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bDépartement de Physique, Ecole Normale Supérieure,

24 rue Lhomond, Paris, France

E-mail: sashok@imsc.res.in, jan.troost@ens.fr

Abstract: We sharpen the duality between open and closed topological string partition

functions for topological gravity coupled to matter. The closed string partition function is

a generalized Kontsevich matrix model in the large dimension limit. We integrate out off-

diagonal degrees of freedom associated to one source eigenvalue, and find an open/closed

topological string partition function, thus proving open/closed duality. We match the

resulting open partition function to the generating function of intersection numbers on

moduli spaces of Riemann surfaces with boundaries and boundary insertions. Moreover,

we connect our work to the literature on a wave function of the KP integrable hierarchy

and clarify the role of the extended Virasoro generators that include all time variables as

well as the coupling to the open string observable.

Keywords: D-branes, Integrable Hierarchies, Matrix Models, 2D Gravity

ArXiv ePrint: 1907.02410

Open Access, c© The Authors.

Article funded by SCOAP3.
https://doi.org/10.1007/JHEP09(2019)064

mailto:sashok@imsc.res.in
mailto:jan.troost@ens.fr
https://arxiv.org/abs/1907.02410
https://doi.org/10.1007/JHEP09(2019)064


J
H
E
P
0
9
(
2
0
1
9
)
0
6
4

Contents

1 Introduction 1

2 The open/closed string duality with matter 3

2.1 A brief overview 3

2.2 The generalized Kontsevich model extended 3

2.3 The closed and open/closed string partition functions 6

2.3.1 The closed string partition function 6

2.3.2 The wave potential and the open string partition function 7

3 The open/closed string Virasoro constraints 10

3.1 The open/closed Virasoro algebra 10

3.2 From closed to open Virasoro 13

3.3 The integrable hierarchy and the relation to geometry 14

4 Conclusions 16

A Properties of the Fourier transform 17

B An equivalent Virasoro algebra 18

C Another pure duality 20

1 Introduction

Two-dimensional gravity is an important tool in the study of quantum gravity. It is a

simpler analogue of four-dimensional gravity, and it arises in the diffeomorphism invari-

ant theory living on a string theory world sheet. Two-dimensional quantum gravity has

been solved to a large extent, in three ways: via double-scaled matrix models [1–3], using

conformal field theory techniques [4–6] and in its topological formulation [7–9]. The three

approaches were proven to be equivalent in many instances. See e.g. [10, 11] for reviews of

the two-dimensional theory of quantum gravity.

While the topological formulation of two-dimensional gravity on Riemann surfaces

without boundary was put on a firm footing a while back [7, 8], the theory on Riemann

surfaces with boundary was only recently understood rigorously [12]. This gave rise to

a flurry of mathematical activity which made earlier observations in the physics litera-

ture [13–17] precise [18–21]. See [22] for a partial review peppered with physical insight

and [23–25] for more recentresults.
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Of particular interest to us here is the open/closed duality which was understood fairly

well in the string theory literature [13–17], and which was rigorously derived, including

important additional details, in the more recent mathematical physics literature [18–21]

in the case of pure two-dimensional gravity. This duality relates an open/closed string

partition function to a purely closed string partition function; to be precise, the addition

of a D-brane in topological string theory is transmuted into a shift of the background, a

renormalization of the partition function, an operator insertion and an integral transform.

While the conceptual framework goes back to [15–17], precise formulas were given more

recently in [19]. Only the latter allow to make direct contact with the rigorous analysis in

algebraic geometry [12, 19–21].

The main mathematical tool in the derivation of the precise form of open/closed string

duality [19] was the Kontsevich matrix model of pure two-dimensional gravity [9]. This

matrix model depends only on the closed string sources, and can be viewed as a closed

string matrix model in that sense. The closed versus open/closed duality in the case of pure

gravity was derived in a particularly clear manner by integrating out off-diagonal degrees of

freedom of a (N+1)×(N+1) matrix model to obtain a N×N matrix model depending on

one extra eigenvalue which is the integral transform of an open string coupling (or D-brane

modulus) [19]. In the large N limit, this then gives rise to a duality between a closed string

theory and an open/closed string theory. See also [18, 26] for related results.

In this paper, we find an alternative to the original mathematical derivation that allows

for a generalization to the case of two-dimensional topological gravity coupled to matter.

The open/closed duality in this case was understood to a degree in [27]. We provide

the mathematically precise relation between the open/closed and closed string partition

function using the technique described above of integrating out off-diagonal degrees of

freedom at finite N , and then taking the infinite N limit. This will lead to considerable

additional insight. Indeed, we naturally find a determinant insertion in the Kontsevich

matrix model. We moreover find that the closed string integrable hierarchy is intuitively

extended to include the missing times. Importantly, by matching to the integrable system

literature, we are able to obtain a precise algebro-geometric understanding of the resulting

open/closed and extended partition functions. We also improve our understanding of the

Virasoro algebras that govern the generating functions.

The paper is structured as follows. In section 2, we first present the result of par-

tially integrating out off-diagonal matrix elements in the Kontsevich matrix model in an

elementary fashion. We then interpret the resulting equations in terms of concepts in the

integrable systems literature, as well as in string theory. We moreover build the bridge

to the open/closed topological intersection numbers studied in algebraic geometry. In sec-

tion 3 we provide a guide to the various Virasoro algebras that appear in the context of

these integrable systems, and clarify how to interpret them. The knowledge gained is used

to prove a crucial statement in section 2. In section 4, we conclude with a summary and

some open problems. In appendix A we provide properties of a generalized Fourier trans-

form, in appendix B the result of conjugating Virasoro generators to a more familiar form,

and in appendix C, we review an alternative viewpoint on open/closed duality in the case

of pure gravity.
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2 The open/closed string duality with matter

In this section, we first derive a central technical result in an elementary manner. We start

from the generalized Kontsevich matrix model [9, 28–30] with matrix integration variables

of dimension (N+1)×(N+1) and integrate out the off-diagonal matrix elements compared

to N ×N and 1× 1 blocks around the diagonal. As we will discuss, the resulting equation

can be interpreted in terms of standard concepts in integrable systems, and has interesting

conceptual consequences in topological gravity and low-dimensional string theory.

2.1 A brief overview

The generalized Kontsevich model is a matrix generalization of the higher Airy func-

tion [9]. When the matrix model integration variable tends to infinite size, it becomes

a generating function for the p-spin intersection numbers on moduli spaces of Riemann

surfaces [9, 28–33]. Equivalently, it is the partition function of topological gravity coupled

to matter of type p, or a closed string theory of gravity plus matter in dimension smaller

than one [34–36].

