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We develop the first algorithm able to jointly compute the maximum a posteriori estimate of the Cosmic
Microwave Background (CMB) temperature and polarization fields, the gravitational potential by which
they are lensed, and the tensor-to-scalar ratio, r. This is an important step towards sampling from the joint
posterior probability function of these quantities, which, assuming Gaussianity of the CMB fields and
lensing potential, contains all available cosmological information and would yield theoretically optimal
constraints. Attaining such optimal constraints will be crucial for next-generation CMB surveys like
CMB-S4, where limits on r could be improved by factors of a few over currently used suboptimal quadratic
estimators. The maximization procedure described here depends on a newly developed lensing algorithm,
which we term LenseFlow, and which lenses a map by solving a system of ordinary differential equations.
This description has conceptual advantages, such as allowing us to give a simple nonperturbative proof that
the determinant of LenseFlow on pixelized maps is equal to unity, which is crucial for our purposes and
unique to LenseFlow as compared to other lensing algorithms we have tested. It also has other useful
properties such as that it can be trivially inverted (i.e., delensing) for the same computational cost as the
forward operation, and can be used to compute lensing adjoint, Jacobian, and Hessian operators. We test
and validate the maximization procedure on flat-sky simulations covering up to 600 deg2 with nonwhite
noise and masking.

DOI: 10.1103/PhysRevD.100.023509

I. INTRODUCTION

Weak gravitational lensing of the Cosmic Microwave
Background (CMB) by an intervening large scale structure
plays and will continue to play a crucial role in the ability of
cosmological observations to constrain fundamental physics.
For example, the gravitational lensing effect already allows a
completely independent confirmation of the existence of
dark energy from the CMB alone [1], and future experiments
such as CMB-S4 are predicted to map out the gravitational
lensing potential field,ϕ, precisely enough tomeasure for the
first time the absolute neutrino mass scale and potentially
differentiate the two possible mass hierarchies [2]. Awealth
of cosmological and astrophysical information can also be
extracted from these lensing potential maps in cross corre-
lation with other datasets (see, e.g., [3]).
The most profound impact from CMB lensing on our

understanding of the Universe, however, may come not

from measuring the effect, per se, but rather from our
ability to remove it. Lensing aliases E-mode polarization
into B-modes, which can obscure the primordial B signal
expected to come from gravitational waves produced
during inflation. Due to its unique signature, it is possible
to undo the lensing effect, a process usually called
“delensing”. This will be crucial to placing the tightest
possible constraints on the amplitude, r, of the gravitational
wave B-modes. If detected, the primordial signal would
offer an unprecedented window into the extremely early
Universe and to energy scales impossible to probe with
terrestrial particle accelerators.
Delensing of both T and E can also be useful as it leads

to a sharpening of the acoustic peaks. This in turn makes it
easier to measure their phase and could lead to detecting
or ruling out the presence of extra species of relativistic
particles in the Universe [4].
Despite the important role delensing is expected to play

in future CMB constraints, currently no workable fully
optimal delensing algorithm exists. To date, all delensing
analyses on real data have been based on a quadratic
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estimate of the lensing potential [5,6]. While the quadratic
estimator is nearly optimal at current noise levels, it will
become significantly suboptimal once noise levels cross
below the ∼5 μK-arcmin effective noise level of the lensing
contribution (exactly when delensing becomes most impor-
tant). The suboptimality of the quadratic estimate stems
from the fact that the total B-mode power is a source of
noise for the estimator, meaning the results can be
improved by repeatedly using the lensing potential estimate
to delense the data and then reestimating the lensing
potential. Such iterative delensing algorithms have been
discussed in some form in, e.g., [7–10].
Two concrete iterative delensing examples which can be

considered precursors to our work have been given by
[11,12]. In a similar manner to iterating a quadratic
estimate, both of these algorithms iteratively maximize
the Bayesian posterior probability Pðϕjd; rÞ, where ϕ is the
lensing potential and d is the CMB temperature and
polarization data.1 In terms of the end product, the two
differ largely in that the latter algorithm computes the exact
maximum and was demonstrated to be robust even in the
presence of masking.
These works greatly improve the optimality of the lensing

reconstruction and represent key advances in CMB lensing
analysis. However, neither estimate is exactly optimal (the
posterior mean of ϕ being the optimal estimate with respect
to the mean squared error), and neither readily produces an
estimate of an unlensed map nor of r. Indeed, since the
temperature and polarization fields themselves are implicitly
marginalized over in Pðϕjd; rÞ, unlensed fields are not
estimated at all by these procedures. The resulting best-fit
ϕ could be used to delense the data, but as we will discuss,
this resulting delensed data does not have any Bayesian
interpretation. The delensed map could be taken as an
estimator, but would still require simulations to debias and
quantify uncertainty, similarly as for the quadratic estimate
but with a more costly procedure to simulate. More impor-
tantly, it is not entirely clear how to do this at all because these
simulations would depend on r, the quantity we are trying to
estimate in the first place. Indeed, in their stated form both
algorithms take r as given, rather than jointly estimating it or
marginalizing over it.
A conceptually straightforward solution to these issues

which would yield optimal constraints on all of these
quantities is to obtain samples from the joint Bayesian
posterior probability function, Pðf;ϕ; rjdÞ, including both
the unlensed fields, f ≡ ðT;Q;UÞ, and the tensor-to-scalar

ratio, r. Here, we present the first algorithm which is able to
efficiently maximize this probability distribution, an impor-
tant advancement towards the ultimate goal of obtaining
samples. Additionally, the best fit computed here can be
used as an initialization for a sampler, and we expect that
a good starting point will be important due to the high
dimensionality of the problem (the number of dimensions
here being the number of map pixels, which can be in the
millions). Although we do not expect joint sampling to be
without challenges, it has already been demonstrated on
temperature-only data by [13], and we view the techniques
developed here as having solved themore difficult aspects of
the problem of extending to polarization. We leave full
discussion of samplingwith temperature and polarization for
a follow-up work, here discussing mainly maximization.
The results here also differ from [13] by exploring r as a

free parameter. In some sense it is quite easy to maximize
over r, since we can trivially parallelize the maximization
over f and ϕ across a grid of r values. Doing so, we will
show that the maximum a posteriori (MAP) estimate of r in
this joint case is always zero. Thus, while we demonstrate
we are able to maximize the posterior over r, the resulting
best fit is not useful for cosmological parameter inference.
We will thus focus most of our discussion on Pðf;ϕjd; rÞ.
As opposed to exact maximization of Pðϕjd; rÞ which

was solved by [12], maximization of Pðf;ϕjd; rÞ is more
difficult not just because of the increased dimensionality of
the problem, but because f is highly correlated with ϕ.
Intuitively, this is simply because an observed hot spot at
some position could be a true hot spot there with no lensing,
or a nearby hot spot deflected to that position by lensing.
This degeneracy leads to extremely slow convergence
unless the correlations are carefully taken into account.
We find an advantageous way to do so is to reparametrize
the posterior probability function in terms of the lensed
fields (denoted by f̃) instead of the of the unlensed ones,
similarly as in [13]. This greatly reduces the correlations,
but the change of variables introduces a complicated
determinant term in the posterior probability which
depends on ϕ. Having to calculate this quantity might
render the reparametrization ultimately useless in practice.
However, we are able to propose and validate an approxi-
mation to this reparametrized posterior which does not
contain such a complicated determinant term. The proof
relies on a new and accurate pixelized lensing approxima-
tion which we have developed called LenseFlow, which has
the crucial property of having the unit determinant.
We use this in a maximization algorithm that can be

regarded as an approximate coordinate descent, meaning
we alternate updating f̃ with ϕ held constant then updating
ϕ with the f̃ held constant. The former step amounts to a
straightforward Wiener filter, and the latter step can be
approximated with a quasi Newton-Raphson step. As we
will show, a fundamental advantage of the lensed para-
metrization (in addition to reducing correlations), is that it

1These algorithms actually produce estimates of the full
lensing displacement vector field, not just of ϕ which gives only
the curl-free part in the Helmholtz decomposition of the dis-
placement. For simplicity, we will ignore the divergence-free
component throughout this work as it is expected to be too small
to significantly impact the ϕ reconstruction at CMB-S4 noise
levels [11], but it is straightforward to introduce it in our
equations alongside ϕ.
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removes all explicit dependence on data or instrument from
this latter step. These two steps are repeated until con-
vergence to the exact joint posterior maximum, which,
depending on the exact data configuration and complexity
of masking, we can achieve in 30 minutes to tens of hours
on a single multicore CPU for maps as large as ∼600 deg2

(with 3 arcmin pixels).
By contrast, the maximization procedure described in

[12] is computationally much more costly due to the
calculation of a determinant gradient term. We will discuss
why our seemingly complicating addition of jointly esti-
mating f actually makes the problem computationally
easier, and what the trade-off has been in not computing
this determinant. Furthermore, we will argue that even if
one was only interested in posterior samples of r, it will still
be computationally simpler to obtain them by sampling the
joint posterior rather than the one marginalized over f.
The maximization makes use of exact posterior gra-

dients, which are computable with LenseFlow. We show
that even though Hessians of the posterior can not be stored
in practice, their action on vectors can be efficiently
calculated, a fact which is perhaps not widely appreciated.
Although we do not use them here, Hessians could be quite
beneficial to sampling algorithms.
Our code is available publicly.2 It is written in the Julia

programming language [14], making it fast while main-
taining flexibility and readability. The link also contains a
Jupyter notebook with a 128 × 128 pixel maximization
example which completes in around two minutes on a
modern laptop.
We begin the paper by deriving the joint Bayesian

posterior in Sec. II and discussing how it is related to
the marginalized posterior in Sec. II A. We then derive the
coordinate descent equations for the joint posterior maxi-
mization in Sec. III. We develop LenseFlow, its gradients,
as well as the proof that its determinant is unity in Sec. IV.
We show results on simulated data in Sec. V. The results are
broken into several parts for clarity of presentation, first
with only Fourier-space masking in Sec. VA, next with
map-level masking as well in Sec. V B, and then with r
included as a free parameter in Sec. V C. Finally, we revisit
and validate a posterior approximation (used in earlier
sections) in Sec. VI and numerically verify the determi-
nants of some lensing algorithms in Sec. VII.

