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Abstract
In the present contribution, we consider symmetric positive definite operators stemming

from boundary integral equation (BIE), and we study a two-level preconditioner where the
coarse space is built using local generalized eigenproblems in the overlap. We will refer to
this coarse space as the GenEO coarse space.
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Introduction
The boundary element method (BEM) is widely used to solve partial differential equations (PDE)
reformulated as non-local boundary integral equations (BIE). It consists in approximating so-
lutions of BIE using Galerkin method similarly to the finite element method (FEM). This dis-
cretization leads to linear systems

Ahuh = bh,

where h is the mesh size of the underlying discretization. Contrary to FEM though, the non-local
nature of the integral operators at play in BIE yields dense linear systems.

To solve these linear systems, one could use either a direct or iterative method. But since
they are dense, compression is most of the time required, using for example fast multipole [12],
hierarchical matrices [14] or sparse cardinal sine decomposition [3]. These techniques have the
advantage of lowering the storage cost and make it easy to apply the operator to a vector, but
the underlying structure is not well suited for direct solvers such as exact LU decomposition.
Nevertheless, direct solvers to be used in conjunction with a compression procedure have been
developed, for example, hierarchical LU decomposition [14] and a fast direct solver as described
in [21, 11]. Another approach relies on iterative solvers, such as the conjugate gradient (CG) [15]
for symmetric positive definite matrices or the generalized minimal residual (GMRes) [27]. These
methods have the advantage of relying only on matrix–vector products, they are non-intrusive
in the sense that they are independent of the compression method used. However, the number
of iterations needed strongly depends on the spectral properties of the matrix of the system. In
the case of the single layer or the hypersingular operator for the Laplace problem, the condition
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number κ(Ah) := ‖Ah‖2‖A−1
h ‖2 typically deteriorates like O(h−1) [28, Section 4.5]. This means

that the number of iterations when using CG will increase when refining the mesh size as the
square root of h−1.

To circumvent this problem, one has to find a relevant preconditioner, i.e., an operator P such
that PAh has better spectral properties (typically, a condition number bounded independently
of the mesh size) and that is not too costly to apply P to a vector, because instead of solving
the previous linear system, we will solve

PAhuh = Pbh.

Various preconditioning strategies have been proposed for BEM matrices. One of the most
popular is Calderón preconditioning [30], which is the application of operator preconditioning [17]
based on Calderón identities that shows that certain products of boundary integral operators
yield a compact perturbation of the identity. Another approach consists in building a sparse
approximation of the inverse to precondition our problem, which is usually called sparse approx-
imate inverse preconditioner (SPAI) [2].

Finally, another approach, proposed in [16, 33] for example, relies on adapting well-known
preconditioners stemming from domain decomposition methods (DDM) to BEM matrices. In
the present paper, we focus on this last type of preconditioner. We made this choice based on
the fact that DDM preconditioners are naturally parallel, which makes them interesting for high
performance computing (HPC). Moreover, they have been extensively studied in a finite element
context (see [8, 32]).

These DDM preconditioners usually rely on a geometric decomposition of the computational
domain and consists in solving local problems associated to each subdomain, but also solving a
global problem of small size to add a minimal global communication between the subdomains.
This global problem usually consists in solving the problem on a coarser mesh (see [32, Chapter
3] for example). The purpose of the global problem is to make the iterative solver scalable (see
Section 4).

At the theoretical level, scalability of DDM preconditioners without a coarse component is
usually not provable (see [32, Section 3.4] for a more in-depth discussion in a FEM context).
The condition number of the preconditioned matrix is not bounded independently of the number
of subdomains and in practice the number of iterations to solve the associated linear system
increases with the number of subdomains (see [8, Chapter 4] for numerical evidences in FEM).
That is why iterative solvers usually do not scale with DDM preconditioners without a coarse
component.