Our starting point is the study of the generalized Kontsevich model at finite N . In

particular, we will perform the integration over 2N off-diagonal degrees of freedom in the

(N + 1) × (N + 1) matrix integration variables, and will be left with a N × N matrix

model and an effective action for one more diagonal degree of freedom. In the large N

limit, both the (N + 1) × (N + 1) and the N × N dimensional model will correspond to

closed string matrix models. The extra eigenvalue will eventually be related to a D-brane

or open string modulus. The equation that results from the integration will thus allow

for an interpretation in terms of open/closed string duality. Equivalently, it allows for

an interpretation of intersection numbers of Riemann surfaces with boundaries and bulk

and boundary insertions, in terms of intersection numbers of Riemann surfaces with only

bulk insertions.

Our approach has been inspired by a number of sources. Firstly, the idea of open/closed

string duality can at least be traced back to the advent of D-branes in string theory [37].

The fact that it takes a particularly simple form in the case of pure topological gravity was

understood in [16]. These ideas were extended to the case of topological gravity with matter

in [27]. At a technical level, these references have a different approach. Secondly, the more

rigorous reference [19] follows almost the same technical route we described above to render

the physical intuition in [16] mathematically precise, but there are important differences

that we will highlight.

2.2 The generalized Kontsevich model extended

A topological closed string partition function τ(Λ) corresponding to topological gravity in

two dimensions coupled to topological matter is captured by the generalized Kontsevich

model [9, 28–30]:

τ(Λ) =
N(Λ)

D(Λ)
, (2.1)

– 3 –
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where the numerator N(Λ) and the denominator D(Λ) read

N(Λ) =

∫
[dM ]Ne

−α 1
p+1

Tr [(M+Λ)p+1]≥2

D(Λ) =

∫
[dM ]Ne

−α
2

∑p−1
k=0 TrMΛkMΛp−1−k

(2.2)

The square brackets with lower index ≥ 2 indicate that one should consider only terms

that are of order two or higher in the N×N hermitian matrix integration variable M . The

coupling constant α can be identified with one over the string coupling, α = −1/gs. The

partition function of the closed string is a function of the matrix source Λ which codes the

values of all couplings to the matter primaries and gravitational descendants. When the

couplings go to zero, the matrix source Λ goes to infinity, and the τ function approaches

one. The matter content is specified by the order p + 1 of the potential term. We have

that p = 2 for pure gravity.1

Our set-up is elementary. We take the source matrix as well as the integration variable

to be an (N + 1) × (N + 1) matrix and wish to interpret the last diagonal entry of the

source matrix as (the dual of) an open string (or boundary insertion) modulus. The

matrix integral only depends on the eigenvalues of the source matrix Λz, which we take to

be diagonal:

Λz = diag(λ1, . . . , λN , z) . (2.3)

We used the special notation z for the last diagonal entry, which we plan to single out. We

have the corresponding closed string partition function:

τ(Λz) =
N(Λz)

D(Λz)
. (2.4)

To perform the integration over the 2N off-diagonal degrees of freedom, we integrate over

all N(N + 1) off-diagonal degrees of freedom, and then reinstate those that we wish to

keep. To perform the integration, our main tool is the Harish-Chandra-Itzykson-Zuber

integration formula [38, 39]. We integrate in two steps. Firstly, we concentrate on the

numerator, and then we perform the Gaussian integration in the denominator.

The exponent in the numerator (2.2) of equation (2.4) can be simplified by shifting

away the source Λz, to keep only a term which has power p+ 1, and a linear and constant

term in the integration variable M . Indeed, we have

[(M + Λz)
p+1]≥2 = (M + Λz)

p+1 − Λp+1
z − (p+ 1)ΛpzM , (2.5)

and therefore upon shifting M −→ M − Λz, we find that the numerator N(Λz) takes

the form:

N(Λz) =

∫
[dM ]N+1e

−αTr
(
Mp+1

p+1
−MΛpz+ p

p+1
Λp+1
z

)
. (2.6)

1We remark that these matrix integrals should be thought off as consisting of a Gaussian integration

plus an exponential of higher powers that are to be expanded as formal power series in the integration

variable. For a careful treatment of these and other aspects see e.g. [9, 19].

– 4 –
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We can then integrate over the unitary, angular variables that serve to diagonalise the

matrix M . To that end we parameterize the (N + 1) × (N + 1) hermitian matrix M in

terms of a unitary matrix U and diagonal matrix Md as M = UMdU
−1. The matrix

integral factorizes:

N(Λz) =
π
N(N+1)

2∏N+1
i=1 i!

∫ N+1∏
i=1

dmi∆N+1(m)e
− α
p+1(

∑N+1
i=1 mp+1

i +pTr Λp+1
z )

×
∫

[dU ]N+1e
αTr ΛpzUMdU

−1
, (2.7)

where the integration variables mi are the eigenvalues of the diagonal matrix Md and we

defined the Vandermonde determinant measure factor

∆N (m) =
∏

1≤i<j≤N
(mj −mi)

2 . (2.8)

We use the Harish-Chandra-Itzykson-Zuber formula [38, 39]∫
[dU ]N+1e

αTrAUBU−1
=

∏N
i=1 i!

α
N(N+1)

2

det(eαaibj )∏
1≤i<j≤N+1(aj − ai)(bj − bi)

, (2.9)

to perform the integral over the unitary matrix U :

N(Λz) =
1

(N + 1)!

(π
α

)N(N+1)
2 1∏

1≤i<j≤N+1(λpz,j − λ
p
z,i)

e
− αp
p+1

Tr Λp+1
z

×
∫ N+1∏

i=1

dmi e
− α
p+1

∑N+1
i=1 mp+1

i

∏
1≤i<j≤N+1

(mj −mi) det
(
eαλ

p
z,imj

)
. (2.10)

In the next step, we isolate the integral over the last diagonal variable mN+1 and write the

remaining factors as an N × N matrix integral that we wish to identify as a generalized

Kontsevich model with an extra insertion. The first step towards this goal is to expand

the determinant along the (N + 1)st row of the matrix:

det
N+1

(eαλ
p
z,jmi)

N+1∏
i<j

(mj −mi) =
N+1∑
l=1

eαz
pml det

N
(eαλ

p
jmi)i 6=l

N+1∏
i<j 6=l

(mj −mi)
N+1∏
i 6=l

(ml −mi) .