II. THE JOINT POSTERIOR PROBABILITY

To start, we derive the target probability function that we
seek to maximize in this work, mainly the joint posterior
probability of the unlensed CMB, the CMB gravitational
lensing potential, and the cosmological parameters.
Briefly summarizing our notation, we use ϕ for the

gravitational lensing potential and f to describe a CMB

field such as the temperature, T, or a tuple including
polarization Stokes parameters, such as ðQ;UÞ or
ðT;Q;UÞ. Lensed fields are denoted with a tilde, f̃.
Quantities like f̃, f, or ϕ should be thought of as abstract
vectors, meaning they can be added and scaled without
need to reference the basis in which they are represented.
Indeed, most of our equations are written without reference
to basis; at the few points where it is necessary to do so, we
use fðxÞ or fðlÞ to refer to the real-space or Fourier basis.
We use the notation f†g to denote the inner product
between fields f and g, which is defined to be a sum over
products of corresponding temperature and polarization
pixels in f and g. Linear operators on this resulting Hilbert
space will be “blackboard” characters, e.g., L, and adjoint
operators, L†, are defined as usual by the property that
f†ðLgÞ ¼ ðL†fÞ†g for all f and g. We often use L−† as
shorthand for the inverse then adjoint of the operator.
We model the data as,

d ¼ PLðϕÞf þ n: ð1Þ

Here, LðϕÞ is the lensing operation, P is a pixelization
operator which takes the infinite resolution lensed field,
f̃ ≡ LðϕÞf, and pixelizes it down to the data resolution, and
n is the noise contribution. For now, we neglect explicitly
writing the beam, instrumental transfer functions, and
masking, although they can straightforwardly be included
by considering them as part of the P operator. We include
these effects in our simulations and corresponding meth-
odology later in Sec. V.
Assuming the noise is a Gaussian random field with

covariance Cn, the likelihood of the data is, up to an
irrelevant normalization constant,

− 2 logPðdjf;ϕÞ
¼ ½d − PLðϕÞf�†C−1

n ½d − PLðϕÞf�: ð2Þ

By Bayes theorem, the posterior probability of f, ϕ, and
of any cosmological parameters, θ, is proportional to this
likelihood times a prior Pðf;ϕ; θÞ,

− 2 logPðf;ϕ; θjdÞ ¼ −2 logPðdjf;ϕÞ − 2 logPðf;ϕ; θÞ
¼ ½d − PLðϕÞf�†C−1

n ½d − PLðϕÞf�
þ f†CfðθÞ−1f þ log detCfðθÞ
þ ϕ†CϕðθÞ−1ϕþ log detCϕðθÞ: ð3Þ

One is entirely free to chose the prior function to be as
informative or uninformative as desired, although some-
thing about f must be specified for a posterior constraint of
ϕ to be produced. Here we adopt the prior that both f and ϕ
are independent Gaussian random fields with covariance
given byCf andCϕ, respectively, each of whichmay depend
on some set of cosmological parameters, θ. We ignore any2https://www.github.com/marius311/CMBLensing.jl.
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prior correlation between f and ϕ, the most dominant
expected contribution being at large scales in temperature
due to the late-time integrated Sachs-Wolfe effect. It is
straightforward to include this in (3), but we have not done
so for simplicity and since it is likely too small tomatter at the
scales probed by the patches of sky considered here.
Additionally, as mentioned in [12], using a Gaussian prior
on ϕ (and in our case, f) does not outright erase from the
reconstruction any non-Gaussianities that may be present in
f and/or ϕ from various higher order effects. However, it
does mean the posterior itself is formally incorrect if non-
Gaussianities exist, since it incorporates a prior that assumes
otherwise; the correct way to include them would be to
forward model them in some form as part of the prior. At
noise levels achievable in the near future, these non-
Gaussianities must be accounted for [15,16], although
how exactly to construct the necessary prior term is an open
question and beyond the scope of this work.
Equation (3) is the posterior probability in terms of the

infinite resolution unlensed field, f. What we actually work
with in this paper differs in two ways. First, there is much
less posterior correlation between f̃ and ϕ than there is
between f and ϕ, and it is in fact a necessity to work with
the former parametrization; otherwise, sampling and maxi-
mizing becomes prohibitively difficult. Second, we are,
of course, estimating the lensed field on some pixels, a
quantity which we will denote by f̃p ≡ PLðϕÞf. Noting
that the prior distribution of f̃p at fixed ϕ remains Gaussian
with covariance Σf̃p

≡ PLðϕÞCfðθÞLðϕÞ†P†, its posterior
distribution is similarly straightforward to write from Bayes
theorem,

− 2 logPðf̃p;ϕ; θjdÞ
¼ −2 logPðdjf̃p;ϕÞ − 2 logPðf̃p;ϕ; θÞ
¼ ðd − f̃pÞ†C−1

n ðd − f̃pÞ
þ f̃†pΣ−1

f̃p
ðθ;ϕÞf̃p þ log detΣf̃p

ðθ;ϕÞ
þ ϕ†CϕðθÞ−1ϕþ log detCϕðθÞ: ð4Þ

At first glance, this seems like a difficult posterior to
work with, because Σf̃p

depends on ϕ and is not diagonal in
any simple basis but must both be inverted and have its
determinant calculated. We solve this problem by propos-
ing the following approximation:

− 2 logPðf̃p;ϕ; θjdÞ
≈ ðd − f̃pÞ†C−1

n ðd − f̃pÞ
þ f̃†pL

−†
p ðϕÞCfpðθÞL−1

p ðϕÞf̃p þ log detCfpðθÞ
þ ϕ†CϕðθÞ−1ϕþ log detCϕðθÞ; ð5Þ

where Lp is some pixelized lensing approximation (note the
difference between Lp and L, the latter which refers to the

true lensing operation on infinite resolution). In Sec. VII,
we present a method for proving that this approximation
holds for some given experimental configuration. This
proof rests on developing a new pixelized lensing algo-
rithm, LenseFlow (Sec. IV), which has the property that
log detLpðϕÞ ¼ 0 for any finite pixel resolution. Using this
method, we show that the approximation holds for
CMB-S4-type configurations if we use LenseFlow itself
as Lp in (5). Although we have not checked, it is possible
this method can be used to show other lensing approx-
imations would work as well.
We will thus work with (5) in the rest of this work, and

for clarity drop the subscript p.

A. Relation to marginalized posteriors

In studies where the parameter of interest is ϕ, one may
integrate out the unknown f to obtain the marginal
posterior given by

PðϕjdÞ ¼
Z

dfPðf;ϕjdÞ ð6Þ

(we will drop explicitly labeling θ in this section).
This integral can be done analytically, and it is this

probability distribution which is maximized by the algo-
rithms given in [11,12]. In this section we compare the
differences between this marginal estimate and the one
developed here which maximizes the joint Pðf;ϕjdÞ.
The analytic marginalization over f can be regarded as

an application of the Laplacian approximation method,
which is exact in this case due to the Gaussianity of
Pðfjϕ; dÞ, and which we give here since it also helps
clarify the differences between the two estimates and the
algorithms for computing them. To derive the Laplace
approximation, first notice that for any fixed ϕ the function
f ↦ logPðf;ϕjdÞ is quadratic in f. This implies there
exists a normalization, ZðϕÞ, which makes f ↦ Pðf;ϕjdÞ=
ZðϕÞ a Gaussian probability measure. In particular there
exists f̂ðϕÞ and ΣðϕÞ such that, up to a constant,

−2 log½Pðf;ϕjdÞ=ZðϕÞ�
¼ ½f− f̂ðϕÞ�†ΣðϕÞ−1½f− f̂ðϕÞ�þ logdetΣðϕÞ; ð7Þ

where f̂ðϕÞ ¼ argmaxf logPðf;ϕjdÞ and ΣðϕÞ is the neg-
ative inverse Hessian of f ↦ logPðf;ϕjdÞ. One can explic-
itly compute ΣðϕÞ, f̂ðϕÞ and ZðϕÞ as follows:

ΣðϕÞ ¼ ½LðϕÞ†C−1
n LðϕÞ þ C−1

f �−1 ð8Þ

f̂ðϕÞ ¼ ΣðϕÞLðϕÞ†C−1
n d ð9Þ

ZðϕÞ ¼ detΣðϕÞ12Pðf̂ðϕÞ;ϕjdÞ: ð10Þ
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Bymultiplying and dividingZðϕÞ in (6), while using the fact
that Pðf;ϕjdÞ=ZðϕÞ integrates to 1 over f, the marginal
posterior over ϕ is then given by

