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Abstract

In this work we present how to fabricate large-area (15 cm2), ultra-low
threshold germanium bolometric photo-detectors and how to operate them
to detect few (optical) photons. These detectors work at temperatures as
low as few tens of mK and exploit the Neganov-Trofimov-Luke (NTL) effect.
They are operated as charge-to-heat transducers: the heat signal is linearly
increased by simply changing a voltage bias applied to special metal elec-
trodes, fabricated onto the germanium absorber, and read by a (NTD-Ge)
thermal sensor. We fabricated a batch of five prototypes and ran them in dif-
ferent facilities with dilution refrigerators. We carefully studied how imping-
ing spurious infrared radiation impacts the detector performances, by shining
infrared photons via optical-fiber-guided LED signals, in a controlled man-
ner, into the bolometers. We hence demonstrated how the radiation-tightness
of the test environment tremendously enhances the detector performances,
allowing to set electrode voltage bias up to 90 volts without any leakage cur-
rent and signal-to-noise gain as large as a factor 12 (for visible photons). As
consequence, for the first time we could operate large-area NTD-Ge-sensor-
equipped NTL bolometric photo-detectors capable to reach sub 10-eV base-
line noise (RMS). Such detectors open new frontiers for rare-event search
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experiments based on low light yield Ge-NTD equipped scintillating bolome-
ters, such the CUPID neutrinoless double-beta decay experiment.

Keywords: Light detector, Ge bolometer, Neganov-Trofimov-Luke effect,
Dark matter, Double-beta decay

1. Introduction1

Bolometric light detectors are nowadays employed in several cryogenic2

experiments searching for rare events, as direct detection of dark matter3

(CRESST [1], COSINUS [2]) and searches for neutrinoless double-beta de-4

cay (AMoRE [3], LUCIFER/CUPID-0 [4], LUMINEU [5] and its follow-up5

CUPID-Mo [6]). They are coupled to the main scintillating crystals which6

contain the nuclear targets for the dark-matter particles or the nuclei that7

can undergo neutrinoless double-beta decay. The main crystal is operated as8

a bolometer and the simultaneous detection of heat and light signals associ-9

ated to the same event can provide particle identification and consequently10

an active background rejection, as proposed in [7, 8, 9, 10] and successfully11

performed (see e.g. in [11, 12, 13]). In particular, composite heat-and-light12

detectors allow to control dominant background events such as nuclear re-13

coils in dark-matter searches and alpha particles in double-beta-decay exper-14

iments.15

In dark-matter searches, a high-performance light detector is required16

to lower the energy threshold [14] and to identify recoils of different-mass17

nuclei [15]. In double-beta decay searches, high-sensitivity light detectors18

are needed either to detect the feeble Cherenkov light emitted by poorly-19

scintillating crystals [16] (this is the case of the promising compound TeO2 [17,20

18, 19, 20, 21]), or to help in pile-up rejection (as in 100Mo-enriched bolome-21

ters, [22, 23, 24]). The pile-up rejection capability is useful also to perform22

precision calorimetric measurements of rare-β-decay spectral shapes (as those23

of 113Cd and 115In) which can be used to scrutinize the value of the axial-24

vector coupling constant [25, 26, 27].25

26

Neganov-Trofimov-Luke (NTL) effect [28, 29] can be exploited in high pu-27

rity semiconductor-based bolometers for lowering the detection threshold and28

enhancing the signal-to-noise-ratio.29

In case of an ionizing particle of primary energy E0 interacting in a semi-30

conductor absorber, an extra heat energy is produce if charge carriers, created31
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by the particle interaction, are drifted by an electric field. The total heat32

sensed by the bolometer is:33

Etot = E0

(
1 +

q · Vel · η
ε

)
= E0 ·GNTL, (1)

where ε is the average energy required to generate an electron-hole pair, q34

is the elementary charge and Vel is the charge collecting potential between35

electrodes (Fig. 1, bottom panel), deposited on the germanium absorber to36

set a drifting electric field across this latter; η is an amplification efficiency37