Adding a coarse component to the preconditioner based on a coarse problem can ensure a
bounded condition number, and thus scalability. It has been studied in FEM [32, Chapter 3] and
this approach has been adapted to BEM [16, 33]. Recently, another kind of coarse component
based on local eigenproblems has been introduced in a FEM context [29] and proved to be
numerically efficient [19], namely the generalized eigenproblems in the overlap (GenEO) coarse
space. It has the advantage to be more algebraic in the sense that it does not depend on the
discretization or the underlying equation, as long as the latter is symmetric positive definite.
In this contribution, we will introduce in the BEM context several coarse spaces inspired by
GenEO. We will conduct the analysis for the hypersingular operator for symmetric positive
definite problems. We will prove that such an approach ensures scalability, and we will study
their efficiency numerically.
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1 Boundary Integral Equation
In this section, we briefly introduce the mathematical framework for boundary element meth-
ods (BEM). For more details, we refer to [22], which focuses on the functional analysis behind
BIE and to [28], which presents appropriate discretization strategies and their mathematical
foundations.

1.1 Function spaces and norms
Let Ω ⊂ Rd be a Lipschitz polyhedron, and d the geometric dimension, L2(Ω) denotes the space
of all measurable functions u : Ω → R such that ‖u‖2L2(Ω) :=

∫
Ω
|u|2 dx < ∞. We define the

fractional order Sobolev space H1/2(Ω) as the space containing all the functions u ∈ L2(Ω) with
‖u‖H1/2(Ω) <∞, where

‖ϕ‖2H1/2(Ω) := ‖ϕ‖2L2(Ω) +

∫
Ω×Ω

|ϕ(x)− ϕ(y)|2

|x− y|d+1
dx dy.

The second term in the last expression is usually called Slobodeckij seminorm. Now, we want
to define Sobolev spaces on Γ̃ := ∂Ω, i.e., on curves for d = 2 and on surfaces for d = 3 without
boundary. As we assumed Ω Lipschitz, there exists local orthogonal coordinates that represent
locally Γ̃ as the graph of a Lipschitz function of a domain of dimension d−1. Then, we can define
H1/2(Γ̃) in terms of Sobolev spaces on Rd−1 using surface integrals instead of volume integrals.
Let Γ ⊆ Γ̃ so that Γ is a curve for d = 2 and a surface for d = 3 with or without boundary, we
define

H1/2(Γ) :=
{
ϕ|Γ s.t. ϕ ∈ H1/2(Γ̃)

}
and H̃1/2(Γ) :=

{
ψ ∈ H1/2(Γ) s.t. EΓ(ψ) ∈ H1/2(Γ̃)

}
,

where EΓ is the operator of extension by zero associated with functions defined on Γ. In other
words,

• H1/2(Γ) contains the restrictions of H1/2(Γ̃) to Γ,

• H̃1/2(Γ) contains the functions whose extension by zero are in H1/2(Γ̃).

We define their associated norms as follows

‖ϕ‖2H1/2(Γ) := ‖ϕ‖2L2(Γ) +

∫
Γ×Γ

|ϕ(x)− ϕ(y)|2

|x− y|d+1
dγ(x,y)

‖ϕ‖H̃1/2(Γ) := ‖EΓ(ϕ)‖H1/2(Γ̃),

where γ(x,y) refers to the surface measure induced on Γ by the Lebesgue measure.

Remark. In the case Γ = Γ̃, which means that Γ does not have any boundary, we have H̃1/2(Γ) =
H1/2(Γ) with equivalent norms [22].

We also define H̃−1/2(Γ) and H−1/2(Γ) as, respectively, the dual of H1/2(Γ) and H̃1/2(Γ),
〈·, ·〉 denoting the duality pairing. We endow them with the following dual norms

‖u‖H̃−1/2(Γ) := sup
v∈H1/2(Γ)

〈u, v〉
‖v‖H1/2(Γ)

∀u ∈ H̃−1/2(Γ),

‖u‖H−1/2(Γ) := sup
v∈H̃1/2(Γ)

〈u, v〉
‖v‖H̃1/2(Γ)

∀u ∈ H−1/2(Γ).
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1.2 BEM operator
As a model problem, we simply consider the hypersingular integral equation: find u ∈ H̃1/2(Γ)
such that

a(u, v) := 〈Wu, v〉H−1/2(Γ)×H̃1/2(Γ) = 〈f, v〉Γ, ∀v ∈ H̃1/2(Γ), (1)

where f ∈ H−1/2(Γ). The operator W : H̃1/2(Γ) → H−1/2(Γ) is the hypersingular integral
operator which, in the case of a Laplace problem on a screen with d = 3, is given by