PðϕjdÞ ¼ detΣðϕÞ12Pðf̂ðϕÞ;ϕjdÞ

∝
Pðf̂ðϕÞ;ϕjdÞ

det½LðϕÞCfLðϕÞ† þ Cn�12
: ð11Þ

Equation (11) thus shows the marginal posterior on ϕ in the
form of the Laplace approximation.
Now, to distinguish marginal versus joint MAP estimates

we set the following notation:

ϕ̂M ≡ argmax
ϕ

PðϕjdÞ ð12Þ

ϕ̂J ≡ argmax
ϕ

Pðf̂ðϕÞ;ϕjdÞ ð13Þ

f̂M ≡ f̂ðϕ̂MÞ and f̂J ≡ f̂ðϕ̂JÞ; ð14Þ

where ϕ̂M corresponds to the marginal estimate of ϕ and

ðϕ̂J; f̂JÞ ¼ argmax
ϕ;f

Pðf;ϕjdÞ

corresponds to the joint MAP estimate of both ϕ and f.
First notice that ϕ̂M and ϕ̂J are maximizing nontrivially

different objectives, (12) versus (13), so clearly ϕ̂J ≠ ϕ̂M

and hence f̂J ≠ f̂M as well. The fact that these estimates are
different is an explicit manifestation of the non-Gaussianity
of the posterior Pðf;ϕjdÞ, for otherwise marginal and joint
MAP estimates would agree. More importantly, however,
f̂M can not be interpreted as a MAP estimate of the CMB,
but rather as an intermediate variable used for the Laplace
approximation technique of marginalization. This is not to
say that f̂M could not have reasonable sampling properties
as a statistical estimator, but rather that f̂M does not have an
interpretation in the Bayesian framework.
In Sec. III we present an iterative algorithm for

computing ðϕ̂J; f̂JÞ which shares some similarities to
the one given in [12] for computing ϕ̂M. However, the
similarities are largely superficial. While both algorithms
do generate a sequence of iterations …; ðfi;ϕiÞ;… where
fi is defined recursively by a generalized Wiener filter
of the unlensed CMB given the previous ϕi−1, i.e.,
fi ¼ f̂ðϕi−1Þ, important differences arise in how ϕi is
computed. In [12] the update ϕi is computed as the
solution to a stationary equation characterizing the maxi-
mum of (11) with fi in place of f̂ðϕÞ. In contrast, the
algorithm given in Sec. III updates ϕi using the lensed
CMB parametrization ðϕ; f̃Þ and, as such, is computed as
an approximate maximizer of the lensed posterior given
f̃i ¼ Lðϕi−1Þfi ¼ Lðϕi−1Þf̂ðϕi−1Þ. In particular,

ϕi ≈ argmax
ϕ

PðLðϕÞ−1f̃i;ϕjdÞ: ð15Þ

One way to see the impact of this difference is through
the data term − 1

2
ðd − f̃iÞ†C−1

n ðd − f̃iÞ, appearing in
logPðLðϕÞ−1f̃i;ϕjdÞ, which is completely invariant to
changes in ϕ. This allows our algorithm to make large
jumps in ϕ that are completely decoupled from the data
and experimental conditions. Notice that this property also
extends to posterior sampling and results in fast mixing
Gibbs iterations. Indeed, this subtle difference gives a
succinct way to see the key advantage gained when
working with the lensed parametrization ðϕ; f̃Þ versus
unlensed parametrization ðϕ; fÞ.
All of this raises the question: which estimate should one

use, ϕ̂M or ϕ̂J? Technically, neither ϕ̂M nor ϕ̂J is optimal
with respect to the mean squared error (the marginal
expected value being the optimal in that case); the remain-
ing suboptimality can reasonably be expected to be small;
however, we have not checked this here and leave this to
future work. We will see in Sec. V B that there are some
apparent advantages to working with ϕ̂M in that the extra
determinant term in (11) automatically removes a “mean
field” which becomes large in the presence of pixel space
masking. On the other hand, if one wishes to sample from
the posterior, the extra determinant term in ϕ̂M now
becomes a difficult computational obstacle for sampling
algorithms. Moreover, the joint Pðf;ϕjdÞ has the advan-
tage of simultaneously characterizing both the delensed
CMB marginal PðfjdÞ as well as PðϕjdÞ.

III. THE MAXIMIZATION ALGORITHM

With the target probability function (5) in hand, we now
describe our maximization algorithm. We have attempted a
number of different approaches, but the most efficient we
have found is based on the observation that maximizing
separately with respect to f̃ and to ϕ cleanly breaks the
problem up into two simple pieces, a Wiener filter and
something which is independent of the instrument and
data. To that end, we employ a coordinate descent, i.e.,
alternating maximization steps in the f̃ and ϕ directions
separately. Coordinate descent also has the advantage that
it is essentially the maximization analog to Gibbs sampling,
which is exactly the sampling algorithm shown successful
for temperature in [13]. We therefore expect the develop-
ments that we present here which make the maximization
workable for polarization to also transfer to the sampling
case.
Consider first the coordinate descent step for f̃. The

maximum probability for f̃ given fixed ϕ can be calculated
by taking the gradient of the likelihood,

∂
∂f̃ logPðf̃;ϕjdÞ ¼ ðd − f̃Þ†C−1

n − f̃†LðϕÞ−†C−1
f LðϕÞ−1;

ð16Þ
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and setting it to zero. This gives an explicit solution,

f̃ ¼ LðϕÞ½C−1
f þ LðϕÞ†C−1

n LðϕÞ�−1LðϕÞ†C−1
n d; ð17Þ

which can be recognized as an ordinary Wiener filtering of
the data with a ϕ-dependent signal covariance. The challenge
is inverting the quantity in brackets in (17). We find that
inverting it with a simple preconditioned conjugate gradient
(with a preconditioning matrix that assumes ϕ ¼ 0 and noise
which is diagonal in Fourier space) works sufficiently well.
The reduction of part of the problem to the well known
Wiener filter problem is a major advantage of the coordinate
descent, since many Wiener filter algorithms exist which are
efficient and can be guaranteed to converge, unlike generic
nonlinear optimization algorithms.
Now consider the coordinate descent step for ϕ. Here the

gradient is given by,

∂
∂ϕ logPðf̃;ϕjdÞ

¼ −
1

2

∂
∂ϕ ½f̃†LðϕÞ−†C−1

f LðϕÞ−1f̃� − ϕ†C−1
ϕ

¼ −f̃†LðϕÞ−†C−1
f ½ ∂∂ϕLðϕÞ−1f̃� − ϕ†C−1

ϕ : ð18Þ

Taking the adjoint and setting to zero yields� ∂
∂ϕLðϕÞ−1f̃

�†
C−1
f LðϕÞ−1f̃ − C−1

ϕ ϕ ¼ 0: ð19Þ

Unlike the f̃ step, it is not possible to obtain an explicit
solution for ϕ. Instead, we solve this iteratively with a quasi
Newton-Raphson step,

ϕiþ1 ¼ ϕi − αHðf̃;ϕiÞ−1
∂
∂ϕ logPðf̃;ϕijdÞ: ð20Þ

Here Hðf̃;ϕiÞ denotes the Hessian of ϕ ↦ Pðf̃;ϕjdÞ and α
is a scalar coefficient over which we perform a line search
to maximize the probability. We take H ≈ Cϕ, which is the
contribution to the Hessian from only the ϕ-prior term, but
which we find works extremely well in practice. By the
time we are close to maximum, we expect a single Newton-
Raphson step would take us quite close to the exact solution
of (19), but we have found that even before we reach the
maximum we can get away with just a single iteration of
(20) at each coordinate descent step and convergence is still
quite fast.
For the ϕ step, the coordinate descent has removed all

explicit dependence on the instrument; note that neither the
data nor the noise covariance (and hence no masking,
transfer function, etc.) appear explicitly in (19). It is worth
restating that this would not have been the case if we
were performing coordinate descent with respect to ðf;ϕÞ
as opposed to ðf̃;ϕÞ; hence this can be seen as another
fundamental advantage of the lensed parametrization.

The maximization algorithm then simply starts at ϕ ¼ 0
and alternates these two coordinate descent steps, until
acceptable convergence is reached. There is only one
additional detail we need to describe which is necessary
for convergence to happen efficiently enough, and that is
our use of a cooling schedule for the covariance, Cf. By
this we mean that we replace Cf everywhere that it appears
in the iterating equations with a new covariance, which we
call the cooling covariance and denote with Ĉf. It is initially
set to the lensed CMB covariance (which we will denote by
C̃f), then progressively “cooled” it towards Cf. By the final
iteration we cool to exactly Cf and thus are maximizing the
true posterior.
The cooling scheme is aimed at keeping the power

spectrum of the f̃ estimate constant across iterations and
roughly matching the expected power spectrum of the
lensed CMB. This happens at the expense of making the
power spectrum of f not always match the unlensed
spectrum, but is advantageous nevertheless since it is in
the lensed parametrization that we are performing the
coordinate descent. To achieve this goal, the cooling
scheme takes Ĉf at a given iteration to be the expected
power spectrum of the true lensed field delensed by the
current ϕ estimate at that iteration. For a given configu-
ration (i.e., noise level, pixelization, map size, etc.), we can
calculate this covariance with simulations, since we have
access to the true lensed field. In fact, we find that only one
simulation is necessary, as we can greatly reduce sample
variance fluctuations by modeling the cooling covariance
as a geometric mean between the lensed and unlensed Cl’s,
with an l-dependent weight, wl, and heavily interpolating
this quantity based on the observed BB spectrum of the one
simulation. This produces a set of geometric weights wi

l for
each iteration i which we use in subsequent runs. These
weights, along with the data and the number of iterations
are the only inputs to the maximization procedure, which
we summarize in Algorithm 1 below.