which accounts for an incomplete gain due to charge trapping or other losses38

(in an ideal case η = 1).39

For Vel >> ε/q (NTL regime), the heat energy Etot is mainly due to the40

NTL effect; therefore, a bolometer operated under this condition behaves as41

a voltage-controlled charge-to-heat amplifier. The NTL signal amplification42

is observed in EDELWEISS [30] and CDMS [31] dark-matter search experi-43

ments, which employ high purity germanium and silicon ionization-and-heat44

composite bolometers.45

To-date, several technologies of NTL bolometers for the detection of pho-46

tons have been developed and used for the aforementioned applications. They47

can be grouped according to the absorber material and the temperature sen-48

sor as follows: silicon absorbers equipped with TES (Transition-Edge Sen-49

sor) thermometers [14, 32, 33, 34, 35]; silicon absorber with NTD (Neutron-50

Transmutation-Doped) germanium thermistors [36, 37]; and germanium ab-51

sorbers read-out by NTD-Ge thermistors [38, 39, 40].52

53

In this work we report on the fabrication method of NTL, NTD-Ge54

equipped germanium bolometers and present the development, characteri-55

zation and performance of five of them. Additional information and mea-56

surements done with early NTL bolometric light detector prototypes can be57

found in [41, 42, 43].58

2. Detector fabrication59

The development of NTL-effect-assisted cryogenic light detectors has been60

carried out at CSNSM laboratory (Orsay, France). The detector absorbers61

are done by electronic-grade germanium wafers (impurity level of the order62

of 1011/cm3) of 44 mm diameter and 0.175 mm thickness, supplied by UMI-63

CORE. Wafers are bombarded with argon ions to remove the germanium64
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oxide at the surfaces and improve the adherence of any subsequent structure65

deposition onto the surfaces. A 50-nm-thick hydrogenated-amorphous ger-66

manium layer is evaporated, as discussed in [44]. Five 100-nm-thick, 3.8-mm-67

pitch annular concentric aluminium electrodes are then deposited. Finally68

the wafers are coated by a 70-nm-thick SiO layer, to enhance the light ab-69

sorbtion1. The germanium absorbers are mounted in copper holders and kept

Figure 1: (a) A picture of a NTL-assisted light detector (NTLLD1). A thin region (grey
strip crossing the annular electrodes) without any SiO coating is visible; it is used to
connect via ultrasonic bonding the different annular electrodes (light circles) and create two
sets of bias electrodes. (b) Sketch of the electrical connection between annular electrodes.
An electrical potential ∆V = V+ − V− can be applied to the two sets of bias electrodes,
to drift electrons (e) and holes (h) as depicted in the scheme, along the electric field lines
(black, solid).

1The enhancement of visible-wavelength photons absorption was initially found to be
35% [45].
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by three PTFE clamps; absorbers are instrumented with a 5 mg NTD-Ge70

thermistors. The electrical contacts between the detectors and the cryostat71

cabling is ensured by Kapton-insulated Au-coated copper pads, glued on the72

copper casing. The NTD-Ge thermistors are electrically connected to the73

aforementioned pads through 25 µm diameter, ∼10 mm long gold bonding74

wires. These latter act also as thermal link between the absorbers and the75

thermal bath. The aluminum electrodes are connected by 25 µm diameter76

aluminum bonding wires to form two separated sets of bias electrodes; a77

voltage can be applied (Fig. 1(b)) to set a charge carrier drifting field within78