〈Wu, v〉H−1/2(Γ)×H̃1/2(Γ) =

∫
Γ×Γ

curlΓ u(x) · curlΓ v(y)
4π|x− y|

dγ(x,y)

where curlΓ u(x) = n(x)×∇Γu(x) and n(x) refers to the unit vector field normal to Γ directed
toward the exterior of Ω. The bilinear form a(·, ·) is symmetric, continuous, and positive definite
according to [31] or [28, Theorem 3.5.9.]. In the following, we can allow for a more generic
symmetric bilinear form that induces a norm on H̃1/2(Γ) so that, for every u ∈ H̃1/2(Γ)

C−‖u‖2
H̃1/2(Γ)

6 a(u, u) 6 C+‖u‖2
H̃1/2(Γ)

(2)

where C− and C+ are positive constants.

1.3 Discretization
To define a discrete subspace Vh, we first need to introduce a conforming triangulation of the
geometric domain Γ. Let us denote T , a mesh of Γ and hT ∈ L∞(T ) defined by hT |T := |T |1/(d−1)

for every T ∈ T and h = maxT∈T hT . We denote Sl
h(T ) the space of piecewise polynomial

functions of degree l on T and S̃l
h(T ) := Sl

h(T ) ∩ H̃1/2(Γ).
To discretize Equation (1), we use a standard Galerkin approximation, i.e., we solve the

following problem: find uh ∈ Vh ⊂ H̃1/2(Γ) such that

a(uh, vh) := 〈Wuh, vh〉Γ = 〈f, vh〉Γ, ∀vh ∈ Vh, (3)

where Vh is a finite dimensional subspace of H̃1/2(Γ). Let (ϕj)
N
j=1 be a finite element basis of Vh

and dim(Vh) = N , so that uh =
∑N

j=1 uh,jϕj . Then from Equation (3), we obtain the following
linear system

Ahuh = bh, (4)

where Ah ∈ RN×N , bh ∈ RN such that (Ah)i,j = a(ϕj , ϕi), (bh)j = 〈f, ϕj〉 for 1 6 i, j 6 N and
uh ∈ RN is the vector of coefficients corresponding to the unknown finite element function uh,
so that (uh)j = uh,j . The matrix Ah inherits symmetric positive definiteness from a(·, ·).

2 Domain Decomposition Methods
We are investigating domain decomposition methods (DDM) to precondition the linear system
defined in Equation (4). More precisely, we are interested in Schwarz methods, which are tech-
niques that were first introduced as iterative procedures to approximate solutions of partial
differential equations (PDE) (see [9] for a historical presentation of these methods). Afterwards,
they were reinterpreted as fixed point methods with a specific preconditioner that depends on
the chosen methods. That is why Schwarz methods can also refer to a preconditioner, and can
be used in more efficient iterative methods, such as CG and GMRes.
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2.1 Notations
Let us now introduce the notations required for a proper presentation of Schwarz preconditioners.
First, we need to partition the domain Γ. Since we have in mind implementation of H-matrices,
we first consider a partition of the degrees of freedom in n subdomains that will be done with a
geometric clustering, which induces a partition of the global numbering {1, . . . , N} = ∪n

p=1 dof
′
h,p

with dof ′h,p ∩dof ′h,l = ∅ for every p, l ∈ {1, . . . , n} and p 6= l.
This differs from what is usually done in a finite element context, where automatic partitioners

such as METIS [20] are used to decompose the domain. By contrast, here we take account of
a compression method working on degrees of freedom. Then, we can add several layers of mesh
elements and their associated degrees of freedom to increase the overlap between neighboring
subdomains. We denote the indices of the resulting pth subdomain dofh,p so that dof ′h,p ⊂ dofh,p
and {1, . . . , N} ⊂ ∪n

p=1 dofh,p. Its associated local finite element space is

Vh,p := Span(ϕj |Γ̃p
| j ∈ dofh,p) ⊂ H̃1/2(Γ̃p),

where Γ̃p := ∪j∈dofh,p
supp(ϕj), and thus Γ ⊂ ∪n

p=1Γ̃p. Later, we will also need to use Γp :=

Γ̃p \ ∪j /∈dofh,p
supp(ϕj), see the remark below for an example. We define an arbitrary local

numbering of the degrees of freedom with the bijection σp : {1, 2, . . . , Np} → dofh,p, where
Np := dim(Vh,p). Then, we can define the extension by zero at the matrix level with RT

p ∈ RN×Np

(RT
p )j,k =

{
1 if j = σp(k),

0 otherwise

and its counterpart at the function level, as

RT
p : Vh,p → Vh.