Algorithm 1. Joint posterior maximization.

1: procedure JOINTPOSTERIORMAXðd; N; wi
lÞ

2: ϕ1 ¼ 0, f1 ¼ 0, f̃1 ¼ 0

3: for i ¼ 1.::N − 1 do
4: Ĉf;l ¼ ðCf;lÞwi

lðC̃f;lÞ1−wi
l

5: A ¼ Ĉ−1
f þ LðϕiÞ†C−1

n LðϕiÞ
6: b ¼ LðϕiÞ†C−1

n d
7: fiþ1 ¼ A−1b ▹ Solve via CG
8: f̃iþ1 ¼ LðϕiÞfiþ1

9: g ¼ ½ ∂∂ϕLðϕiÞ−1f̃iþ1�†Ĉ−1
f fiþ1 þ C−1

ϕ ϕi

10: α ¼ MaxαPðf̃i;ϕi − αCϕgjdÞ
11: ϕiþ1 ¼ ϕi − αCϕg
12: end For
13: return ϕN; fN; f̃N
14: end procedure
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We have already ascertained in the previous section that
the lensing operation which appears throughout the algo-
rithm, or more specifically its inverse, needs to be area-
preserving. Thus a requirement on the lensing algorithm
which we use is,
(1) jdetðLðϕÞ−1Þj ¼ 1 to numerical precision.

Examining Algorithm 1, we note that we also need two
other things of the lensing operation,
(2) Computation of LðϕÞ†f
(3) Computation of ½ ∂∂ϕLðϕÞ−1f̃�†.

In the next section we develop LenseFlow which performs
pixelized lensing in a way that simultaneously satisfies (1),
(2), and (3) above.

IV. LENSEFLOW

LenseFlow is an algorithm that utilizes an ordinary
different equation (ODE) to describe the lensing operator,
LðϕÞ. An auxiliary “time” variable is introduced which
continuously connects the lensed and unlensed maps such
that LðϕÞf is given by the solution of an ODE over map
pixels with initial conditions f. Because the ODE is
homogenous, we can regard the pixel values as “flowing”
from their unlensed values to their lensed ones, hence the
name LenseFlow. There are a number of advantages one
obtains with an ODE characterization of a linear operator.
First, operator inversion simply corresponds to running the
ODE in reverse. Secondly, log determinants can be ana-
lyzed using the trace of the velocity operator, integrated
over time. Finally, in many cases higher order derivatives
with respect to both initial conditions and parameters of the
ODE have their own ODE characterizations. In the case of
LenseFlow, these enable fast and accurate calculation of
gradient and Hessian operators of logPðf̃;ϕjdÞ with
respect to both f̃ and ϕ.3

We begin to define LenseFlow by introducing an
artificial time variable to the CMB field which connects
the lensed CMB at t ¼ 1 with the unlensed CMB at t ¼ 0.
In particular, for t ∈ ½0; 1� let

ftðxÞ≡ fðxþ t∇ϕðxÞÞ ð21Þ

so that f0ðxÞ ¼ fðxÞ and f1ðxÞ ¼ f̃ðxÞ. An ordinary
differential equation for ft can be derived from

dftðxÞ
dt

¼ ∇ifðxþ t∇ϕðxÞÞ½∇ϕðxÞ�i; ð22Þ

and the following chain rule

∇iftðxÞ ¼ ∇jfðxþ t∇ϕðxÞÞ½δij þ t∇i∇jϕðxÞ�; ð23Þ

where ∇i ≡ ∂=∂xi (we are working here in the flat-sky
approximation) and δij is the Kronecker delta. The quantity
in brackets in (23) represents the 2 × 2 Jacobian of the
map x ↦ xþ t∇ϕðxÞ, which for t ¼ 1 is often called the
magnification matrix; we will henceforth label it with Mt.
It is invertible in the weak lensing regime in which we work
here; thus we can combine the above two equations to yield
that ft satisfies

_ft ¼ ð∇jϕÞðM−1
t Þji∇ift: ð24Þ

By definition, solving the ODE (24) forward in time,
t ¼ 0 → 1, represents the lensing operation. Moreover,
exact inverse lensing simply corresponds to flowing the
ODE backwards in time, t ¼ 1 → 0. Notice that inverti-
bility of LenseFlow also extends to discrete pixel-to-
pixel lensing by replacing the gradient, ∇, in (24), with
its discrete Fourier analog.
The fact that LenseFlow is an area preserving linear

operator, i.e., that (1) holds, follows directly from (24). To
see why, first define

pi
t ¼ ð∇jϕÞðM−1

t Þji ð25Þ

so that (24) is written in compact form _ft ¼ pi
t∇ift. Now

since the flow from f0 to f1 can be written as composition
of infinitesimally small linear operations, the lensing
operator LðϕÞ is decomposed as follows:

f1 ¼ ½1þ ϵpi
tn∇i� � � � ½1þ ϵpi

t0∇i�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼LðϕÞ

f0; ð26Þ

where ϵ ¼ 1
n ¼ tiþ1 − ti and t0 ¼ 0. Notice that

log det ½1þ ϵpi
t∇i� ¼ ϵTr½pi

t∇i� þOðϵ2Þ
¼ Oðϵ2Þ; ð27Þ

where the last equality follows since the operator ∇i is
Hermitian antisymmetric. This applies also to the inverse
operation, thus up to ODE time-step discretization error,
condition (1) holds for LenseFlow, independent of pixel size,

lim
ϵ→0

detðLðϕÞ−1Þ ¼ 1: ð28Þ

In Sec. VII, we verify this numerically.
It will be useful to have a compact notation for the

decomposition of a linear operator characterized by an
ODE, as in (26). To that end define

ODE
t¼t0→tn

fV tg≡ ½1þ ϵV tn � � � � ½1þ ϵV t0 �; ð29Þ

where V t represents a “velocity operator” generating an
ODE of the form _ft ¼ V tft and where ϵ ¼ tiþ1 − ti

3Incidentally, the ODEs for calculating these derivatives are
exactly analogous to the backpropagation techniques used for
learning deep neural networks [17] but are derived here com-
pletely from ODE theory.
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represents an infinitesimal time step for an ordered equi-
distant sequence of time points t0; t1;…; tn. This allows us
to succinctly define LenseFlow as,

LðϕÞ ¼ ODE
t¼0→1

fpi
t∇ig: ð30Þ

The infinitesimal ODE expansion also makes it clear that
both the inverse and adjoint of an ODE operator is also an
ODE operator, but with time reversed, and in the latter case
with a negative adjoint velocity,

½ODE
t¼t0→tn

fV tg�−1 ¼ ODE
t¼tn→t0

fV tg ð31Þ

½ODE
t¼t0→tn

fV tg�† ¼ ODE
t¼tn→t0

f−V†
t g: ð32Þ

Due to the fact that ½pt · ∇�†f ¼ −∇iðpi
tfÞ, the latter

equation can be used to compute the adjoint lensing
operator

LðϕÞ† ¼ ODE
t¼1→0

f∇iðpi
t•Þg; ð33Þ

where the expression ∇iðpi
t•Þ is shorthand for the operator

f ↦ ∇iðpi
tfÞ. Notice that (33) achieves (2), another of our

requirements for the lensing operation. Although not
explicitly needed, note also that the operator LðϕÞ−† is
conveniently computed by simply applying a time reversal
of (33), as per (31).
For the final requirement in (3), we need to compute

derivatives of the inverse lensing operator with respect ϕ
and initial condition, f0. Introducing infinitesimal pertur-
bations δϕ and δft into (24), we have

_δft ¼ ð∇iδϕÞðM−1
t Þij∇jft þ ð∇iϕÞδðM−1

t Þij∇jft

þ ð∇iϕÞðM−1
t Þij∇jδft: ð34Þ

Simplifying δðM−1
t Þij and treating δϕ as a time dependent

variable results in

� _δft
_δϕt

�
¼

�
pi
t∇i vit∇i − tWij

t ∇i∇j

0 0

��
δft
δϕt

�
; ð35Þ

where pt, vt, and Wt are defined by

pi
t ¼ ð∇jϕÞðM−1

t Þji ð36Þ

vit ¼ ð∇jftÞðM−1
t Þji ð37Þ

Wij
t ¼ ð∇pϕÞð∇qftÞðM−1

t ÞpiðM−1
t Þjq ð38Þ

(the definition of pt is repeated here for clarity). It is
important to note that, unlike pi

t which is a scalar field for
each index i, the quantities Wij

t and vit are instead a TQU

vector of temperature and polarization fields at each index.
As is usually implicitly assumed, multiplication between
a scalar field and a TQU vector broadcasts over the TQU
indices. One important consequence of this is that the
adjoint of Wij

t ∇i∇j and vit∇i are given by ∇j∇iððWij
t ÞT•Þ

and −∇iððvitÞT•Þ, respectively, where we define T to
represent a transposition of just the TQU indices. For
example, if f is a TQU vector of fields, fTf represents the
scalar field I2 þQ2 þ U2 (in contrast to f†f, for example,
which would be a single number).
If we now consider a map between the lensed and

unlensed parametrizations, ðf;ϕÞ ↦ ðf̃;ϕÞ, the Jacobian

J≡ ∂ðf̃;ϕÞ
∂ðf;ϕÞ and its inverse are given by

J ¼
" ∂f̃

∂f
∂f̃
∂ϕ

0 1

#
J−1 ¼

" ∂f
∂f̃

∂f
∂ϕ

0 1

#
: ð39Þ

Equations (35)–(38) show that J can be computed as

J ¼ ODE
t¼0→1

��
pi
t∇i vit∇i − tWij

t ∇i∇j

0 0

��
; ð40Þ

and (32) immediately gives that the adjoint Jacobian is

J† ¼ ODE
t¼1→0

�� ∇iðpi
t•Þ 0

∇iððvitÞT•Þ þ t∇j∇iððWij
t ÞT•Þ 0

��
: ð41Þ

Note that the velocities for the Jacobian ODE depend on ft,
which can be precomputed from an initial application of
the corresponding lensing operator, or in some cases simply
solved for in unison.
As before, the inverse of (41) can be trivially computed

by time reversal of the ODE, using (31). The bottom left
block of J−† then satisfies

