(t); ps
j(t) is the trans-

mitted power by interferer j; gs
j(t) = |hs

j(t)|
2 and gs(t) = |hs(t)|2

in band s. For simplicity, we assume that the receiver employs
single-user decoding (SUD), meaning that, when decoding
a transmitted signal, the other incoming signals are treated
as noise. This is relevant in distributed and energy-limited
networks, in which the receivers may not afford to sequentially
process and decode their incoming signals and the transmitting
devices may not be coordinated.

The problem under investigation is the tradeoff between
power minimization and QoS requirement, captured by the
following loss function:

Lt(p) =

S∑
s=1

ps + λ
[
Rmin − Rt(p)

]+ (3)

where p = (p1, . . . , pS ) represents the power allocation vector
of the focal device with component ps representing the power
allocated to the s-th band. The first term in the objective
is the overall power consumption and the second term is a
soft-constraint (or penalty) term, which is activated whenever
the minimum target rate Rmin is not achieved. Finally, Rt(p)
denotes the well-known Shannon rate:

Rt(p) =

S∑
s=1

log(1 + ws(t)ps) (4)

and [x]+ , max{x, 0}, meaning that no penalty is applied when
the achieved rate is greater than the threshold Rt(p) ≥ Rmin.

We choose a linear penalty function for its relevance to
communications [15, 16] and to simplify the presentation.

To sum up, the online optimization problem under study
can be stated as:

minimize Lt(p(t))
over p(t) = (p1(t), . . . , pS (t))
subject to p j(t) ≥ 0, ∀ j ∈ {1, . . . , S }∑S

s=1 ps(t) ≤ P̄ .

(5)

Regarding the constraints, they are physical hard constraints
as opposed to QoS requirements, and can never be violated:
the first is the positivity of the transmit powers; and the second
is the maximum available power constraint.

The particularity of the problem above lies in the fact that
the objective function Lt(p) may vary in a non-stationary and
unpredictable way. The focal device cannot determine a priori
the best optimal power allocation at each time t. Nevertheless,
we assume that the device receives some feedback after each
transmission, i.e., the past experienced objective value. The
main idea in online optimization is to exploit this strictly
causal information to build a dynamic and adaptive power
allocation policy p(t) - henceforth called an online policy -
that minimizes as much as possible the time-varying objective
function Lt(p(t)).

In order to evaluate the performance of a given online policy
p(t), the most commonly used notion is that of the regret [13,
14], which compares its performance in terms of loss with a
benchmark policy, i.e., the fixed strategy that minimizes the
overall objective over a given horizon T :

Reg(T ) ,
1
T

 T∑
t=1

Lt(p(t)) −min
q∈P

T∑
t=1

Lt(q)

 , (6)

where P ,
{
p ∈ �S

+

∣∣∣∑S
s=1 ps ≤ Pmax

}
denotes the feasible set.

Otherwise stated, the regret measures the performance gap
between a power allocation policy p(t) and the best mean
optimal solution over a fixed horizon T . If the regret is
negative, then the dynamic policy p(t) outperforms the best
mean optimal solution overall. To quantify this, the policy p(t)
is said to lead to no regret if lim sup

T→∞
Reg(T ) ≤ 0.

Remark that the actual computation of the benchmark policy
requires the non-causal knowledge of the evolution of the
objective throughout the time horizon T in hindsight, before
the transmission actually takes place. Therefore, the design of
dynamic policies that reach no regret while relying on strictly
causal and local information is a non-trivial goal.

III. One-point Gradient Estimation

The existing online resource allocation policies [9–12], re-
quire a vector (in multi-carrier OFDM systems) or a matrix (in
MIMO systems) feedback representing the perfect or imperfect
gradient of the objective function: at decision instant t + 1, the
available feedback is either ∇Lt(p(t)) or a noisy version of it.