RT
p (u

p
h)(x) =

{
uph(x) if x ∈ Γ̃p,

0 otherwise.

We also define the restriction matrix Rp ∈ RNp×N , as the transpose of RT
p for the canonical

scalar product (·, ·) on RN and its counterpart for finite element functions

Rp : Vh → Vh,p.

N∑
j=1

uh,jϕj 7→
Np∑
k=1

uh,σp(k)ϕσp(k)|Γ̃p
.

Note that Rp is not a restriction in the natural sense. It restricts the set of shape functions used
to represent an element of the discrete space Vh,p (see remark thereafter). Notice also that RT

p

is not the dual of Rp for the L2 scalar product, they are respectively the equivalent of RT
p and

Rp for finite element functions, and RT
p is the transpose of Rp.

Remark. Let us take an example and consider the case where Γ is the interval between 0 and
10 on the x-axis discretized using P1 Lagrange elements Vh = Span(ϕj | 0 6 j 6 10). Defining
dofh,1 := {0, 1, 2, 3, 4, 5, 6} and dofh,2 := {4, 5, 6, 7, 8, 9, 10}, we represent uh = 1 in Figure 1.
Notice that R1(uh) is not the usual restriction of uh since it is linear between 6 and 7.

Another example in 2D is given Figure 2 for a screen with P1 shape function. The nodes in
dofh,1 are represented with rectangle nodes. We are considering a discretization of H̃1/2(Γ) so
that we do not have any P1 functions associated with the nodes on the boundary of the screen.
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0 1 2 3 4 5 6 7 8 9 10

1

Γ1 Γ2

Γ̃1 Γ̃2

R1uh R2uh

δ1 = δ2

Figure 1: Example of an overlapping decomposition in 1D for P1 finite elements with Γ = Γ1∪Γ2

and uh ∈ Vh such that uh = 1, that is to say uh,j = 1 for 1 6 j 6 N .

Γ̃1 Γ1

Figure 2: Example of a subdomain in 2D for P1 finite elements where the rectangle nodes denote
P1 functions in Vh,1.
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RNp RN

Vh,p Vh

RT
p

Ph,p

Rp
Ph

RT
p

Rp

Figure 3: Relations between restriction, extension operators, Ph and Ph,p

We have the relations RpR
T
p = Id ∈ RNp×Np and RpR

T
p = Id. We also need to define the

following linear applications
Ph : RN → Vh,

uh = (uh,j)
N
j=1 7→ uh =

N∑
j=1

uh,jϕj ,
and


Ph,p : RNp → Vh,p,

up
h = (uph,j)

Np

j=1 7→ uph =

Np∑
j=1

uph,jϕσp(j).

They allow with their inverse to go back and forth between the finite element and the algebraic
point of view. Several relations exist between the operators introduced so far, they are summa-
rized in Figure 3. Notice that we also have (Ahuh,uh) = a(Phuh, Phuh) with uh ∈ RN . Finally,
we introduce a partition of unity (Dp)

n
p=1 ∈

∏n
p=1 RNp×Np such that

Id =

n∑
p=1

RT
p DpRp.

A few geometric constants will allow us to describe the domain decomposition, and they will
appear in the study of the efficiency of Schwarz preconditioners. All these definitions are inspired
by [8]. We denote k0 the maximum multiplicity of the interaction between subdomains plus one,
i.e.

k0 := max
16j6N

#
{
p |RpMhR

T
j 6= 0

}
, (5)

where (Mh)i,j =
∫
Γ
ϕiϕj dγ is the mass matrix. The maximal multiplicity of the subdomain

intersection k1 is defined as the largest integer m such that there exist m different subdomains
whose intersection has a nonzero measure,

k1 := ess sup

(
n∑

p=1

1Γp

)
. (6)

And finally, Nc is the minimum number of colors we can use to color a decomposition such that
any two domains sharing an overlap have different colors.