(2.11)

By suitably changing variables in each term of the sum and using the permutation in-

variance of the measure, one can show that each resulting integral contributes equally.2

Therefore, this sum may be written as (N + 1) times the contribution from the l = N + 1

term. For easier writing, we rename the diagonal integration variable mN+1 = s and find

the numerator:

N(Λz) =
1

N !

(π
α

)N(N+1)
2 1∏N

i=1(zp − λpi )
e
−α p

p+1
(zp+1+Tr Λp+1)

∫
ds e

−α s
p+1

p+1
+αzp s

∫ N∏
i=1

dmi∆N (mi)
det(eαλ

p
imj )

∏N
i=1(s−mi)∏

1≤i<j≤N (mj −mi)(λ
p
j − λ

p
i )
. (2.12)

2We thank Alexandr Buryak for clarifying analogous steps that arise in [19].
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At this point, we trace our steps backwards and use the Harish-Chandra-Itzykson-Zuber

formula in reverse. Thus, we write the numerator in terms of the integration over a single

variable s and a N ×N hermitian matrix M :

N(Λz) =
(π
α

)N 1

det(zp − Λp)

∫
ds e

−α
(
sp+1

p+1
−zp s+ p

p+1
zp+1

)

×
∫

[dM ]Ne
−αTr

(
Mp+1

p+1
−ΛpM+ p

p+1
Λp+1

)
det(s−M) . (2.13)

This finishes the first and harder part of the calculation. Secondly, we must keep track of

the denominator D(Λz) that serves to anchor the partition function τ at 1 for large source

matrix Λ. The integration in the denominator is Gaussian, and the N × N determinant

that will serve to normalize the final N ×N matrix integration can easily be factored out:

D(Λz) =

∫
[dM ]N+1e

−α
2

∑p−1
k=0 TrMΛkzMΛp−1−k

z

=

N+1∏
i=1

√
2π

α

1√
pλp−1

z,i

N+1∏
i 6=j

√
π

α

√
λz,j − λz,i
λpz,j − λ

p
i,z

=

√
2π

α
(pzp−1)−

1
2

N∏
i=1

π

α

λi − z
λpi − zp

D(Λ)

=

√
2π

α

(π
α

)N det(z − Λ)

det(zp − Λp)
(pzp−1)−

1
2 D(Λ) . (2.14)

The integrating-out in both numerator and denominator provides us with a final formula

for the tau-function at finite N :

τ(Λz) =

√
αp

2π

z
p−1
2

det(z − Λ)
e
−α p

p+1
zp+1

∫
ds e

− α
p+1

sp+1+α zp s

× 1

D(Λ)

∫
[dM ]Ne

−α 1
(p+1)

Tr [(M+Λ)p+1]≥2 det(s−M − Λ) . (2.15)

This is our first technical result. To clarify its significance, we repackage it in various ways,

and then provide an interpretation.

2.3 The closed and open/closed string partition functions

To make contact with both the string theory and integrability literature, we slightly reshuf-

fle the result (2.15):

det
(

1− z

Λ

)
τ(Λz) =

√
αp

2π
z
p−1
2 e

−α p
p+1

zp+1
∫
ds eα z

p s (2.16)

× 1

D(Λ)

∫
[dM ]e

−α 1
(p+1)

Tr [(M+Λ)p+1]≥2 e
−α 1

p+1
sp+1 det(Λ +M − s)

det(Λ)
.

2.3.1 The closed string partition function

We wish to be more specific about the interpretation and meaning of both the left and

the right hand side of the equality (2.16). Firstly, let us remind the reader that the closed

– 6 –
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string partition function τ(Λ) is the τ -function of a reduced KP integrable hierarchy. The

times tn of the integrable hierarchy are defined in terms of the source matrix Λ by

tn = − 1

n
Tr Λ−n . (2.17)

The times play the role of closed string couplings in topological string theory. A well

known and important result is the independence of the closed string partition function on

the times tnp, where n ∈ N [9, 30]. We will make use of this repeatedly in what follows.

Secondly, we consider the closed string partition function τ(Λz) with the extra source

eigenvalue z (as in equation (2.3)). We can think of the addition of the extra source

eigenvalue z as a redefinition of the closed string couplings tn. Indeed, we have:

t̃n = − 1

n
Tr Λ−nz = − 1

n
Tr Λ−n − 1

n zn
= tn −

1

n zn
. (2.18)

Thus, if we view the τ -function as a function of the time variables tn, which are independent

in the large N limit, then we can define a shifted closed string partition function by

the formula:

τ(Λz) = τ

(
tn −

1

n zn

)
. (2.19)

The extra source term redefines the closed string background. This elementary aspect of

the duality formula (2.16) is well-understood in the literature.

Let us introduce an alternative symbol for the determinant on the left hand side of

equation (2.16):

eξ = det
(

1− z

Λ

)
, (2.20)

which implies that

ξ =

∞∑
n=1

zntn . (2.21)

We then recognize on the left hand side of equation (2.16) a quantity from integrable

systems [42], namely the extended partition function or wave potential τext(Λ, z) equal to:

τext(Λ, z) = eξ τ(Λz) . (2.22)

It is important that the extended tau-function τext(Λz) (in contrast to the tau-function

τ(Λ)) depends on all times of the KP integrable hierarchy, and in particular on the times

tnp. The factor eξ introduces an exponential tnp dependence. Thus the left-hand side

τext(Λz) of the equality (2.16) is an extended and shifted closed string partition function,

equal to the wave potential of the KP integrable hierarchy.

2.3.2 The wave potential and the open string partition function

Moreover, we also wish to compactly code and interpret the right hand side of equa-

tion (2.16). To that end we define an open/closed partition function:

τop+cl(Λ, s) =
1

D(Λ)

∫
[dM ]e

−α 1
(p+1)

Tr [(M+Λ)p+1]≥2 e
−α 1

p+1
sp+1 det(Λ +M − s)

det(Λ)
, (2.23)

– 7 –
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which is equal to the generalized Kontsevich matrix integral with a normalized determinant

insertion labelled by a coupling constant s. Our result (2.16) then reads more compactly:

τext(Λ, z) =

√
αp

2π
z
p−1
2 e

−α p
p+1

zp+1
∫
ds eα z

p s τop+cl(Λ, s) . (2.24)

If we moreover define a formal Fourier transform of a function (or rather a formal power

series) f(s) by:

Φ[f(s)](z) :=

√
αp

2π
z
p−1
2

∫
ds e

α
(
zp+1

p+1
+zps

)
f(s+ z) , (2.25)

we have that our duality succinctly reads:

τext(Λ, z) = Φ
[
τop+cl(Λ, s)

]
(z) . (2.26)

We summarize that the (finite N generalization of the) extended closed string partition

function equals the integral transform of the open/closed string partition function. Impor-

tantly, we still need to argue that the correct interpretation of the right hand side of the

result (2.26) is indeed as an open/closed string partition function. In order to do so, we

need considerably more background.