In this work, one of our main objectives is to reduce
the amount of required information to be fed back to the
transmit devices. More specifically, we assume that the devices
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know only the value of the experienced objective function:
at decision instant t + 1, the available feedback is the value
Lt(p(t)). This means that only a single scalar is needed at
the transmitting device – a major advantage in feedback-
limited and highly dynamic networks, where the acquisition
of network information (e.g., channel state) required for the
gradient computation becomes difficult.

To develop an online policy p(t) that leads to no regret,
we start by estimating the gradient of the objective based
only on its value, the so-called one-point estimation. For
this, we exploit the simultaneous stochastic approximation
technique, based on randomly sampling the objective function
in a neighbourhood of the power policy p(t) [13, 14, 17, 18].

We illustrate this idea on a particular directional derivative
of Lt(p) along the unit vector x, denoted by ∇xLt(p):

∇xLt(p) = lim
δ→0

Lt(p + δx) − Lt(p − δx)
2δ

. (7)

To estimate this derivative, we randomly sample the objective
function around the point p in the direction x by drawing
a Bernoulli distributed random variable u ∈ {−1,+1} with
equal probability. The expectation of these samples w.r.t. the
randomness of u is

�
[
Lt(p + δux)u

]
=

Lt(p + δx) − Lt(p − δx)
2

. (8)

From (7) and (8), we observe that

�

[
Lt(p + δux)u

δ

]
≈ ∇xLt(p). (9)

Since the above is satisfied with equality only in the limit when
δ→ 0, the quantity Lt(p+δux)u/δ represents an approximation
(possibly biased) of the directional derivative of Lt(p) with
respect to x.

This principle can be extended to build the following
gradient estimate:

ṽ(t) =
S
δ

Lt (p(t) + δu(t)) u(t), (10)

where u(t) is uniformly taken over the unit Euclidean sphere
{u ∈ �S | ||u(t)||2 = 1} [13].

Recently, this approach has been exploited in [8] to estimate
the gradient of the objective function in the context of a
different stochastic (not online) optimization problem. Aside
from this, another major difference is that the network users in
[8] are assumed to communicate and coordinate their policies
to maximize a common overall utility function, as opposed to
our distributed approach.

A major rising issue of such approaches is that they do
not account for the fact that the random sample point p(t) +

δu(t) may be unfeasible. In our power allocation problem, this
would imply that the transmit power vector p(t) + δu(t) may
fall outside P, which cannot be permitted (given the physical
power positivity and maximum available power constraints).
To tackle this crucial issue, we define a shrunk version of the
feasible set:

Pδ =

pδ ∈ �S

∣∣∣∣∣∣∣ ps
δ ≥ δ,

S∑
s=1

ps
δ ≤ P̄ −

√
S δ

 , (11)

PPδ

•
pδ(t)

•

pδ(t) + δu(t)

Fig. 2. The shrunk set Pδ ensures that the random point pδ + δu sampling
the objective function to estimate the gradient remains in the feasible set P.

which guarantees that for any δ-perturbation of its components
pδ(t) ∈ Pδ, the resulting policy is feasible: pδ(t) + δu(t) ∈ P,
as illustrated in Fig. 2.

IV. Zeroth-order Feedback Online Algorithm

As a building block for our algorithm, we exploit the
exponential learning approach inspired from the multi-armed
bandit framework and adapted to continuous sets of choices
[13]. These algorithms have shown their potential in different
online resource allocation problems [9, 11, 12] and their main
drawback is their reliance on the gradient feedback, which is
precisely what address here.

The exponential learning algorithm adapted to the problem
at hand (5) can be summarized in two steps. First, the device
transmits using p(t) by mapping an inner cumulative score y(t)
into the feasible set P using a judiciously chosen exponential
map. Second, as a result of the transmission, the gradient v(t)
is obtained, which is used to update the cumulative score.

ps(t) = P̄ exp (ys(t))

1 +
∑S

i=1 exp (yi(t))
, ∀s,

v(t) = ∇Lt(p(t)),
y(t + 1) = y(t) − µ v(t),

(OXL)

where µ is the step-size parameter. This algorithm falls in the
class of online gradient descent methods such as the Euclidean
projected gradient descent algorithm in [19]. Similarly to [11,
12], we can show that this algorithm leads to no regret in our
setting and that the regret vanishes as O(T−1/2) (when either
the perfect gradient v(t) or its noisy version is available).