As for the domain decomposition, these constants are not supposed to increase with the
number of subdomains a priori because they only depend on the local interaction between sub-
domains. The domain decomposition can be considered as a graph where subdomains are the
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vertices and where two vertices are related by an edge if the corresponding subdomains over-
lap. Using the terminology from graph theory to describe this graph, k0 − 1 corresponds to
the maximum vertex degree [34, Definition 1.3.1.], Nc corresponds to the chromatic number [34,
Definition 5.1.1.], and we have Nc 6 k0 [34, Proposition 5.1.13.]. Brook’s theorem [34, Theorem
5.1.22.] states that this bound can be improved to Nc 6 k0 − 1 if the graph is connected [34,
Definition 1.2.6.] (meaning that there is always a path between two vertices) but not complete
(meaning that each vertex is not connected to every other vertex) and not an odd cycle.

2.2 Additive Schwarz Method and coarse space
In the present paper, we are interested in the additive schwarz method (ASM) introduced in [35]
with a generic coarse space Vh,0 ⊂ Vh that we will define later. We denote N0 := dim(Vh,0)
and it is spanned by the finite element functions associated with the columns of the rectangular
matrix RT

0 ∈ RN×N0 , so that the definition of the preconditioner is

PASM := RT
0 (R0AhR

T
0 )

−1R0 +

n∑
p=1

RT
p (RpAhR

T
p )

−1Rp. (7)

Removing the coarse correction (i.e., the first term) from the above preconditioner would a priori
spoil scalability. We shall discuss this in more details in Section 4.

In order to study the efficiency of the preconditioner defined in Equation (7) to bound the
condition number of the preconditioned linear system associated with Equation (4), we use the
fictitious space lemma [24, 13] or [8, Lemma 7.4], which writes as follows when directly applied
to our case.

Theorem 1. Let us denote HD :=
∏n

p=0 RNp , which corresponds to the space in which we
decompose finite element vectors according to our domain decomposition. We endow it with the
Euclidean scalar product (·, ·)D for product spaces defined as (uD, vD)D :=

∑n
p=0(R

T
p u

p,RT
p v

p)
for every uD = (up)np=0, vD = (vp)np=0 ∈ HD. We also define

B : HD → HD

(up
h)

n
p=0 7→ (RpAhR

T
p u

p
h)

n
p=0,

and

RASM : HD → RN

(up
h)

n
p=0 7→

n∑
p=0

RT
p u

p
h.

Suppose we have the following hypotheses:

1. There exists a constant cR > 0 such that, for all Uh = (up
h)

n
p=0 ∈ HD

(AhRASM(Uh),RASM(Uh)) 6 cR(BUh,Uh)D.

2. There exists a constant cT > 0 such that, for all uh ∈ RN , there exists Uh ∈ HD with
uh = RASM(Uh), and

cT (BUh,Uh)D 6 (Ahuh,uh).
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We define the adjoint operator R∗
ASM : RN → HD by (RASM(Uh),uh) = (Uh,R∗

ASM(uh))D for
all uh ∈ RN and Uh ∈ HD. Then, we have the spectral estimate

κ(RASMB
−1R∗

ASMAh) 6
cR
cT
.

We aim at applying Theorem 1 observing that RASMB
−1R∗

ASM = PASM.

3 Two-level preconditioning
Before we introduce our two-level preconditioner, we formulate some general remarks. The first
hypothesis of Theorem 1 corresponds to the continuity of RASM and the second one is usually
referred to as stable decomposition. Using the notations of this theorem, the two hypotheses can
be rewritten as follows

1. There exists a constant cR > 0 such that, for all (up
h)

n
p=0 ∈ HD

a

(
n∑

p=0

PhR
T
p u

p
h,

n∑
p=0

PhR
T
p u

p
h

)
6 cR

n∑
p=0

a(PhR
T
p u

p
h, PhR

T
p u

p
h).