J−†
�
δf

0

�
¼

" �h
∂
∂ϕLðϕÞ−1f̃

i†
δf

#
;

which is exactly the necessary derivative which satisfies the
final requirement of (3).
Although Hessians are not needed for our iterating

equations, we remark that by a process analogous to
inserting infinitesimal perturbations to (34), one can create
an ODE flow for the lensing Hessian starting from the
Jacobian ODE. This Hessian operator cannot be stored in
practice for realistically sized maps, but can be applied in
the same computational order as the lensing and Jacobian
operations themselves. This could prove very useful for
sampling algorithms, for example aiding in computing the
mass matrix in a Hamiltonian Monte-Carlo sampler.
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V. RESULTS

We now begin to test our algorithm on simulations. The
generic form of the simulated data presented in this section
have the form

d ¼ MLðϕÞf þ n ð42Þ
¼ Mf̃ þ n; ð43Þ

where M is an operator that incorporates a beam, a pixel
mask (which zeroes out certain pixels) and a frequency cut
(which zeros out frequencies above a specified lmax). In the
previous sections,M was omitted in the interest of simplify-
ing the exposition. Incorporating M modifies the posterior,
Pðf̃;ϕjdÞ, only slightly, giving

−2 logPðf̃;ϕjdÞ ¼ ðd −Mf̃Þ†C−1
n ðd −Mf̃Þ

þ f̃†LðϕÞ−†C−1
f LðϕÞ−1f̃

þ ϕ†C−1
ϕ ϕ: ð44Þ

In terms of the joint posterior maximization, the only
adjustment is the definition of variables A and b given in
steps 5 and 6 in Algorithm 1, which become4

A ¼ Ĉ−1
f þ LðϕiÞ†M†C−1

n MLðϕiÞ ð45Þ
b ¼ LðϕiÞ†M†C−1

n d: ð46Þ
We generate simulated data with CMB-S4 like noise

properties, since it is for these low noise levels that one
expects to see a major benefit of the optimal procedure. We
assume 1 μK-arcmin Gaussian temperature noise, scaled
by

ffiffiffi
2

p
for polarization, and a 3 arcmin Gaussian beam [18].

Additionally, at low multipoles we adjust the noise power
spectrum to mimic a 1=f knee. Specifically, we take
lknee ¼ 100 and αknee ¼ 3 according to the parametrization
of [19], who suggest that for a large aperture array this
would be the maximum allowable knee frequency to be
competitive with other configurations. This, in effect, lets
us test the maximal but realistic impact of a nonwhite noise
power spectrum on our procedure.
We use pixels which are 3 arcmin on a side, which are

fairly large compared to typical analyses. This highlights

one of the advantages of LenseFlow, which is that we get
numerically stable and accurate lensing with determinant
equal to exactly unity even on such large pixels. At fixed
map size, this makes the algorithm faster because of the
smaller matrix operations involved. The runs described
here use maps which are 512 × 512 pixels, which at this
resolution correspond to around 600 deg2, comparable to
currently existing polarization datasets to which our pro-
cedure would be naturally applicable (e.g., [20,21]). The
Nyquist frequency for 3 arcmin pixels is l ¼ 3600, above
which we expect little cosmological information in our
setup. Nevertheless, we have also verified the algorithm
with 1 arcmin pixels, and find the main difference is just a
longer time-to-convergence for the conjugate gradient.
We generate a Gaussian random realization of the CMB

from a fiducial CMB spectrum with cosmological param-
eters given by their posteriormean given thePlanck 2015TT
data [22], combinedwith the updatedPlanck high frequency
instrument large scale polarization data τ [23]. We take
r0.002 ¼ 0.05, compatible with current upper bounds [24].

A. Without map-level masking

Using the configuration just described, we create one
main simulated dataset. The resulting temperature and
polarization maps are shown in Fig. 4. Note that although
this figure shows a pixel mask, in this first section we
consider only Fourier-space masking (we will add map-
level masking in Sec. V B). The Fourier mask we use in this
section is an unapodized low-pass filter at l ¼ 3000.
We run 50 iterations of the algorithm on this data, the

entire run completing in around two hours on a single Intel
Haswell 2.3 GHz 16-core CPU.5 In Fig. 1 we see the
excellent visual agreement between the true ϕ and lensed
and unlensed B maps and the ones recovered by the
algorithm. We expect these should resemble something
like a Wiener filter solution, and thus have low signal-to-
noise modes attenuated; the signal-to-noise is low enough
that this is visually apparent only for the unlensed B map.
Figure 2 shows the power spectrum of these maps, where
one can see the attenuation for all cases, as well as the very
small residual at medium and large scales between the
reconstructed ϕ map and the truth.
These maps and power spectra look as one might expect

for a MAP estimate, but we would like a more robust way4Notice that (42) implies that masking is absent from the noise
realization, n. The main reason our simulations are configured this
way is to ensure that the operatorCn which appears in (45)–(46) is
nonsingular and easily invertible even in the presence of pixel and
Fourier masking. In the case of simulated data, it is trivial to leave
the noise realization unmasked. For real data, one can fill inmasked
regions with a simulated realization from the noise model, which
leaves the statistical properties of the noise unchanged in the case of
perfectly white noise. Although the assumption of white noise is
never exact in real data, we believe the technique of artificially
adding noise to masked pixels has the potential to still yield
accurate Wiener filter approximations in the presence of compli-
cated masking even for more realistic experimental noise models.

5As the algorithm itself is entirely sequential, no parallelization is
employed aside from using a multithreaded fast fourier transform
library and making use of single instruction multiple data vecto-
rization for point-wise matrix multiplications. The run-time is
dominated by computing the LenseFlow ODE velocity during
the Runge-Kutta integration for the lensing operations performed in
the CG step. The asymptotic complexity is set by the fast fourier
transform and is thusOðN logNÞwhereN is the number of pixels in
the map, although in practice we find speed difference between
lensing; e.g., a 1024 × 1024 and 2048 × 2048 map is a bit worse
than this because the bottleneck is memory access.

BAYESIAN DELENSING OF CMB TEMPERATURE … PHYS. REV. D 100, 023509 (2019)

023509-9



to verify that we have attained the true maximum. One
way to do so is to compute the χ2 expected at the best-fit
point and compare to what we actually achieved. By χ2,
we are referring to the sum of the terms in (3) excluding
the determinants, i.e., the sum of the χ2’s of the data
residual, f, and ϕ, with respect to Cn, Cf, and Cϕ,
respectively. Approximating the problem as linear, we
expect the best-fit χ2 to scatter according to a χ2

distribution with degrees of freedom given by the total
number of unmasked pixels in the three terms, minus the
number of free parameters which are fit for. In Fig. 3 we
show the one, two, and three sigma regions for this
expectation as the gray bands. The χ2 after each of the
50 steps of the algorithm is also plotted, both with respect
to the true covariance, Cf, and with respect to the cooling
covariance, Ĉf. By the final iteration when we fully cool
the covariance, we are well within this gray band, a good
indication of convergence.

Although this result is suggestive that we have success-
fully converged, our problem is not exactly linear, so we
cannot rule out that the true expected distribution of best-
fit χ2 is actually lower. Another test we can perform is to
examine the gradient of the posterior after each iteration.
As we reach a local or global maximum, we expect the
gradient to approach zero. Since the gradient in the f̃
direction is always reduced to zero up to numerical
precision by the Wiener filter step, we examine the
gradient in the ϕ direction. Here, we find that across
all scales, the power spectrum of the gradient drops by
several orders of magnitude during the 50 iterations of the
algorithm, until hitting a numerical floor. Taken together,
that the best-fit maps and power spectrum look as
expected given the simulation ground truth, that we are
close to the expected χ2, and that the gradient is approach-
ing zero are strong indications that the algorithm has
reached the global maximum.