In order to exploit the gradient estimation in Sec. III
instead of the actual gradient v(t), we need to adapt the
exponential step above to the shrunk set Pδ defined in (11).
For this, we introduce a novel exponential mapping: Qδ(y(t)) ,
(p1

δ(t), . . . , pS
δ (t)) such that

ps
δ(t) , δ + P̄ (1 −Cδ)

exp(ys(t))
1 +

∑S
i=1 exp(yi(t))

, ∀s (EXP0)

where Cδ = δ
P̄ (S +

√
S ) and δ ≤ P̄

S +
√

S
.
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Our novel algorithm exploiting (OXL) jointly with the one-
point estimation of the gradient in Sec. III can be summarized
as

pδ(t) = Qδ(y(t)),
ṽ(t) = S

δ
Lt (pδ(t) + u(t)) u(t),

y(t + 1) = y(t) − µ ṽ(t),
(OXL0)

where ṽ(t) represents the biased estimate of the gradient. For
implementation details, see OXL0 algorithm below. Regarding
the complexity, each iteration t is linear in the problem
dimensionality S , the number of bands over which the focal
device transmits. Hence, given that S is not expected to
grow large (a given device transmits on a small subset of
the total number of bands available to the entire network),
the OXL0 algorithm is particularly appealing for distributed,
device-centric networks.

Since the online policy pδ(t) +δu(t) depends on the random
vector u(t), the regret in (6) will also depend on this random-
ness. To take this into account, we study the average regret
�[Reg(T )] instead, where the expectation is taken over the
randomness of the estimator, and prove that algorithm OXL0
leads to no regret.

Theorem 1. If the OXL0 algorithm is run with constant
parameters δ and µ then the average regret is bounded by:

�[Reg(T )] ≤
P̄ log(1 + S )

2µ
+ µTS 2

(B
δ

+ K
)2

+ KTδ
(
3 + P̄

(
S + 2

√
S
))
. (12)

where K is the Lipschitz constant and B is the maximum value
of the objective Lt(·). Moreover, by choosing the parameters δ
and µ as follows

δ∗ =
P̄

(S +
√

S )T 1/4
(13)

µ∗ =

√
P̄ log(1 + S )

2T

[
S

( B
δ∗

+ K
)]−1

, (14)

then OXL0 leads to no regret and the average regret vanishes
as O(T−1/4).

Algo. 1 Gradient-free Online Exponential Learning (OXL0)
Parameters: µ > 0; 0 < δ ≤ P̄/(S +

√
S ).

Initialization: y(0)← 0; t ← 0.
Repeat

{ Pre-transmission phase: }
Update pδ(t)← Qδ(y(t)) defined in (EXP0)
Draw a random u(t) uniformly from the unit-sphere
{ Transmit at pδ(t) + δu(t) }
{ Post-transmission phase: receive feedback Lt(pδ(t) + δu(t)) }
Compute the gradient estimation ṽ(t) = S

δ
Lt(pδ(t) + δu(t)) u(t)

Update scores y(t + 1)← y(t) − µ(t) ṽ(t)
t ← t + 1
until transmission ends

The proof is omitted because of the limited space. Re-
garding the constants B and K, a short calculation shows

that they depend only on readily available system parameters:
B = S P̄ + λRmin, K = 1 + 2λRmin. Notice that the upper bound
in (12) grows linearly in T , unless a careful choice of the two
parameters µ and δ is made.