2. There exists a constant cT > 0 such that, for all uh ∈ RN , there exists Uh = (up
h)

n
p=0 ∈ HD

with uh = RASM(Uh), and

cT

n∑
p=0

a(PhR
T
p u

p
h, PhR

T
p u

p
h) 6 a(Phuh, Phuh).

We deduce that these two hypotheses are related to how we can “localize” the bilinear form a,
and since it is symmetric positive definite, it is also related to how we can localize the H̃1/2-norm.

3.1 Continuity of RASM

The first hypothesis of Theorem 1 is actually satisfied without any precise definition of the coarse
space. We have the following theorem to localize the H̃1/2-norm

Lemma 1 ([28, Lemma 4.1.49 (b)]). For (up)16p6n ∈
∏n

p=1 H̃
1/2(Γ′

p) with (Γ′
p)

n
p=1 a non-

overlapping partition of Γ, i.e. Γ = ∪n
p=1Γ

′
p and Γ′

p ∩ Γ′
l = ∅ for l 6= p and 1 6 l, p 6 n, we have

the following inequality: ∥∥∥∥∥
n∑

p=1

EΓ′
p
(up)

∥∥∥∥∥
2

H̃1/2(Γ)

6
5

2

n∑
p=1

‖up‖2H̃1/2(Γ′
p)
,

Then, we can obtain the following lemma using a coloring argument:

Lemma 2. For (up)16p6n ∈
∏n

p=1 H̃
1/2(Γ̃p), we have the following inequality:∥∥∥∥∥

n∑
p=1

EΓ̃p
(up)

∥∥∥∥∥
2

H̃1/2(Γ)

6
5

2
Nc

n∑
p=1

‖up‖2H̃1/2(Γ̃p)
.
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Proof. If one colors each subdomain Γ̃p such that two subdomains with the same color cannot be
neighbors, that is to say, cannot overlap, then we can define (Γ′

l)
Nc

l=1 where each Γ′
l is the union

of every subdomain with the same color, that we number l, and Nc is the number of colors. Let
us define

wl =
∑

p|Γ̃p⊂Γ′
l

EΓ̃p
(up) ∈ H̃1/2(Γ′

l).

Then, we have∥∥∥∥∥
n∑

p=1

EΓ̃p
(up)

∥∥∥∥∥
2

H̃1/2(Γ)

=

∥∥∥∥∥∥
Nc∑
l=1

∑
p|Γ̃p⊂Γ′

l

EΓ̃p
(up)

∥∥∥∥∥∥
2

H̃1/2(Γ)

=

∥∥∥∥∥
Nc∑
l=1

wl

∥∥∥∥∥
2

H̃1/2(Γ)

6 Nc

Nc∑
l=1

‖wl‖2H̃1/2(Γ) .

By definition of Γ′
l, we have that all subdomains Γ̃p such that Γ̃p ⊂ Γ′

l are disjoint so that we
can use Lemma 1 in the last expression to obtain

Nc

Nc∑
l=1

‖wl‖2H̃1/2(Γ) 6 Nc

Nc∑
l=1

∥∥∥∥∥∥
∑

p|Γ̃p⊂Γ′
l

EΓ̃p
(up)

∥∥∥∥∥∥
2

H̃1/2(Γ)

6 Nc
5

2

Nc∑
l=1

∑
p|Γ̃p⊂Γ′

l

‖up‖2H̃1/2(Γ̃p)
= Nc

5

2

n∑
p=1

‖up‖2H̃1/2(Γ̃p)
.

The last lemma yields an upper bound for the global energy on H̃1/2(Γ) by a sum of local
energies, so that we obtain the first hypothesis required by Theorem 1.

Lemma 3. Using the notations of Theorem 1, let Uh = (up
h)

n
p=1 ∈ HD, we have

(AhRASM(Uh),RASM(Uh)) 6 2max

(
1,

5

2
Nc

C+

C−

)
(BUh,Uh)D.

Proof. Using the fact that Ah is symmetric positive definite, we have

(AhRASM(Uh),RASM(Uh)) =

(
Ah

n∑
p=0

RT
p u

p
h,

n∑
p=0

RT
p u

p
h

)

6 2

((
AhR

T
0 u

0
h,R

T
0 u

0
h

)
+

(
Ah

n∑
p=1

RT
p u

p
h,

n∑
p=1

RT
p u

p
h

))
.