the semiconductor absorber. Five NTL light detectors (from NTLLD0 to79

NTLLD4) have been fabricated according to the above-presented scheme.80

For two of them, the process was slightly changed: NTLLD0 did not have81

any SiO coating and NTLLD4 was equipped with an NTD-Ge of smaller82

mass (∼2 mg) in order to enhance the sensitivity. Fig. 1(a) shows a picture83

of NTLLD1 detector.84

3. Detector operation85

3.1. Equipment and conditions of low-temperature tests86

The NTL light detectors have been first operated aboveground, in dif-87

ferent environments, i.e. two dry and one wet dilution refrigerators, at88

the CSNSM laboratory [48, 42]. Some of them have been afterwards op-89

erated underground at LNGS (Laboratory Nazionali del Grans Sasso, Italy)90

and at LSM (Laboratoire Souterrain de Modane, France) where the CU-91

PID R&D and EDELWEISS-III experiments are located, respectively (a de-92

scription of both cryogenic facilities can be found e.g. in [42, 5]). In order93

to reduce the noise due to vibrations generated by the pulse-tube of the94

dry refrigerators [49], spring-loaded mechanical decoupling systems (see e.g.,95

in [50, 51, 5, 52]) have been used.96

Only in a few measurements the detectors under study were investigated97

with visible light photons emitted by scintillating crystals; most of the tests98

have been carried out with near-infrared photons, provided by an infrared99

LED setup located at room temperature and guiding the photons via 0.2-100

mm diameter, plastic optical fibers down to the light detectors. 0.85 µm101

wavelength (Honeywell HFE4050) and 0.95 µm wavelength (Osram LD271)102

photon packages (bursts) were delivered, capable to provide total energies103

ranging from a few eV up to few MeV in a single burst, by simply changing104
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the driving parameters (electrical pulse width and amplitude) of the LEDs.105

The LEDs were also used to charge-reset the germanium absorbers [53].106

Most of the measurements have been performed at temperatures as low107

as 15 mK. A room-temperature, DC electronics with a 675 Hz lowpass cut-off108

frequency [54] has been used to shape the thermistor signals, which have109

been sampled at 5÷10 kHz to correctly reconstruct the signal shape.110

3.2. Optimal working point settings111

The NTD-Ge thermistor bias for the tested detectors has been chosen112

by stabilizing the temperature of the mixing chamber and searching for the113

maximal signal-to-noise ratio (SNR). To this end, we delivered constant LED114

pulses (signal) and recorded the detector RMS baseline noise, for different115

NTD-Ge sensor biases (Fig. 2).
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Figure 2: A signal-to-noise ratio (crosses) of the NTLLD2 detector as a function of the
bias. The RMS noise (points) is also shown. For this detector and set-up, the maximal
SNR is observed for a bias of 3 nA.

116

3.3. Calibration117

Several approaches have been used to calibrate the NTL bolometers, such118

as: X-rays (e.g. a 55Fe source, X-ray fluorescence induced by a high-intensity119
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Figure 3: Illustration of different detector calibration methods.
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γ source), scintillation, LED photon bursts and photon statistics, environ-120

mental muons.121

A 55Fe source was often used to irradiate the detector absorber. A typical122

spectrum obtained is shown in Fig. 3(a).123

As an alternative method, an external high-activity gamma source can be124

used to induce the X-ray fluorescence of the materials directly surrounding125

the detector [40]. One can also exploit the cosmic rays in an aboveground126

facility, by recording the bolometer signal distribution of muons crossing the127

germanium wafer. The muon energy loss probability is well-described by the128

Landau distribution [55] and is illustrated in Fig. 3(b). The most probable129

muon-induced energy release has been evaluated by Geant4-based Monte130

Carlo simulation2 of the order of 100 keV (for a 0.175 mm thick germanium131

absorber).132

The detector calibration can also be performed by using LED photon133

bursts and photon statistics, as successfully demonstrated in [33], and re-134

ported in Fig. 3(c),(d).135

In NTL regime, we could not use the 55Fe X-ray lines (5.9 and 6.5 keV)136

to calibrate our detector energy response, since those lines were broad and137

washed-out. This behaviour is manly due to: (1) e-h charge recombination138

in the primary plasma, created when the photon interacts within the germa-139

nium absorber. X-rays release all their energy in a well-defined point of the140

absorber, creating a dense plasma of electron-hole pairs. The electric field141

set in the germanium absorber via the bias electrodes separate and drift only142

the external charges (plasma erosion) whereas the internal e-h pairs eventu-143

ally recombine. This leads to an incomplete charge collection and hence a144

broadening of the detector signal; (2) e-h trapping due to defects, impurities145