FIG. 1. The reconstructed ϕ and lensed/unlensed B maps from a run of our algorithm on simulated data (bottom row), as compared to
the simulation truth (top row). This is for the run with only Fourier-space masking described in Sec. VA. The reconstruction, as
expected, resembles a Wiener filter solution wherein low signal-to-noise modes are attenuated.
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B. With map-level masking

We now turn to demonstrating that the algorithm works
when we apply map-level masking. Such masking is
necessary in any real analysis as various sources of galactic
and extragalactic contamination are most efficiently dealt
with by directly excising them from the maps. Here we
randomly place 100 point sources holes with radii between
5 and 10 arcmin. Additionally, for a flat-sky analysis as

performed here, it is necessary to include a border mask so
as to “embed” the observed sky patch (which is nonperiodic)
onto a Fourier grid with is otherwise assumed periodic.
To this end, we apply a 2° border mask. Both the bordermask
and the point source mask are mildly apodized.
We use the identical simulated data shown in Fig. 4 as in

the previous section, with the only change being that we
apply this map-level mask. Note that we continue to apply
the Fourier mask which removes l > 3000, hence here we
are testing the performance of the algorithm in the presence
of masking which is not diagonal in either map or Fourier
space. This introduces a subtle nontriviality in inverting the
noise covariance of the masked data, which we account for
here with a trick of filling in the masked regions of the map
with a realization of noise from Cn. The data, as well as the
mask, is shown in Fig. 4.
Two small changes to the algorithm itself are necessary

as compared to the unmasked run. First, the cooling
weights are recomputed for the specific mask, although
using the same procedure as described earlier. Second, not
surprisingly, the Wiener filter requires more steps to
achieve satisfactory accuracy.6 That no other major changes
to the algorithm are required might have been expected
because, as mentioned earlier, one fundamentally nice

FIG. 2. The power spectra of the best-fit ϕ and lensed/unlensed CMB maps from a run of our algorithm, as compared to the input
theory spectra. This is for the run with only Fourier-space masking described in Sec. VA (the same run for which maps are shown in
Fig. 1). The left panel also shows the power spectrum of the simulation truth for the ϕ map itself as well as the power spectrum of the
difference between this and our reconstructed solution, demonstrating the fidelity of the reconstruction. The “bump” visible in the lensed
spectra near the Nyquist frequency at l ¼ 3600 signals the smallest scale for which the LenseFlow pixelized lensing approximation is
accurate at this pixel size (similar features are produced by other lensing algorithms). We mask the data in Fourier space beyond
l ¼ 3000 so that we are not sensitive to this region, and the effects of this mask are visible above as a sharp suppression in power at
l > 3000.Note: The beam-deconvolved noise spectrum shown in the middle and right panel are used to illustrate the effective signal-to-
noise ratio in the simulated data. The actual simulation data used to generate the best-fit ϕ and lensed/unlensed CMBmaps are not beam-
deconvolved. See Sec. V for details.

FIG. 3. The posterior probability after each iteration of our
algorithm during the run on the simulated dataset described in
Sec. V. The top (blue) line is the posterior with respect to the true
covariance, and the bottom (orange) line is with respect to the
cooling covariance (note the y-scale is mixed log and linear). For
the final step these two are identical since the cooling covariance
is fully cooled and equals the true covariance. The grey band
represents the value of the posterior probability expected at the
best-fit point, and our best fit sits well within this expectation.

6In fact, to ease convergence in some cases we find it necessary
to replace the one-dimensional line-searchϕi − αCϕg over αwith a
two dimensional line-search ϕi − α1Cϕg − α2ψ over ðα1; α2Þ
where ψ is defined as the inverse Laplacian of the border mask
and is designed to approximate the mean-field feature described
later in Sec. V B. This modification appears to improve numerical
stability in Algorithm 1, but is not necessary in all configurations
we have tried, so we mention it here but do not discuss it further.
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feature of the lensed parametrization is that it removes from
the ϕ step any explicit dependence on the instrument or
dataset (i.e., on masking). Of course, there could have been
an impact on the decorrelating effect of switching to the
lensed parametrization itself, or on the effectiveness of
the quasi Newton-Raphson step, but neither appears to be
the case. This is good news as it means that if one wishes to
even further improve the performance of the algorithm, one
needs to focus only on improving the Wiener filter, where
many more sophisticated methods exist other than the fairly
rudimentary preconditioned conjugate gradient which we
have found sufficient here [e.g., [25–29]].
Figure 5 shows the unlensed CMB estimate f̂J compared

the simulation truth. We find, as expected, a Wiener
filterlike solution with low signal-to-noise modes attenu-
ated as is visible for B, and with power slowly decaying
towards zero in the masked regions as is visible for T, E,
and B.
The lensing potential estimate ϕ̂J corresponding to f̂J is

shown in Fig. 6 (bottom left). Notice what appears to be a
large scale “bias” in the estimate ϕ̂J as compared to the true
ϕ (top left). This feature corresponds to a so called “mean
field”, akin to the one which must be subtracted to debias
the quadratic estimator. Similarly as for the quadratic
estimate, it arises because the mask induces correlations
between different l-modes, which the best fit then attributes
to lensing. We remark that the marginal estimate ϕ̂M would
not show this feature because it is implicitly corrected for by

the determinant term found in themarginalized posterior (11)
which is not present in the joint posterior (3).
The effect of the mean field bias in ϕ̂J is simpler when

considering the convergence κ≡ −∇2ϕ=2. There, the mean
field roughly translates to an additive constant offset over
nonmasked pixels,

κ̂JðxÞ ≈ μþ κðxÞ for all nonmasked pixels x: ð47Þ
Intuitively this can be understood as follows. Because in the
masked regions the Wiener filterlike suppression drives the
solution to zero, in the absence of lensing this leads to an f
power spectrum which, on average across the entire map, is
smaller than expected given Cf. Now note that since the
CMB has a mostly “red” spectrum (i.e., tilted to the right),
an overall magnification has a similar effect to reducing the
overall amplitude.7 Thus with the lensing potential avail-
able as a free parameter, the best fit is able to slightly
increase f to better agree with its covariance, but add an
overall magnification to ϕ so that f̃ is reduced and still
agrees with the data.
This effect can be seen in the middle column of Fig. 6

where the fluctuations of κ̂JðxÞ (bottom middle) track the
true κðxÞ (top middle, plotted with an additional beam to
make the relevant scales more visible). Notice that the

FIG. 4. The simulated data used in the runs described in Sec. V. We use a 512 × 512 grid with 3 arcmin pixels, which covers roughly
600 deg2. It assumes a setup approximating an expected CMB-S4 configuration, with a 3 arcmin beam and stationary 1 μK-arcmin
temperature noise, modulated to include a 1=f contribution below lknee ¼ 100 (see text for more details). One hundred unapodized
point sources with radii between 5 and 10 arcmin are randomly placed within the region. A 2° mildly apodized border mask is applied, as
well as a Fourier-space cut above l > 3000. Note that for this figure the mask is simply overlayed on the unmasked T, E, and B images
rather being multiplied into T,Q, and U as is done in the likelihood, since multiplying it in would result in large E to B leakage spoiling
the ability to see B. Additionally, the unmasked data has been Wiener filtered with the lensed CMB covariance as the signal covariance
to reduce the visual impact of noise.

7This degeneracy is in fact exact for power-law spectra in the
limit of infinite-size maps [30].
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average value of κ̂JðxÞ over nonmasked pixels appears
slightly smaller than zero. This is the mean field and results
in a more visually dramatic effect on the original non-
Laplacian scale (as seen in the bottom left image). To probe
the accuracy of the smaller scale fluctuations one can
recenter κ̂J and κ to have zero mean over nonmasked pixels,
then set any masked pixels to zero so that only errors within
the observation region are probed. The resulting error
bandpowers are shown in Fig. 7 and can be seen to be
similar to what one expects from nonmasked observations.
Applying −2∇−2 to the recentered and mask-attenuated κ̂J,
which we refer to as “deprojecting” in the figure captions,
has the effect of visually removing the mean field features
in the original estimate (shown bottom right in Fig. 6 with
the corresponding operation applied to the true ϕ shown
top right).
As in the previous section, we would like to confirm

convergence, thus ascertaining that the mean field is a real

feature of the global MAP estimate and not a local mode or
artifact of Algorithm 1. The first piece of evidence is that
the best fit, similarly as before, attains an acceptable best-fit
χ2, in this case 0.8σ above expectation. Going beyond just
this one simulated dataset, we also check the distribution of
best-fit χ2’s on 100 other simulations (with somewhat
smaller map sizes for speed but still with a border mask).
The best-fit ϕ̂J for each of these displays a qualitatively
similar mean field, while their best-fit χ2 appear to be in line
with expectation as shown in Fig. 8. Finally, we check that
even initializing Algorithm 1 at the true ϕ results in the
same mean-field feature in ϕ̂J and a similar best-fit χ2

value.
As the final piece of evidence that the mean field is a

necessary feature of the joint MAP estimate of ϕ, we show
that similar biases occur naturally in other MAP estimates
for models which have more parameters than data and
thus yield highly non-Gaussian posteriors. Consider the

FIG. 5. The reconstructed unlensed T, E, and B maps from a run of our algorithm on simulated data (bottom row), as compared to
the simulation truth (top row). This is for the run discussed in Sec. V B which includes the real-space mask that is visible in Fig. 4.
As expected, low signal-to-noise modes are attenuated and the solution provides a partial reconstruction even in the masked region.
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following toy example which is relevant to the problem
of estimating scalar-to-tensor ratio r and which will
foreshadow the discussion in the next section where we
free r as a parameter.
Suppose we observe a noisy signal which is the product

of some scaling parameter, r, with some Gaussian random
field, B,

d ¼ rBþ n; ð48Þ
where n is stationary noise and n and B have known
spectral densities Cn and CB, respectively. Notice that for a
given value of r, the maximum of B ↦ Pðr; BjdÞ is given
by a Wiener filterlike solution,

B̂ðrÞ≡ rCBðCn þ r2CBÞ−1d: ð49Þ

Therefore, the joint MAP estimate of r and B can be
computed by maximizing r ↦ Pðr; B̂ðrÞjdÞ. However, a
simple calculation shows that this function is always
maximized at r ¼ 0.8 The cause of this singularity is
simply that there is a perfect degeneracy in the likelihood
term wherein one can decrease B and increase r and fit the
data identically. The best fit of the full posterior will then
maximize just the prior along this slice of parameter space,

FIG. 6. The reconstructed lensing potential from a run of our algorithm on simulated data (bottom row), as compared to the simulation
truth (top row). The first column is the raw ϕðxÞ map that maximizes the posterior. The middle column is the corresponding
convergence, κðxÞ≡ −∇2ϕðxÞ=2, which allows one to see the good agreement with the truth in the unmasked regions. A small uniform
negative “mean-field” correction inside the mask is visually recognizable as a slight preponderance of blue. The final column is after
deprojecting this mean field using the procedure described in Sec. V B, allowing one to better recognize the agreement with the true
ϕ map.