Notice that the last term on the right-hand side can be rewritten(
Ah

n∑
p=1

RT
p u

p
h,

n∑
p=1

RT
p u

p
h

)
= a

(
n∑

p=1

PhR
T
p u

p
h,

n∑
p=1

PhR
T
p u

p
h

)

= a

(
n∑

p=1

RT
p u

p
h,

n∑
p=1

RT
p u

p
h

)
,

10



with uph = Ph,pu
p
h ∈ Vh,p ⊂ H̃1/2(Γ̃p) (see diagram Figure 3). Finally, using the equivalence

relation from Equation (2), Lemma 2 and the definition of the H̃1/2-norm, we have

a

(
n∑

p=1

RT
p u

p
h,

n∑
p=1

RT
p u

p
h

)
6 C+

∥∥∥∥∥
n∑

p=1

RT
p u

p
h

∥∥∥∥∥
2

H̃1/2(Γ)

6
5

2
NcC

+
n∑

p=1

‖uph‖
2

H̃s(Γ̃p)

6
5

2
NcC

+
n∑

p=1

∥∥RT
p u

p
h

∥∥2
H̃s(Γ)

6
5

2
Nc

C+

C−

n∑
p=1

a(RT
p u

p
h, R

T
p u

p
h)

6
5

2
Nc

C+

C−

n∑
p=1

(AhR
T
p u

p
h,R

T
p u

p
h).

We would like to point out that, although one can obtain similar results to Lemma 2 with other
norms (with interpolation for example), we use in the last lemma the fact that ‖uph‖H̃1/2(Γp)

=

‖RT
p u

p
h‖H̃1/2(Γ) which is not a priori guaranteed for other norms. And even if an equivalence

relation can be proved, extra care must be taken to show that the constants in the equivalence
relation are independent of the size of the subdomain Γp which is related to the number of
subdomains. As a consequence, the choice of the norm ‖·‖H̃1/2(Γ) plays a key role in the present
analysis.

3.2 Stable decomposition — GenEO concept
We now focus on the second hypothesis of Theorem 1. The goal is to find a way to decompose
global finite element functions so that we can bound the global energy from below by the sum
of the local energies. To do so, let us explain the idea behind the GenEO approach. First, using
the results from the preceding section, we have the following lemma for a generic coarse space.

Lemma 4. Using the notations of Theorem 1, let uh ∈ RN and Uh = (up
h)

n
p=0 ∈

∏n
p=0 RNp

such that uh = RASM(Uh). Then, we have

(BUh,Uh)D 6 2(Ahuh,uh) + (1 + 5Nc
C+

C− )

n∑
p=1

(AhR
T
p u

p
h,R

T
p u

p
h).

Proof. Using the definition of B and the Cauchy-Schwarz inequality,

(BUh,Uh)D = (AhR
T
0 u

0
h,R

T
0 u

0
h) +

n∑
p=1

(AhR
T
p u

p
h,R

T
p u

p
h)

=

(
Ah

(
uh −

n∑
p=1

RT
p u

p
h

)
,uh −

n∑
p=1

RT
p u

p
h

)
+

n∑
p=1

(AhR
T
p u

p
h,R

T
p u

p
h)

6 2

(
(Ahuh,uh) +

(
Ah

n∑
p=1

RT
p u

p
h,

n∑
p=1

RT
p u

p
h

))
+

n∑
p=1

(AhR
T
p u

p
h,R

T
p u

p
h).

Then, we apply the equivalence relation from Equation (2) and Lemma 2 to the second term in
the right-hand side to obtain the desired result.