Relatively recently, the following wave function was introduced in the integrable system

literature [41, 42]. Given a p-reduced integrable KP hierarchy and the associated Lax

operator L — see [40] for a pedagogical introduction to the subject — satisfying the

evolution equations:
∂L

∂tm
= [[L

m
p ]≥0 , L] , (2.27)

one defines a wave function Ψ(tk) that satisfies the differential equations:

∂Ψ

∂tm
= [L

m
p ]≥0 Ψ , (2.28)

as well as the initial condition [41, 42]

Ψtn≥2=0 = 1 . (2.29)

The interest in the wave function Ψ(tk) originates in the advance that has been made in

computing intersection numbers on moduli spaces of Riemann surfaces with boundaries [21,

41]. Indeed, in the presence of boundaries, the reduction of the integrable hierarchy no

longer takes place, and the generating function of intersection numbers does depend on the

times tnp. Moreover, there is an extra dependence on a coupling constant s that counts

open string or boundary insertions. The partition function of closed/open intersection

numbers can be expressed in terms of the wave function Ψ [20, 21]. Let us describe the

final result of the algebro-geometric calculations. We introduce free energies that generate

intersection numbers on Riemann surfaces with and without boundary:

τ = eF
cl

τop+cl
geom = eF

cl+F op
= τ eF

op
. (2.30)

– 8 –
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Crucially, it is shown in [21] that the generator F open of geometric open/closed intersec-

tion numbers is given by the logarithm of the wave function Ψ(tk) after a substitution

of variables:

F op = log Ψ (ti, tp → tp − αs) . (2.31)

It is important to note here that in the generating function, we have allowed for extended

closed string amplitudes, namely, amplitudes where we have added boundaries but no

explicit open string insertions. In this regard, see the useful intuitive remarks in [20].

Finally, we are ready to state the relation our matrix model has to the algebro-

geometric open/closed intersection numbers. We propose that our matrix integral τop+cl

is equal to its geometric counterpart:

τop+cl = τop+cl
geom = τ(t) Ψ(t, tp − αs) . (2.32)

The left hand side is our open/closed string partition function τop+cl defined in terms of

the generalized Kontsevich integral with normalized determinant insertion (2.23), while

the right hand side is the generator of geometric open/closed string intersection numbers,

according to [21].

We will prove the identification (2.32) in the following. As a warm-up, let us first

show that our τop+cl indeed only depends on the combination tp − αs as expected from

equation (2.32). We write the open/closed partition function τop+cl(Λ, s) as the inverse

integral transform of the wave potential τext(Λ, z):3

τop+cl(Λ, s) =

√
αp

2π

∫
dz z

p−1
2 e

α p
p+1

zp+1−α zp s
τext(Λ, z) . (2.34)

From this expression, one verifies that the open/closed partition function is annihilated by

the following operator:(
1

α

∂

∂s
+

∂

∂tp

)
τop+cl(Λ, s) =

√
αp

2π

∫
dz z

p−1
2 e

α p
p+1

zp+1−α zp s
(
−zp +

∂

∂tp

)
τext(Λ, z) .

= 0 . (2.35)

In the second equality, we have used that the dependence of the wave potential on the time

tp comes purely from the eξ factor as the purely closed string partition function τ(Λz) is

independent of the times tnp. This finishes our proof of the elementary property.

More importantly, we will prove that the wave function Ψ(tk) which is equal to the ratio

of our matrix model integral τop+cl and the original closed string tau-function τ(Λ) does

indeed satisfy the differential equations (2.28) and the initial conditions (2.29) in section 3.3.

Since the solution to these equations is unique, that will prove our claim (2.32).

3To obtain this expression, the contour in the z-plane is engineered to give the equality

αp

2π

∫
dz zp−1 eαz

p(s−s′) =
1

2π

∫
d(αzp) eαz

p(s−s′) = δ(s− s′) . (2.33)
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In closing we remark that the matrix model perspective on both the algebraic and

stringy duality naturally gives rise to the extended closed string partition function en-

countered in [20]. This is directly related to the wave function that is canonical from the

perspective of the integrable system [41, 42], i.e. it is the wave function that governs the

algebraic intersection numbers [21], including their extra time dependencies.

3 The open/closed string Virasoro constraints

The KdV integrable hierarchy combined with one Virasoro constraint — the string equa-

tion — is sufficient to determine all correlators of topological gravity coupled to matter.

Equivalently, the W-algebra constraints on topological gravity correlators are sufficient to

determine them all. A subset of the W-algebra constraints are the Virasoro equations,

which are strong constraints on the partition function and which allow to make clear con-

tact with the free fermion formulation of the integrable hierarchy, for instance. They will

also allow us to make further contact with the geometric framework [21]. Crucially, they

are instrumental in proving the identification between our matrix integral and the gener-

ator of geometric invariants. The identification of these Virasoro algebras goes back to

the study of open/closed string matrix models [13, 14] and has also been touched upon

in [16, 22], amongst many other places. We hope our treatment clarifies the various guises

of the Virasoro algebra in the literature.