8This statement depends on the prior one takes on r, e.g., the
singularity is at r ¼ 0 with a Jeffrey’s prior as we have assumed
here, but at r ¼ ∞ with a flat prior. Nevertheless, no reasonable
data-independent prior can remove the singularity entirely, which
is the important part of our example.
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which in this case happens at r ¼ 0. Yet, the posterior
expected value of r, which effectively marginalizes over the
unknown B, gives a perfectly normal and nonzero estimate
of r. To complete the analogy, note the similarity in data
residual between the lensing case and our toy example,
d − LðϕÞf and d − rB. Thus, for similar reasons as in this
toy example, theMAP estimate of ϕ̂J is driven away from its
expected value, although due to the nonperfect degeneracy
we are not driven all the way to any singularities at zero.

Our point with this example is to demonstrate that MAP
estimates need not be optimal, and to stress that while MAP
estimates can have poor properties as estimators (such as in
this case for r), sampling the posterior will always yield the
correct answer. Nevertheless, the fact that κ̂J tracks fluc-
tuations of κ with little apparent bias suggests κ̂J could still
form a useful estimator, and moreover potentially be more
useful for initializing a sampling algorithm for the joint
posterior.

C. With r as a free parameter

The toy example from the previous section serves a dual
purpose, as it was selected to prepare discussion of the
actual problem of r estimation. The differences are that in
reality we have tensor contributions to T and E in addition
to just B, and of course because the toy example did not
involve lensing. Nevertheless, we might expect qualita-
tively similar behavior, and in this section we verify that
this is indeed the case.
To do so, we generate simulated data with r ¼ 0.05 then

run the maximization algorithm for Pðf;ϕjd; rÞ over a grid
of r values from r ¼ 0 to r ¼ 0.15. More specifically, we
compute,

ðf̂ðrÞ; ϕ̂ðrÞÞ ¼ argmaxf;ϕPðf;ϕjd; rÞ; ð50Þ

and plot the function r ↦ Pðr; f̂ðrÞ; ϕ̂ðrÞjdÞ as the blue
curve in Fig. 9. Indeed we find that a singularity at zero

FIG. 7. The power spectra of the best-fit ϕ map as compared to
the simulation truth and theory spectrum for the run with real-
space masking described in Sec. V B. The best fit and simulation
truth ϕmaps are the ones shown in the right column of Fig. 6 and
have had the mean-field deprojected according to the procedure
described in Sec. V B.

FIG. 8. Distribution of the χ2 of the best-fit point from runs on
500 different simulated datasets. For speed, we have reduced the
map size as compared to the main runs described in this work to
128 × 128 pixels (while keeping the relative width of the border
mask width) and use only E and B. The expected distribution of
the best-fit χ2 under a Gaussian approximation of the posterior is
shown as the orange curve.

FIG. 9. A slice through the joint posterior probability (3),
varying r and maximizing with respect to f and ϕ for each value
of r. For speed, we have reduced the map size as compared to the
main runs described in this work to 128 × 128 pixels (while
keeping the relative width of the border mask the same). The
green curve (left axis) is the contribution from detCfðθÞ, the
orange curve (right axis) is the contribution from the three χ2

terms [i.e., the first three terms of (3)], and the blue (left axis) is
the sum of these two. This demonstrates that the joint MAP
estimate of r is not useful as it is driven to zero. The lack of
apparent numerical noise in the orange curve demonstrates the
stability of the maximization algorithm.
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exists, which confirms that the MAP estimate of r (jointly
with f and ϕ) is not a useful estimator, as it is always zero.
We point out that the total posterior plotted in blue is

largely dominated by just the determinant of the CMB
covariance in (3), detCfðrÞ. This is independent of f and ϕ
and hence independent of the maximization algorithm; to
see the performance of the maximization, we plot in orange
the contribution to the total posterior from only χ2 terms,
i.e., the first three terms of (3). The smoothness of this
curve is further evidence of the quality of convergence, as
we might otherwise expect to see lots of numerical noise in
adjacent bins.
This convergence is important because the orange curve

gives one contribution to the full marginal posterior, PðrÞ,
and if this piece were not stable numerically, adding in the
other contributions would be of no use. Indeed, under the
Laplace approximation we can compute the marginal
posterior by just adding in a determinant term, i.e., the
analog of the denominator in (11) but for marginalization
over both f and ϕ, and which would cancel out the
singularity seen here. In fact, something like this could
potentially be calculable in practice with Hessian operators
and if one can compute accurately enough the necessary
determinant via Monte Carlo. Ultimately, we seek to
sample directly from the exact posterior, producing a
marginal PðrÞ with no approximation. Again, the stability
of the curves in Fig. 9 suggest this should be numerically
possible as long as satisfactory convergence of the sam-
pling algorithm can be achieved.

VI. VALIDATION OF LENSED POSTERIOR
APPROXIMATION

Having worked throughout this paper using the posterior
approximation in Eq. (5), we now explain why this is an
adequate approximation to the true posterior given in
Eq. (4). This explanation will make use of the machinery
built up thus far to compute ϕ̂J, hence why we have delayed
it up until this point.
The exact unlensed posterior is given in Eq. (3); if we

could work with this, there would be no need to use and
validate Eq. (5). Indeed, it may be tempting to simply
perform a change of variables in Eq. (3) to f̃ ¼ LðϕÞf,
which introduces a Jacobian determinant term given by
detLðϕÞ, and then use the proof that the LenseFlow
determinant is unity to ignore this term. However, it is
important to note that LðϕÞ here is an infinite-dimensional
operator, and in general infinite-dimensional determinants
are ill defined; indeed, the proof of unit determinant for
LenseFlow does not necessarily extend trivially down to
infinitely small pixels.9 As such, in our discussion, we must

only appeal to determinants of finite-dimensional opera-
tors, which are instead completely well defined.
We can do so by considering the posterior for the

unlensed fields on an extremely high but finite resolution,
q (we will denote these fields as fq), which will be far
higher than the data resolution, p. That is, by considering
the data model

d ¼ PLqðϕÞfq þ n; ð51Þ

where Lq is a lensing operation on the q pixelization and P
further pixelizes the q resolution to p. Unlike in Eq. (3),
with the posterior on (fq, ϕ), we are free to perform the
change of variables f̃q ¼ LqðϕÞfq and ignore the resulting
determinant as long as we use LenseFlow for Lq, as here we
are considering a finite pixelization.
Furthermore, if we make the q resolution fine enough,

the resulting reparametrized posterior must converge to

− 2 logPðf̃q;ϕ; θjdÞ
¼ ðd − Pf̃qÞ†C−1

n ðd − Pf̃qÞ
þ f̃†qL

−†
q ðϕÞCfqðθÞL−1

q ðϕÞf̃q þ log detCfqðθÞ
þ ϕ†CϕðθÞ−1ϕþ log detCϕðθÞ: ð52Þ

Note that if instead we make q coarser until it is the same as
p, this becomes exactly the approximate posterior, Eq. (3),
which we are trying to validate.
The path to validating Eq. (3) is thus the following.

Compute ϕ̂J from Eq. (52) where q is a very fine resolution,
and the simulated data configuration is similar to the other
cases discussed in this paper. This will asymptote to the
exact answer as we reduce the q pixelization, and we verify
it indeed asymptotes as we vary q from 1=2 to 1=8 of the
data pixelization. With this in hand, we now compare
against the ϕ̂J we get from Eq. (3). In all cases explored, we
find that the power spectrum of the difference between the
two estimates of ϕ is roughly three orders of magnitude
below the spectrum of ϕ̂J itself at all angular scales below
the data Nyquist frequency. We thus conclude Eq. (3) is a
very good approximation.
We further note that, while we have checked that Eq. (3)

is a good approximation when LenseFlow is used, other
pixelized lensing approximations could conceivably be
used as well (e.g., any of [31–34]). One would simply
need to perform the same procedure laid out here, but using
those algorithms instead to perform lensing on the p
resolution. However, one would always have to use
LenseFlow to perform the reconstruction on the high
resolution q pixels, lest a determinant be introduced there
(in the following section, we show that the determinant of at
least one other pixelized lensing algorithm is different
enough from unity that it matters). Thus, the development
of LenseFlow is the crucial piece of this proof.