and surface effects. Again, the e-h charges created by an ionising particle are146

trapped (while drifted toward the bias/collecting electrodes) and the detector147

experiences an incomplete charge collection.148

For peak provided via LED photon bursts (where photons interact in the149

germanium simultaneously but over a large area) and for muon interactions150

this broadening is not observed. This is probably due to the fact that the151

e-h charge density is low and the charges are separated and drifted before152

2The simulation has been performed in a very simplified approach, assuming a cosmic
muon angular distribution proportional to cos2(ΘZ), where ΘZ is the zenith angle. The
generated particles are µ+’s with 3 GeV energy.
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recombining. Therefore only these two latter techniques could be used for153

the calibration of the energy detector response in the NTL regime.154

When a light detector is coupled to a source of scintillation and/or Cherenkov155

radiation, the registered light (initially calibrated e.g. by X-rays at 0 V elec-156

trode bias) can also be exploited [39]. It is worth noting that the calibration157

of a detector operated in the NTL mode strongly depends on the source158

used, since the quantum efficiency ε depends on the particle and wavelength159

(we will see later in the text). In our application, the main purpose of NTL160

light bolometers is the detection of visible wavelength photons. Therefore161

the scintillation light is the most pertinent source of calibration.162

4. Detector performance163

4.1. Photo-current noise164

As observed in the very early investigations of NTL detectors [14, 32, 33],165

the performances (i.e. baseline noise and resolution) of these devices are166

strongly degraded if they receive a spurious photon flux (for example, coming167

from high temperature black-bodies). In particular, when a voltage bias is168

set on the bias electrodes, a power proportional to the photon flux times the169

voltage is dissipated; consequently the detector warms up and settles to a170

different working point. Before experiencing this heating, the detector shows171

a baseline excess noise.172

To understand the aforementioned behaviour, we shined the detector with173

a constant photon flux in a controlled manner, by using an infrared LED. We174

monitored the NTL gain, the signal-to-noise ratio and the NTD-Ge resistance175

as a function of the electrodes bias, for different LED photon flux intensities.176

Fig. 4 gathers the results obtained with the NTLLD4 detector. The NTL gain177

still increases with respect to the electrode bias but the gain factor (slope)178

decreases, mainly due to a sensitivity degradation which is caused by the179

warming up of the working point (Fig. 4(a)). Moreover, the photo-current180

injection drastically affects the signal-to-noise ratio; at 40 V a reduction of181

this latter as high as 50% (80%) for the weak (strong) LED-driven photon182

flux is observed (Fig. 4 (c) and Fig. 4(d)).183

Therefore, the performance of NTL bolometers can be drastically im-184

proved by carefully shielding against spurious radiation, making the detector185

photon-tight with respect to environmental photons.186
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Figure 4: (Color online) NTL detector behaviour studies performed to inspect the impact
of a spurious photon flux impinging the germanium (semiconductor) absorber.

4.2. Performance in NTL regime187

The following detector parameters have been studied: the NTL signal188

amplification, the signal-to-noise ratio, the signal sensitivity and the noise189

conditions in different environments (i.e. different dilution refrigerators).190

The evolution of the NTL gain was measured for a given photon wave-191

length by injecting constant intensity LED bursts at low repetition rate192

(about one every 3 s) and recording the signal (amplitude of the pulses) seen193

by the detector, while varying the electrode voltage bias. Simultaneously,194

the RMS baseline noise was monitored to estimate the signal-to-noise ratio,195
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Figure 5: Examples of gain and signal-to-noise ratio as a function of the electrode bias. A
linear fit is used to derive the voltage NTL gain (i.e., η · q / ε) for LED photon bursts of
0.85 µm wavelength photons.