3.1 The open/closed Virasoro algebra

The closed string partition function is annihilated by half of a Virasoro algebra [29, 43–46]:

Lnτ(Λz) = 0 for n ≥ −1 . (3.1)

The generators of the Virasoro algebra are given traditionally in terms of the times tk of

the integrable system:

L−1 = α
∂

∂t1
+
∞ ′∑

k=p+1

k

p
tk

∂

∂tk−p
+

1

2p

p−1∑
k=1

k(p− k) tktp−k

L0 = α
∂

∂tp+1
+
∞ ′∑
k=1

k

p
tk

∂

∂tk
+
p2 − 1

24p

Ln = α
∂

∂t(n+1)p+1
+

∞ ′∑
k=1

k

p
tk

∂

∂tnp+k
+

1

2p

pn−1 ′∑
k=1

∂2

∂tk∂tnp−k
. (3.2)

The primed sums have indices in the reduced set of times tk/∈pN. Here we study a set

of extended Virasoro generators Lext
n that act on the wave potential τext(Λ, z) in such a

manner that they become differential operators in the spectral parameter z only. Moreover,

after Fourier transform, they become differential operators in the variable s. Thus, we will

find the following equalities:

Lext
n (tk)τext = −Lext

n (z)Φ[τop+cl(s)](z) = −Φ[Lext
n (s)τop+cl] . (3.3)

– 10 –
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Therefore, the wave potential τext will be annihilated by the generators

Lcl
n = Lext

n (tk) + Lext
n (z) , (3.4)

while the open/closed partition function τop+cl will be killed by the Virasoro generators:

Lop
n = Lext

n (tk) + Lext
n (s) . (3.5)

To prove the equalities (3.3), we firstly propose that the extended Virasoro generators are

given by the following expressions in terms of the times tk:

Lext
−1 = α

∂

∂t1
+

∞∑
k=p+1

k

p
tk

∂

∂tk−p
+

1

2p

p−1∑
k=1

k(p− k) tktp−k + tp

Lext
0 = α

∂

∂tp+1
+

∞∑
k=1

k

p
tk

∂

∂tk
+

(
p2 − 1

24p
+

1

2p

)

Lext
n = α

∂

∂t(n+1)p+1
+

∞∑
k=1

k

p
tk

∂

∂tnp+k
+

1

2p

pn−1∑
k=1

∂2

∂tk∂tnp−k
+

1

p

∂

∂tnp
. (3.6)

Note that all times tnp appear in these extended Virasoro generators. This is a natural

change, since the wave potential depends on all times. Secondly, we observe further addi-

tional terms that can formally be argued as follows. If we were to introduce a time t0 such

that t0 = −1
0TrΛ0 — compare to equation (2.17) —, then 0 t0 would measure minus the

dimension of the matrix Λ. Since the latter changes by one in our process of integrating

out off-diagonal degrees of freedom, the combination 0 t0 can be argued to change by one.

This formally gives rise to the last term in the first and third lines of the proposal (3.6).

The additional contribution to the constant term in L0 can then be obtained by computing

the [Lext
1 , Lext

−1 ] commutator. A more solid argument for the proposal is the long calculation

that follows.

By explicitly acting with the extended Virasoro generators Lext
n (tk) on the wave po-

tential τext, we will manage to represent the extended Virasoro operators as differential

operators in z exclusively. Firstly, we calculate the action of the generators Lext
n>1 on the

wave potential:

Lext
n τext = Lext

n

(
eξ τ(Λz)

)
= τ(Λz)L

ext
n eξ + eξ Lext

n τ(Λz) +
1

p

pn−1∑
k=1

∂eξ

∂tnp−k

∂τ(Λz)

∂tk
. (3.7)

We have taken into account the cross term that arises due to the double-derivative term

in the Lext
n>0 generators. Let us consider each of these terms in turn. The first term is

proportional to:

Lext
n eξ =

(
α znp+p+1 +

1

p

∞∑
k=1

ktkz
np+k +

1

2p

np−1∑
k=1

znp +
1

p
znp

)
eξ . (3.8)
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Observe that the second term in equation (3.8) can be rewritten as a z-derivative:

Lext
n eξ =

(
α znp+p+1 +

znp+1

p

∂

∂z
+
np+ 1

2p
znp
)
eξ . (3.9)

Let us now consider the second term in equation (3.7). The important input here is that the

closed string partition function τ(Λz) is annihilated by the action of the shifted Virasoro

algebra where the shifted times t̃k are given by

t̃k = tk −
1

k zk
. (3.10)

The shifted Virasoro generators take the simple form:

Lext
n (tk) = Lext

n (t̃k) +
1

p

∞∑
k=1

1

zk
∂

∂tnp+k
. (3.11)

Acting on τ(Λz) the first term gives a zero contribution while the second term can be

rewritten as:

Lext
n τ(Λz) =

1

p
znp+1 ∂τ

cl(Λz)

∂z
− 1

p
znp+1

np−1∑
k=1

z−k−1∂τ(Λz)

∂tk
. (3.12)

Finally, the last term in equation (3.7) can be evaluated to be:

eξ

p
znp+1

np−1∑
k=1

z−k−1∂τ(Λz)

∂tk
. (3.13)

We see that this contribution cancels the second term in equation (3.12) after multiplication

by eξ. Furthermore, the coefficients of the ∂/∂z terms in formulas (3.9) and (3.12) are the

same. Therefore, summing over all terms, we find the following differential operator as the

action of the extended Virasoro generators on the wave potential:

Lext
n (tk)τext =

(
αznp+p+1 +

1

p
znp+1 ∂

∂z
+
np+ 1

2p
znp
)
τext . (3.14)

The differential operator on the right hand side is the negative of what we defined to be

Lext
n (z) in equation (3.4) for the n > 0 Virasoro generators. We turn to the remaining two

cases. The calculations for L0 are similar to the ones we have already done and we find

Lext
0 τext =

(
α zp+1 +

z

p

∂

∂z
+

1

2p

)
τext . (3.15)

Note that the constant 1/(2p) term survives in the first equality because the shifted Virasoro

generator L0(t̃k) that annihilates the closed string partition function τ(Λz) does not include

this constant term.

The analysis for the operator Lext
−1 is more involved due to the terms quadratic in the

times. We use again the fact that the operator Lext
−1(t̃k), with shifted times, annihilates the

– 12 –
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closed string partition function and find the following relation:

Lext
−1τext =

α z +
∞∑

k=p+1

k

p
tkz

k−p

 τext + eξ
∞∑

k=p+1

1

p

1

zk
∂τ

∂tk−p

+

(
tp +

1

2p

p−1∑
k=1

k(p− k)

(
tp−k
kzk

+
tk

(p− k)zp−k
− 1

k(p− k)zp

))
τext . (3.16)

We combine terms linear in the times tk and use the equations

∞∑
k=1

k

p
tk z

k−1eξ =
1

p

∂eξ

∂z
and

∞∑
k=1

z−k−1∂τ(t̃k)

∂tk
=
∂τ(t̃k)

∂z
, (3.17)

to finally obtain

Lext
−1 τext = α

(
z +

1

αp zp−1

∂

∂z
− p− 1

2αp zp

)
τext . (3.18)

We note that the tp term in the extended Virasoro generator (3.6) is crucial in order to

obtain the sum over all times that leads to the ∂z-derivative acting on the eξ factor. In short,

the form of the Virasoro generators (3.14) is valid for all n. This concludes our analysis

of the extended closed Virasoro generators and how they are represented as differential

operators in z on the wave potential. We surmise that indeed the closed string Virasoro

generator Lcl
n in equation (3.4) annihilates the wave potential τext.