9An earlier version of this work claimed precisely this, which
may or may not be true. We do not attempt to give a proof of
determinant of lensing in the infinite resolution here.
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VII. NUMERICAL LENSING DETERMINANTS

In Sec. IV we have proven LenseFlow has unit deter-
minant on any finite pixelization in the absence of ODE
integration errors. Here, we check the typical determinant
values achievable with finite number of ODE steps, as well
as checking the determinant of one other lensing algorithm.
For relatively small numbers of pixels, it is computa-

tionally feasible to compute the determinant for a given
algorithm by explicitly calculating the matrix representa-
tion of LðϕÞ for a given ϕ and taking its determinant.10 We
have done so for map sizes between 8 × 8 and 64 × 64, and
for the standard approximation to lensing where one
expands in a Taylor series around the deflection,

f̃ðxÞ¼ fðxþ∇ϕðxÞÞ¼ fðxÞþ∇iϕðxÞ∇ifðxÞþ �� � ð53Þ

To minimize the error incurred by the Taylor series
approximation due to pixelization, we have performed
the test here with 1 arcmin pixels, i.e., somewhat smaller
than the 3 arcmin pixels we use in the rest of this paper. For
this pixel size, the determinant of the Taylor series lensing
approximation asymptotes by the 7th order term in the
expansion. By using this many terms, we are testing the
determinant due to the implicitly assumed subpixel
extrapolation method of the Taylor series expansion, rather
than the determinant due to Taylor series truncation error.
The exact value of the determinant is, in fact, an

unimportant overall normalization factor; instead, what is
important is how it varies as a function of ϕ near the peak of
the probability distribution as compared to the other terms
in the posterior probability. As a simple way to mimic
samples of ϕ near this peak, we approximate the problem as
a Wiener filter problem, and use the analytic calculation of
the effective reconstruction noise, Nϕ, from the iterated full
sky quadratic estimator [10]. We expect the determinant
will be most important when the effective noise is high,
such as when performing a temperature-only reconstruction;
since we want our method to work for these cases, we check
using the temperature-onlyNϕ. Finally, we have not upscaled
the reconstruction noise for our smaller fsky, thus this check
will represent a lower bound on how important the deter-
minant might be. To mimic the samples of ϕ, we first
simulate a one single typical best-fit (i.e., “Wiener filtered”)
ϕ, which is given from the covariance CϕðCϕ þ NϕÞ−1Cϕ.
We then simulate many samples from around the peak
which are given by an additive contribution drawn from
CϕðCϕ þ NϕÞ−1Nϕ. For each of these samples, we calculate
the prior and lensing determinant terms in (5). We consider
the scatter in the prior term a proxy for the level of changewe

might be able to tolerate, and this should be a fairly good
proxy since this term dominates the posterior at the smallest
scales to which we expect the determinant to be most
sensitive. Figure 11 shows the results. We find that the
determinant term varies roughly on the same order as the
prior term, even sometimes larger. Hence it does not appear
that it can be ignored for Taylens, at least not on the scales
probed by these maps (which are, indeed, relevant physical
scales in general). It is thus necessary that we use LenseFlow

FIG. 10. Comparison of the accuracy of LenseFlow vs Taylor
series lensing augmented with a nearest-pixel permutation (i.e.,
“Taylens” [35]) The quantity plotted is the spectrum of
PLtrueðϕÞf − LðPϕÞPf divided by the theoretical EE or BB
spectrum, where P is a pixelization operation and Ltrue is an
asymptotically high order LenseFlow. The first term represents
the “true” lensed field, while the latter performs lensing on a
pixelization map. For the “true” fields, we use pixels 4 times
smaller on a side than the pixelized version. This figure
demonstrates that our use of 7-step LenseFlow on 3 arcmin
pixels incurs an error of ∼20% in BB by l ¼ 3000, which is far
below the instrumental noise at this multipole for, e.g., CMB-S4.
The error is approximately the same as using Taylens, showing
that the error is driven by the loss of information due to
pixelization rather than due to an error in ODE integration or
due to Taylor series truncation.

10This can be done by applying the operator to some set of
maps which form a complete basis. It may also be possible to use
other methods to compute the determinant; we have chosen this
route only for simplicity.
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as our lensing operator, as its determinant can be made
arbitrarily close to one. We find that solving the LenseFlow
ODE with seven steps of 4th order Runge-Kutta integration
yields a determinant many orders of magnitude below the
variation in the ϕ-prior term, and additionally yields accept-
able errors on the lensed spectra as demonstrated in Fig. 10.

VIII. CONCLUSIONS AND FUTURE WORK

In this work, we have presented the first algorithm which
produces the joint MAP estimate of ϕ, f and cosmological
parameters like r. There are two important aspects to the
algorithm. First, a change of variables from the unlensed
field, f, to the lensed one, f̃, greatly reduces the correla-
tions in the posterior making maximization work much
more efficiently. Second, the maximization is a coordinate
descent over f̃ and ϕ, which breaks the problem into two
clean pieces, one a robustly solvable Wiener filter problem
and the other entirely independent of the instrument and
data.
The workability of the algorithm depends on using a

new lensing algorithm which we have developed called
LenseFlow, which has determinant equal to unity, and
allows us to trivially perform the aforementioned change of
variables. LenseFlow appears unique among known algo-
rithms in having such a simple determinant; although the
only other determinant we have explicitly verified is for the
Taylor series approximation, it seems unlikely that other
algorithms would have this property without it having been
constructed intentionally. Nevertheless, it is worth checking

other algorithms as perhaps their determinant is close
enough to unity that it can be ignored, in which case there
could be benefits of speed or convenience to using them
instead.
Independently of how we have used it here, LenseFlow

is interesting theoretically as a new formulation of lensing.
To date, it has clearly been a very useful tool for
cosmologists to work with the Taylor series expansion
for weak lensing; we would argue that the ODE expansion
presented here should be a valuable addition to any
cosmologists’ “toolbox” as well, as it can in some cases
be quite advantageous to work with. For example, we have
used it to give a simple proof of the area-preserving nature
of the pixelized lensing algorithm. Additionally, it is very
convenient that inverses and adjoints are so easily calcu-
lated with LenseFlow, not just for lensing but also for the
Jacobian and Hessian operators. Some of these are possible
to calculate with other identities (e.g., [12]), but the
LenseFlow solution is very straightforward conceptually,
and is highly numerically stable.
We have also discussed the relationship between the

joint posterior, Pðf;ϕjd; rÞ, and the marginal posterior,
Pðϕjd; rÞ, the latter which is the basis of the algorithm
given by [12]. The two estimates ϕ̂J and ϕ̂M differ from
each other by a mean-field correction, as do the corre-
sponding delensed estimates f̂J and f̂M, and we have
elucidated the relation between all of these quantities in the
context of a Laplacian integration. One is free to take any of
these quantities as an estimator and debias and quantify its
uncertainties via simulations, and this would certainly lead
to improvement over the quadratic estimate. However, any
such procedure would suffer from the problem of needing
to assume a value for r for these simulations, and perhaps
from requiring too large a computational cost, so it is
unclear if that is the right way to proceed forward.
Another approach is to compute the mean ϕ and f and

their uncertainties by obtaining samples from the posterior
via Markov-Chain Monte Carlo techniques. To be efficient,
any such sampling algorithm likely needs to evaluate the
gradient of the posterior at each sampled point. When
sampling the marginalized posterior Pðϕ; rjdÞ, this gra-
dient has a contribution from a determinant term which
must be computed by averaging over simulations, and this
likely becomes computationally too costly on an inner loop
of a sampling algorithm. Additionally, the determinant
makes it impossible to evaluate the value of posterior at a
given point, which is necessary for, e.g., accept-reject steps.
This may ultimately make it impossible to use the mar-
ginalized posterior for sampling, or force the requirement
of very sophisticated sampling algorithms which do not
need this quantity. Conversely, the joint posterior
Pðf;ϕ; rjdÞ does not have such a determinant, allowing
easy evaluation of the posterior value and of the gradient at
any point. We thus consider the joint posterior the most
optimistic path to pursue for sampling.

FIG. 11. The standard deviation of the variation in the log
probability values for the ϕ-prior term, ϕ†C−1

ϕ ϕ, and lensing
determinant term, 2 log jdetLðϕÞj, in (5), as computed from
Monte Carlo samples of ϕ. These samples approximate samples
from the posterior probability Pðf;ϕjdÞ for some simulated data,
d, assuming full-sky temperature-only reconstruction noise. Here
we have used 7th order Taylor series lensing on 1 arcmin pixels
with temperature-only data. Because the variation in the two
terms is of similar order, the determinant cannot be ignored.
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Insofar as the simulation assumptions presented in
Sec. V are well approximated by the actual experimental
conditions, the techniques presented in this paper can
be immediately applied to real data. It is important to
note, however, that proper application to real data
should include a number of tests for robustness to things
like uncertainty in cosmological parameters which are
assumed fixed and known in our simulations, nonsta-
tionary noise and beam, post-Born and non-Gaussian
contributions to the lensing potential, effects of curved
sky, foregrounds, etc. With these issues under control,
the resulting joint MAP estimate, along with its uncer-
tainties quantified by simulations, provides a realistic way
to perform an analysis more optimal than one based on the
quadratic estimate. Of course, other approaches exist as

well, including other estimators and posterior sampling;
ongoing work will ascertain which method exactly is most
useful in practice.
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