for each bias value. The LED burst intensity was chosen to provide pulses on196

the detector within the linear region of the detector response, for the highest197

electrode bias. Fig. 5 shows some examples of the NTL gain GNTL and the198

corresponding SNR values, as a function of electrode voltage bias. Overall,199

the NTL gain (slope) is almost similar with respect to the voltage polarity.200

Nevertheless, the data show a difference in the gain (within 10%) when a201

positive/negative bias is applied. A difference with respect to electrode bias202

polarity is also observed, for the maximal SNR. This behaviour was already203

observed in the early investigations [14, 32].204

Data of Fig. 5 were fitted by a linear function to derive the value of the205
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amplification efficiency η (taking into account ε for the used light source,206

Ref. [56]). The highest η value achieved with either the positive or the207

negative electrode bias is quoted in Table 1. The NTL amplification efficiency208

for 0.52 µm wavelength photons (which is the average wavelength of photons209

of the Cherenkov radiation in TeO2 crystal [57]) is evaluated from the gain210

at the optimal (from the point of view of the signal-to-noise ratio) electrode211

voltage bias. Results are summarized in Table 1.212

As previously stated, the gain of the NTL devices depends on the wave-213

length of the incident radiation [56]. The measurements described in this214

work have been performed with different light sources: 0.85 µm and 0.95 µm215

wavelength photon bursts, scintillation light (peaked at ∼0.6 µm wavelength)216

and Cherenkov light (∼0.52 µm wavelength, on the average). In order to217

consistently compare the performances, we rescaled the relative SNR and218

the baseline noise, for all of them, to 0.52 µm wavelength photons.219
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Detector Set-up Run Tholder Light Amplification Optimal Relative SNR SA (µV/keV) Noise RMS (eV) Ref.
ID [mK] λ (µm) efficiency η bias Vel (V) [λ] [0.52 µm] [Vel=0 V] [Vel=0 V] [Vel]

NTLLD0 A II 18 0.85 0.62 60 20.0 11.4 0.49 170 17
0.62 0.53 12.5 10.2

D – n.a. 0.52 0.28 90 7.2 7.2 1.0 185 26 [38]
III 18 0.43 25 4.7 4.7 0.57 166 35 [39]

NTLLD1 A I 18 0.85 0.39 40 6.6 3.7 0.74 153 41
B – 20 0.62 0.48 90 11.5 11.0 0.53 91 8
D III 18 0.52 0.40 55 3.5 3.5 1.3 87 25 [39]
E – 17 0.53 60 11.1 11.1 0.92 108 10 [40]

NTLLD2 A I 18 0.85 0.29 40 6.8 3.9 0.58 109 28
II 19 0.41 70 16.6 9.9 0.83 98 10

NTLLD3 A I 17 0.85 0.28 50 8.5 4.8 0.61 230 47
C – 20 0.95 0.33 80 19.8 9.8 1.1 99 10

70 17.2 8.6 60∗ 7∗

NTLLD4 A – 15 0.85 0.63 50 12.6 7.9 1.5 123 11
0.60 0.52 11.4 10.7

Table 1: Performance of NTL light detectors (see details in the text) characterized in different set-ups: A) Cryomech PT-405
equipped dry dilution unit (Air Liquide), B) wet dilution unit (CEA/SPEC developped), C) Cryomech PT-410 equipped dry
dilution unit (Cryoconcept), D) CUPID R&D cryostat (wet, Oxford Instrument), and E) EDELWEISS-III cryostat (semi-dry,
custom made by Néel Institute). The run identification number (ID) is indicated only for those measurements which are
common for several light detectors. The temperature of the detector holder for each measurement is indicated by Tholder.
The ε for the typical wavelength λ of the used light sources is following [56]: 1.3–1.6 eV (0.95–0.85 µm, LED), 2.2–2.3 eV
(0.6–0.62 µm, scintillation) and 2.5 eV (0.52 µm, Cherenkov). The values of the amplification efficiency |η| correspond to the
NTL gain measurements with the quoted light sources. The listed electrode bias Vel is optimal in term of the signal-to-noise
ratio, relatively to the 0 V bias conditions. The best relative SNR is given for the used light sources with the quoted λ values
and the Cherenkov radiation (0.52 µm). A signal sensitivity SA is given for detectors operated without the NTL regime. The
RMS baseline noise is specified for the electrode bias equal to 0 V and Vel. The NTLLD3 baseline noise level marked with ∗

was achieved with a pulse-tube switched off.
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A graphical representation of the results given in Table 1, rescaled to220