Tuning the parameters µ and δ: The step-size µ impacts
the sensitivity of the algorithm to variations in the power pol-
icy. When µ is large, a small variation in the score y(t) results
in large variations and oscillations in the power allocation. At
the opposite, a small µ leads to smaller variations in the power
allocation. Both extremes imply a long time for the regret to
reach zero.
The parameter δ represents the sampling radius around the
power policy pδ(t). When tuning it, there is again a trade-off

to be made between the precision of the gradient estimate and
its variance. By reducing δ, the device reduces the distance to
pδ(t) and the estimator gains in precision. But since the device
only has access to one value of this estimate, reducing δ also
increases the variability of the estimator (9).
By choosing µ∗ and δ∗ as in (13) and (14) allows us to
minimize the upper bound in (12) and to show the no regret
property of OXL0.

A rising issue is that the devices need to know their
transmission horizon T in advance to optimally choose the
parameters µ∗ and δ∗. This issue can be overcome by ex-
ploiting for instance the so-called doubling trick [13]. This
basically amounts to running the OXL0 algorithm sequentially
over known and doubling windows (enabling the device to
optimally tune the parameters in each window) until the
transmission ends. By doing so, similar theoretical guarantees
(up to a multiplicative constant factor) can be provided in
terms of regret.

From Theorem 1, we remark that the regret decays slower to
zero, as O(T−1/4), when only the scalar value of the objective
function is fed back to the device, as opposed to O(T−1/2)
when the gradient (either perfect or noisy) is known. This
highlights the tradeoff between the speed at which the online
algorithm reaches the performance of the optimal benchmark
and the available information.

V. Numerical results

We consider a network composed of M = 10 interfering
devices communicating to a common receiver N = 1 over
S = 4 frequency bands (unless otherwise specified). The
channels are generated according to the COST-HATA model
[20], including pathloss, fast fading and shadowing effects
[21]. The system bandwidth is 10 MHz centered at fc = 2
GHz. The speed of the mobile devices is chosen arbitrarily
between 0 km/h and 130 km/h, accounting for a wide variety
of wireless mobile devices (smartphones, wearable, pedestrian,
vehicle etc.). The minimum rate requirement Rmin ∈ [0.5, 3]
bps/Hz, the available power budget P̄ ∈ [0.5, 2] W, and the
parameter λ ∈ [0.5, 10], also differ from one device to another.
The parameters µ = 10−3 and δ = 0.05 are empirically tuned.

Fig. 3 illustrates the impact of having a scarce or imperfect
feedback and the impact of the problem dimensionality S .
Fig. 3(a) shows that having an imperfect (a noisy estimated)
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Fig. 3. Impact of feedback amount and problem dimensionality. The average
regret of OXL0 algorithm decays slower than that of OXL algorithm (because
of estimating a gradient of higher dimension from a scalar value).

gradient feedback does not influence significantly the regret
decay rate compared with the perfect gradient case. However,
this is no longer true when the only information available at
the device end is a single scalar. The average regret of the
OXL0 algorithm decays slower compared with the gradient-
based OXL algorithm. Finally, Fig. 3(b) illustrates the average
regret of OXL0 algorithm for different values of the problem’s
dimensionality S ∈ {1, 2, 4}. In all cases, the average regret
decays to zero; however if the number of available bands
increases, the variance of the estimator ṽ(t) also increases.
As a result, the quality of the estimator decreases leading to
a reduced decay rate of the average regret.

VI. Conclusions

We propose a novel online power allocation algorithm
that explicitly takes into account the network dynamics and
unpredictability, while relying only on a scalar and strictly
causal feedback information, i.e., the value of the objective
function (as opposed to gradient-based methods). We use a
stochastic approximation technique to derive an estimation of
the gradient based on one random sample of the objective

function. This random sampling leads to a non-trivial feasi-
bility issue, which we overcome by appropriately shrinking
the feasible set. In so doing, we derive a novel exponential
learning algorithm provably achieving no regret.
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