A variational finite volume scheme for Wasserstein gradient flows - Archive ouverte HAL
Article Dans Une Revue Numerische Mathematik Année : 2020

A variational finite volume scheme for Wasserstein gradient flows

Résumé

We propose a variational finite volume scheme to approximate the solutions to Wasserstein gradient flows. The time discretization is based on an implicit linearization of the Wasserstein distance expressed thanks to Benamou-Brenier formula, whereas space discretization relies on upstream mobility two-point flux approximation finite volumes. Our scheme is based on a first discretize then optimize approach in order to preserve the variational structure of the continuous model at the discrete level. Our scheme can be applied to a wide range of energies, guarantees non-negativity of the discrete solutions as well as decay of the energy. We show that our scheme admits a unique solution whatever the convex energy involved in the continuous problem , and we prove its convergence in the case of the linear Fokker-Planck equation with positive initial density. Numerical illustrations show that it is first order accurate in both time and space, and robust with respect to both the energy and the initial profile.
Fichier principal
Vignette du fichier
CGT_LJKO.pdf (1.14 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02189050 , version 1 (19-07-2019)
hal-02189050 , version 2 (19-03-2020)

Identifiants

Citer

Clément Cancès, Thomas Gallouët, Gabriele Todeschi. A variational finite volume scheme for Wasserstein gradient flows. Numerische Mathematik, 2020, 146 (3), pp 437 - 480. ⟨10.1007/s00211-020-01153-9⟩. ⟨hal-02189050v2⟩
280 Consultations
292 Téléchargements

Altmetric

Partager

More