0.52 µm wavelength photons, is given in Fig. 6. As shown in Sec. 4.1,
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(a) Optimal voltage for each light detec-
tors, measured in different runs.
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(c) RMS noise at the optimal electrode
bias as a function of the RMS noise with
grounded electrodes (all detectors plot-
ted).

Figure 6: (Color online) Graphical representation of some results given in Table 1, rescaled
to 0.52 µm photon wavelength. Point markers summarize the results of run-I and of those
obtained in CUPID R&D cryostat (spurious infrared radiation impinging the detectors),
whereas triangle markers summarize the results obtained in run-II and EDELWEISS cryo-
stat (radiation-tight environment).

221

the NLT-assisted detectors are highly sensitive to the photo-current noise:222

a special care must be taken to shield these devices from spurious (mainly223

infra-red) radiation. The plots in Fig. 6 show how NTL bolometers differently224

behave when tested in poor (triangle markers, CUPID R&D cryostat) and225

good (points, i.e. EDELWEISS-III cryostat) radiation-tight environment.226
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We can look more into detail at the performances of the NTLLD2 detec-227

tor, obtained in run-I and run-II (Table 1). The performance improvement228

in run-II was achieved by simply strengthening the radiation-tightness of the229

cryostat experimental space: the inner 50 mK copper radiation shield sur-230

rounding the detector was coated with black-velvet infrared painting [58].231

The photo-current noise (Fig. 6.(a)) strongly conditions the optimal elec-232

trode bias, leading to variation of this latter as high as 100% and a difference233

in the relative SNR as large as a factor 2–3. No leakage (breakdown) cur-234

rents were observed for all the 5 bolometers up electrode bias values of 90 V,235

which hints that, likely, the signal-to-noise ratio can be improved by further236

enhancing the (infrared) photon-tightness of the test environment and/or237

bolometer holders.238

Table 1 reports also the detector sensitivities and the typical noise level239

achieved with no NTL amplification. All detectors demonstrated sensitivi-240

ties as high as ∼0.9 µV/keV, typical for NTD-Ge-instrumented germanium241

optical bolometers [5, 46]. The highest sensitivity with the NTLLD4 detector242

was obtained thanks to the reduced size of the NTD-Ge thermistor. A spread243

by a factor of 2–3 in the baseline noise levels is observed in different set-ups244

(e.g. compare the results for NTLLD1 and/or NTLLD3 reported in Table 1)245

and demonstrates how bolometers are fragile with respect to environmental246

vibrations [49, 52].247

5. Discussion248

In this work we have presented a process to upgrade/improve light semi-249

conductor bolometers, whatever the sensor technology, and enhance their250

performance. The process consists in the realisation of bias electrodes onto251

the semiconductor absorber to set an electric field within the semiconduc-252

tor and drift the charge carriers created by a (ionizing) particle interaction.253

This allow to benefit of the so-called NTL effect and lower the detection254

thresholds.255

NTL-effect-based light detectors can be used to go beyond the current256

limit of many rare-event physics experiments.257

258

In neutrinoless double-beta searches based on heat-and-light composite259

bolometers, low threshold light detectors are used to suppress the back-260

ground. In the case of TeO2 based neutrinoless double-beta decay search, no261
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exploitable scintillation signal is to-date available to reject the alpha (dom-262

inant) background in the region of interest [17]. However, a particle iden-263

tification can be performed via Cherenkov radiation, emitted by electrons 3
264

[16]. The light signal available to discriminate between the alphas and the265

electron interaction is of about 100 eV for 2.5 MeV deposited heat, which is266

within the noise level of typical doped-semiconductor-sensor light detectors.267

Thanks to its low threshold capability, a NTL-effect-based light detector will268