3.2 From closed to open Virasoro

Our next step in proving the equalities (3.3) is to Fourier transform the z-differential

operator using the open/closed duality equation (2.26) to find the open string realization

of the Virasoro algebra. To make things more transparent, we first rewrite the extended

Virasoro algebra in (3.14) in the following manner:

Lext
n τext = α zp(n+1)

(
z +

1

αp zp−1

∂

∂z
− p− 1

2αp zp

)
+
n+ 1

2
zpn . (3.19)

We now make use of the properties of the Fourier transform that are proven in appendix A

(see equation (A.5)) that effectively show the equivalence between differential operators of

z acting on the closed string side and differential operators of s acting on the open string

side. We find the Virasoro generators:

Lext
n (s) = (−α)−n

(
∂n+1

∂sn+1
· s− 1

2
(n+ 1)

∂n

∂sn

)
= (−α)−n

(
s
∂n+1

∂sn+1
+

1

2
(n+ 1)

∂n

∂sn

)
. (3.20)

Thus, we have shown that the operators Lop
n defined in equation (3.5) as the sum of the

extended Virasoro generators and the s differential operators annihilate the open/closed

partition function τop+cl.
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Let us briefly remark on the string coupling dependence of the Virasoro generators.

The terms in equation (3.6) become more transparent when we rescale the times by a factor

of α = −1/gs. The resulting string coupling dependence is then g−2
s for the term quadratic

in times in Lext
−1 , arising from the sphere, and there is an extra term arising from the disk,

proportional to g−1
s . The term with the two derivatives in Lext

n is proportional to g2
s , and

the last, single derivative term is linear in the string coupling gs. The terms above, in

equation (3.20) are proportional to gns . Each open string insertion comes with an extra

factor of the string coupling gs.

An alternative point of view. Let us add a remark on how the open/closed Virasoro

generators are related to those found in the literature for p = 2. See e.g. [19, 22]. We show

in appendix B that those Virasoro generators (which we also compute in the appendix for

general p) are related to the ones we have by conjugation. Indeed, we can conjugate the

Virasoro generators to eliminate the tnp dependence of the wave potential τext on which

they act. The open/closed Virasoro generators then match the generators of references [19]

and [22] that study the case p = 2. It should be remarked however (see appendix B) that

this point of view introduces either an intricate operator insertion det(∂s/α+ Λp)
− 1
p inside

the matrix expression for the open string partition function, or the ratio of determinants

insertion discussed in appendix C for p = 2 [19]. Since our matrix model perspective in the

bulk of the paper naturally matches both the algebro-geometric considerations as well as

the integrability literature, we have stuck to this point of view in section 2 as well as in the

calculation of the open/closed Virasoro generators presented in subsections 3.1 and 3.2.

Finally, we remind the reader that these Virasoro algebras have an interpretation in terms

of a primary operator insertion that dates back to [13, 14].

3.3 The integrable hierarchy and the relation to geometry

In this subsection, we tie up several loose ends. We first make good use of the operators we

found in our analysis to prove the statement made in subsection 2.3.2 that our open/closed

partition function matches the algebro-geometric generating function. Secondly, we note

that a subset of our Virasoro constraints correspond to geometric constraints derived in [21],

and that our Virasoro algebra extends those constraints to an infinite family.

The connection to algebraic geometry. The first part of the proof of the fact that

our matrix partition function matches the geometric one is based on a classic result in

integrable systems, which says that the Baker-Akhiezer wave function ψ(tk, z) is given by:

ψ(tk, z) =
τ(t̃k)

τ(tk)
eξ(tk,z) =

τext

τ
, (3.21)

where t̃k are the shifted times (3.10). The Baker-Akhiezer wave function ψ(tk, z) satisfies

the differential equations (2.28) as well as the eigenvalue equation

Lψ(tk, z) = zp ψ(tk, z) , (3.22)

where L is the Lax operator of the integrable hierarchy. Moreover, from the linear relation

between the open/closed partition function τop+cl and the wave potential τext in (2.34),
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it is clear that the ratio τop+cl/τ is related to the Baker-Akhiezer function ψ(tk, z) via

the Fourier transform. Therefore the ratio τop+cl/τ also satisfies the differential equa-

tions (2.28).

It remains to prove that the wave function Ψ(tk) = τop+cl/τ also satisfies the initial

conditions (2.29). Our proof closely follows the proof in [42]. Previously, we proved that

the wave potential satisfies the equation (see (3.18)):

Lext
−1 · τext = αSz · τext , (3.23)

where we define Sz to be the differential operator:

Sz =

(
z +

1

αp zp−1

∂

∂z
− p− 1

2αp zp

)
. (3.24)

We now set all times to zero except the time t1 and study the reduced Baker-Akhiezer

function ψ(tk, z)|t≥2=0. When all times except time t1 are zero, the closed string partition

function τ(t) equals one. Also, recall that the operator Lext
−1 coincides with the operator

α∂t1 when all times but the first are zero.4 Combining this fact with equation (3.23) and

the identification (3.21), we conclude that [42](
∂

∂t1

)k
ψ(tk, z)|t≥2=0 = Skz ψ(tk, z)|t≥2=0 (3.25)

If we therefore define the function A(z) to be the value that the wave function takes

at t1 = 0,

ψ(tk, z)|t≥1=0 = A(z) , (3.26)

then we see that by Taylor expansion, we have

ψ(tk, z)|t≥2=0 =

∞∑
n=0

1

n!
Snz A(z) tn1 . (3.27)

Moreover, one can check that the function A(z) satisfies the differential constraint [42]:

Spz ·A(z) = zpA(z) . (3.28)

This follows from firstly, the property (3.22) of the Baker-Akhiezer function that it is

an eigenvector of the Lax operator, secondly, the initial conditions that require the Lax

operator L to be (∂t1)p when all times are zero and thirdly, the Lext
−1 Virasoro identity (3.23).