be able to recover the light signal, hence to suppress the background.269

The next-generation double-beta decay experiment CUPID (CUORE Up-270

grade with Particle IDentification), which is considering TeO2 as a viable271

option to study the double-beta decay of the candidate 130Te [21], could272

eventually benefit of the NTL effect light detector technology to suppress273

the background up to a factor of one hundred [12, 43].274

In dark matter searches as CRESST [1], the NTL technology can improve275

the separation between the background generated by the electron recoils and276

the signal coming from nuclear recoils, expected for the interaction of WIMPs277

(weakly interactive massive particles, hypothetically constituting the dark-278

matter galactic halo) with the elemental composition of the target. This279

will lower the dark matter detection thresholds and open new possibility280

to explore wider WIMP mass region. Taking also into account that a spin-281

independent WIMP-nucleon elastic-scattering cross section is proportional to282

the square of the mass number of the target, NTL bolometers will improve283

the capability to distinguish nuclear recoils originated by WIMP scattering284

off light, middle or heavy nuclei in multi-target scintillation detector [15].285

Low-threshold optical bolometers can also be exploited for the investi-286

gation of other rare processes as the study of a beta spectrum shape of287

4-fold-forbidden β decays of 113Cd and 115In [25] to scrutinize the value of288

the axial-vector coupling constant. Its value is expected to be similar to289

one involved in the neutrino-less double-beta decay process [26]. In spite of290

1014–1016 yr half-live of these rare beta decays, the induced counting rate291

and subsequently the probability of pile-ups in macro-bolometers contain-292

ing these nuclides can be rather high, which strongly affects the precision of293

the spectrum reconstruction. Instead of using the macro-bolometer to trace294

3No light is expected for the interaction of alpha particles from natural radioactivity
because of four orders of magnitude higher energy threshold required for the associated
light emission (∼ 50 keV and ∼ 400 MeV respectively for TeO2.)
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the beta spectrum, one can use this latter just as a scintillator and use the295

scintillation signal to reconstruct the beta spectrum itself. The advantage of296

this detection scheme is the reduction of the pile-up rate, since a light de-297

tector can have, typically, a time response 10–100 times faster that the one298

of a macro-bolometer. NTL-assisted bolometric light detectors will allow in299

this case to reconstruct beta spectra down to threshold comparable to those300

reached by macro-bolometers [27].301

Moreover, they can be used in 100Mo-enriched neutrinoless double-beta302

decay experiments, to mitigate the irreducible background of scintillating303

bolometers coming from the pile-ups of the two-neutrino double-beta decay304

events [22, 23, 23].305

6. Conclusions306

Five NTL-effect-assisted germanium bolometers to detect photons of vis-307

ible and near infra-red wavelength have been fabricated at CSNSM labo-308

ratory (Orsay, France) by developing a specific fabrication process for the309

realization of bias electrodes on high purity germanium wafer. In this work310

we demonstrate how this fabrication process leads to reproducible detector311

performances in terms of gain, optimal electrode bias, signal-to-noise ratio,312

signal sensitivity and baseline noise. We also show how compulsory is the313

shielding against spurious (infrared) radiation of the experimental space to314

operate the detectors in the NTL-assisted regime and fully benefit of the315

NTL gain.316

The detectors, when operated at 0 V electrodes bias, i.e. with idle NTL317

gain, show sensitivity of 0.5–1.5 µV/keV and baseline noise of 90–230 eV318

(RMS), whereas they can reach a factor 10 better performances when op-319

erated in NTL regime at 50–90 V electrode bias, showing sub 10-eV base-320

line noise (RMS). The technology to fabricate NTL-assisted optical bolome-321

ters is currently mature to be integrated in large-scale cryogenic rare-event322

search experiments such CUPID [20], for which hundreds of reproducible,323

low-threshold, high signal-to-noise ratio light detectors are required, or in324

composite heat-and-light bolometers which exhibit tiny light yield.325
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