We now claim that the function A(z) that satisfies the differential constraint (3.28) is given

by the following contour integral:

A(z) =

√
αp

2π
z
p−1
2 e

−α p
p+1

zp+1
∫
dse
−α s

p+1

p+1
+α s zp

. (3.29)

4These two statements have to be modified for p = 2. For this value of p, the partition function at zero

higher times equals τ(t) = exp
t31
6

, and the operator Lext
−1 has an extra term t21/2. These two modifications

cancel each other in the reasoning.
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We check by explicitly acting with the operator Sz:

Spz ·A(z) =

√
αp

2π
z
p−1
2 e

−α p
p+1

zp+1
∫
ds sp e

−α s
p+1

p+1
+α s zp

. (3.30)

Within the s-integral, one adds and subtracts zp. Then, the combination (sp − zp) can

be written as a total derivative, which integrates to zero. We have thus proven (3.28).

We have chosen the normalization of the function (3.29) such that it is the inverse Fourier

transform of the constant function equal to 1.

Recall that our wave function Ψ(tk) = τop+cl/τ is the formal Fourier transform of the

Baker-Akhiezer function (3.27):

Ψ(tk)|t≥2=0 =

√
αp

2π

∫
dz z

p−1
2 e

αp z
p+1

p+1
−α zp tp ψ(tk, z)t≥2=0 (3.31)

The key point is now that every term in the sum (3.27) for n > 0 vanishes inside the

integral (3.31) [42]. This can be checked by integration by parts. Therefore the only term

that contributes to Ψ(tk)|t≥2=0 is the n = 0 term. By explicitly substituting the integral

expression for the power series A(z), we obtain

Ψ(tk)|t≥2=0 =

∫
ds e

−α s
p+1

p+1
αp

2π

∫
dz zp−1eα z

p(s−tp) =

∫
ds e

−α s
p+1

p+1 δ(s− tp) = 1 (3.32)

where the last equality follows from the fact that all higher times, amongst which is tp, are

set to zero. Thus, we have proven the initial condition. Therefore we have proven the iden-

tification (2.32) between the matrix and the geometric open/closed generating functions.

Further constraints. Finally, let us remark that our Virasoro constraints Lop
−1 and Lop

0

correspond to the string equation and dilaton equation of [21] (after using charge conserva-

tion, or the dimension constraint). Our Virasoro generators Lop
n extend these geometrically

proven constraints to an infinite set.

4 Conclusions

Topological gravity coupled to topological matter is well-studied [8]. Introducing D-branes

and applying concepts from holography has allowed for a better understanding of these sim-

ple string theories, and has provided hands-on illustrations of profound concepts [15, 16].

Certainly, it has been very useful to underpin these achievements with the rigorous mathe-

matical definition of topological gravity theories on Riemann surfaces with boundaries [12].

This has stimulated progress in the identification of open/closed string correlators on Rie-

mann surfaces with boundaries, and their relation to integrable systems [21]. This has in

turn allowed for a more rigorous understanding [20] of the notion that boundaries can be

replaced by closed string insertions [37].

Amongst the many insights that string theory has provided into topological gravity is

the fact that the integration variables in the Kontsevich matrix model correspond to open

strings. Indeed, in [17], it was argued that the degrees of freedom in the Kontsevich matrix

integral are mesons made of open strings stretching between extended and localized branes.
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In string theory, it is often useful to split a given set of D-branes into a heavy stack, and a

single “probe brane”. In this work we adopted such a probe brane analysis in treating the

Kontsevich matrix model. We integrated out the open strings stretching between a large

N stack, and one extra D-brane. In doing so we have naturally produced a matrix model

realization of open/closed duality. The process of integrating out generates a determinant

operator insertion corresponding to the addition of a D-brane. From the integrable systems

perspective this was argued in the case of pure gravity in [18]. It is important to mention

that the insertion is distinct from the more familiar determinant operator in the Kazakov

matrix model before taking the double scaling limit [17, 27].

The hands-on treatment of the matrix model formulae allowed for a very precise treat-

ment of the duality, the constraints the generating functions satisfy, and their relation to

integrable systems. It is this relation to integrable systems that allowed us to precisely

match our treatment to the rigorous algebro-geometric treatment of the p-spin intersection

numbers on moduli spaces of Riemann surfaces with boundaries. We note that both the

extension of the closed string partition function that depends on all times of the KP inte-

grable hierarchy [20] as well as the wave function that appears in the integrable system [42]

pop out of our matrix model analysis spontaneously.

One direction for future research amongst many is to carefully match the geometric

analysis with a first principle string field theory or conformal field theory derivation of the

amplitudes on Riemann surfaces with boundaries.

Acknowledgments

We thank our colleagues for creating a stimulating research environment, and Alexandr

Buryak for patient explanations of the results in [19]. SA would like to thank the École
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A Properties of the Fourier transform

We exhibit some basic properties of the generalized Fourier transform that prove useful in

the analysis of the Virasoro generators. We recall the definition of the Fourier transform:

Φ[g(s)](z) :=

√
αp

2π
z
p−1
2

∫
ds e

α
(
zp+1

p+1
+zps

)
g(s+ z) . (A.1)

We apply the transform to a function g that is an s-derivative, g(s) = ∂sf :

Φ

[
∂f

∂s

]
=

√
αp

2π
z
p−1
2

∫
ds e

α
(
zp+1

p+1
+zps

)
∂f(s+ z)

∂s

= −α zpΦ[f(s)](z) , (A.2)

where we have integrated by parts and used convergence properties of the functions under

consideration.
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Secondly, we begin by calculating the z-derivative of the Fourier transform:

∂

∂z
Φ[f(s)](z) =

p− 1

2z
Φ[f(s)](z) +

√
αp

2π
z
p−1
2

∫
ds

(
p α zp−1 s+ α zp +

∂

∂z

)
f(s+ z) .

(A.3)

The last two terms cancel against each other by first converting the z-derivative into an

s-derivative and then using the relation derived in equation (A.2). In the remaining term,

we add and subtract pα zp within the integrand, and obtain the inverse Fourier transform of

the function s f(s) on the right hand side. Rearranging the terms suitably, we finally obtain

Φ [s f(s)] (z) =

(
1

αp zp−1

∂

∂z
− (p− 1)

2αp zp
+ z

)
Φ[f(s)](z) . (A.4)

We summarize these results schematically:

−αzp ←→ ∂

∂s(
1

αp zp−1

∂

∂z
− (p− 1)

2αp zp
+ z

)
←→ s . (A.5)

B An equivalent Virasoro algebra

In this appendix, we provide the formulas that accompany the point of view that the (non-

extended) closed string partition function should be strictly dependent on the couplings

tk/∈pZ only. In particular, this perspective gives rise to another form of the Virasoro algebra

acting on the open/closed partition function dual to the pure closed partition function.

Recall that the extended Virasoro generators were obtained by conjugating the usual

Virasoro generators by eξ given in (2.21). Since this function involved all the times including

the tnp, the extended Virasoro generators necessarily involved the times tnp and associated

derivatives. This is in contrast to the closed string partition function; defined via the

generalized Kontsevich matrix model the partition function is necessarily independent of

these times [9, 30]. It is therefore also instructive to define a new wave potential τ̃ that

is obtained by conjugation using an exponent ξ̃ that does not involve these times tnp, and

investigate how the closed-open Virasoro operators are related in this picture. This will

make contact with the existing literature [19, 22, 46].

We begin by defining

τ̃(z,Λ) = eξ̃ τ(Λz) , (B.1)

where

ξ̃ = log det
(

1− z

Λ

)
− 1

p
log det

(
1− zp

Λp

)
= −

∞∑
k=1

k 6=0 mod p

zk

k
Tr Λ−k =

∞∑
k=1

k 6=0 mod p

tk z
k . (B.2)
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The modified statement of open-closed duality is the following compact equation:

τ̃(z,Λ) = Φ[τ̃op+cl(s)](z) , (B.3)

where Φ is the same generalized Fourier transform defined previously and the open/closed

partition functions are different from the ones obtained earlier due to the extra factor that

eliminated the tnp times. In particular, we have:

τ̃op+cl(Λ, s) =
1

D(Λ)

∫
[dM ]e

−α 1
(p+1)

Tr [(M+Λ)p+1]≥2 O · e−α
1
p+1

sp+1

det(M + Λ− s) . (B.4)

The operatorO is given by the differential operator det(Λp+ 1
α
∂
∂s)
− 1
p obtained by translating

the zp operator into an operator acting on the open string variables using the results in

appendix A.

The open Virasoro generators one eventually obtains agree with those in the liter-

ature as we now show in brief. We begin with the closed string Virasoro generators in

equation (3.2). The action of these generators on ξ̃ gives us:

Ln e
ξ̃ =

α znp+p+1 +
1

p

∞∑
k=1

k 6=0 mod p

ktkz
np+k +

1

2p

np−1∑
k=1

k 6=0 mod p

znp

 eξ̃

=

(
α znp+p+1 +

znp+1

p

∂

∂z
+
n(p− 1)

2p
znp
)
eξ̃ (B.5)

The main difference compared to the calculation in the main text is that the finite sum in

the last term on the right hand side is over all integers from 1 to np− 1, but not including

the integers that are 0 mod p. This leads to a different coefficient for the znp term. The

rest of the calculation proceeds as before and we obtain

Lnτ̃(z,Λ) =

(
αznp+p+1 +

1

p
znp+1 ∂

∂z
+
n(p− 1)

2p
znp
)
τ̃(z,Λ) (B.6)

= α z(n+1)p

(
z +

1

αp zp−1

∂

∂z
− (p− 1)

2αp zp

)
τ̃(z,Λ) +

(n+ 1)(p− 1)

2p
znpτ̃(z,Λ) .

For the generator L0, we similarly find

L0τ̃(z,Λ) =

(
αzp+1 +

1

p
z
∂

∂z

)
τ̃(z,Λ)

= α zp
(
z +

1

αpzp−1

∂

∂z
− (p− 1)

2αp zp

)
τ̃(z,Λ) +

p− 1

2p
τ̃(z,Λ) . (B.7)

Lastly, for the L−1 operator, we find the same result as before:

L−1τ̃(z,Λ) = α

(
z +

1

αp zp−1

∂

∂z
− p− 1

2αp zp

)
τ̃(z,Λ) . (B.8)
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By utilizing the properties of the generalized Fourier transform (A.5), we finally obtain

the expression for the open string Virasoro generators acting on the modified open/closed

partition function:

Lop
n (s) = (−α)−n

(
∂n+1

∂sn+1
· s− (p− 1)

2p
(n+ 1)

∂n

∂sn

)
= (−α)−n

(
s
∂n+1

∂sn+1
+

(p+ 1)

2p
(n+ 1)

∂n

∂sn

)
(B.9)

For p = 2, this agrees with the Virasoro generators obtained in [19, 22].

C Another pure duality

In this appendix, we review an alternative expression of open/closed duality derived in the

mathematical literature for the p = 2 case. The derivation has features in common with our

derivation in section 2, but it also differs in important aspects. The rigorous mathematical

treatment of this version of the duality is recent [19–21]. The string theoretic conceptual

background is older [15–17]. We refer to the literature for much of the background, and

merely draw attention to the alternative derivation, on the one hand, and on the other

hand, the consequent differences in the final expression of the duality.

The starting point in [19] is also the Kontsevich matrix model. However the Harish-

Chandra-Itzykson-Zuber formula is applied to the matrix integral with an exponent

quadratic in the matrix variable of integration.5 This differs from the road we pursued

in the bulk where we performed the Harish-Chandra-Itzykson-Zyber integration for an ex-

ponent linear in the matrix variable of integration for all p. This results in a surprisingly

different formula for the open/closed string partition function. Firstly, the closed string

partition function naturally becomes independent of the even times, after combining with

the determinants, and the combination equals a formal Fourier transform of the open/closed

partition function — we refer to [19] for the detailed formulas sketched in this appendix:√
det(1− z

Λ)

det(1 + z
Λ)

τ(Λz) = Φform
s [τ̃op+cl](Λ, z) . (C.1)

The formal Fourier transform Φform
s is a close analogue of our transform Φ [19]. Note that

the left hand side matches the function τ̃ we defined in equation (B.1) when p = 2. The

modified open string partition function, though, takes the form [19]:

τ̃op+cl(Λ, z) =

∫
dµ(s)

∫
dµ(M) det

(
Λ +
√

Λ2 − z2 −M + s− z
Λ +
√

Λ2 − z2 −M − s+ z

)
. (C.2)

We observe an insertion of a ratio of determinants, corresponding to both a brane and an

anti-brane insertion. It would be interesting to see whether the formula (C.2) allows for a

generalization to larger p. Moreover, given the equality of the closed string sides in (B.3)

5This approach is only directly applicable to the case of pure gravity, namely p = 2.
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and (C.1), it would be important to understand the relation between the brane/anti-brane

operator in equation (C.2) and the insertion we obtained in expression (B.4). While in the

case of pure gravity, the relation can be established by retracing all steps in both lines of

reasoning, a more direct physical understanding would be welcome.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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