11



The last lemma is insufficient to prove a spectral estimate of the ASM preconditioner. There
remains to bound the last term, corresponding to the sum of local energies, by the global energy
a(Phuh, Phuh). Let us assume there exists (Bp)

n
p=1 ∈

∏n
p=1 RNp×Np and a constant Cloc > 0

independent of h and n such that

Cloc

n∑
p=1

(BpRpuh,Rpuh) 6 a(Phuh, Phuh). (8)

To obtain the second hypothesis of Theorem 1, and using Lemma 4 with Equation (8), one
can see that a sufficient condition would be to find a decomposition Uh = (up

h)
n
p=0 ∈

∏n
p=0 RNp

of a given uh ∈ RN such that

(AhR
T
p u

p
h,R

T
p u

p
h) 6 τ(BpRpuh,Rpuh), (9)

for some fixed user-defined parameter τ > 0 and uh = RASM(Uh). A natural choice for (up
h)

n
p=0

might be up
h = DpRpuh, but generally it does not satisfy Equation (9). The idea of the GenEO

coarse space is to filter out the part of DpRpuh that does not satisfy Equation (9) using the
following local generalized eigenvalue problem: find (vp

h,k,λpk) such that

DpRpAhR
T
p Dpv

p
h,k = λpkBpv

p
h,k. (10)

Then, we can define the local contribution to the coarse space

Zp,τ := ker(Bp) ∪ Span(vp
h,k | for every k s.t. λpk > τ), (11)

and the local projection πp on Zp,τ parallel to Span(vp
h,k | for every k s.t. λpk 6 τ). Using the

projection πp, we can filter out the part of DpRpuh that does not satisfy the sufficient condition
given by Equation (9).

Lemma 5 ([8, Lemma 7.15]). For every 1 6 p 6 n and vh,k ∈ RNp , we have

(RT
p Dp(Id − πp)v

p
h)

TAh(R
T
p Dp(Id − πp)v

p
h) 6 τ(vp

h)
TBpv

p
h.

The last relation is similar to Equation (9) so that we define the decomposition such that,
for 1 6 p 6 n

up
h = Dp(Id − πp)Rpuh. (12)

It remains to define the coarse space Vh,0 and the associated coarse component u0
h such that

uh = RASM,2(Uh) with Uh = (up
h)

n
p=0.

Definition 1. The GenEO coarse space is defined as the sum of the local contributions to the
coarse space weighted with the partition of unity. We define

Vh,0 = Span(RT
p Dpv

p
h | 1 ≤ p ≤ N, vp

h ∈ Zp,τ )

Let Zτ ∈ RN×N0 be a column matrix so that Vh,0 is spanned by its columns and N0 = dim(Vh,0).
We denote its transpose by R0 := ZT

τ .

Lemma 6 (GenEO coarse component). Assuming there exists (Bp)
n
p=1 such that Equation (8)

is true, we can define the coarse space as in Definition 1, and the coarse component as

u0
h := (R0R

T
0 )

−1R0

(
n∑

p=1

RT
p DpπpRpuh

)
, (13)

12



then Uh = (up
h)

n
p=0 ∈ HD defined by Equations (12) and (13) is a stable decomposition of uh,

that is to say

RASM,2(Uh) = uh and cT

n∑
p=0

a(PhR
T
p u

p
h, PhR

T
p u

p
h) 6 a(Phuh, Phuh),

with c−1
T = 2 +

(
1 + 5Nc

C+

C−

)
τ

Cloc
.

Proof. Let uh ∈ RN and Uh = (up
h)06p6n ∈ HD be defined by Equations (12) and (13). First

notice that we have

w0 = RT
0 (R0R

T
0 )

−1R0w0

for every w0 ∈ Vh,0 since RT
0 (R0R

T
0 )

−1R0 is a projector on Vh,0. Then, we have

RASM,2(Uh) =

n∑
p=0

RT
p u

p
h = RT

0 u
0
h +

n∑
p=1

RT
p u

p
h

= RT
0 (R0R

T
0 )

−1R0

(
n∑

p=1

RT
p DpπpRpuh

)
︸ ︷︷ ︸

∈Vh,0

+

n∑
p=1

RT
p u

p
h

=

n∑
p=1

RT
p DpπpRpuh +

n∑
p=1

RT
p Dp(Id − πp)Rpuh

=

n∑
p=1

RT
p DpRpuh = uh,

where we used the fact that Dp defines a partition of unity in the last line. Then, using Lemmas 4
and 5 with vp

h = Rpuh for 1 6 p 6 n, we have

n∑
p=0

a(PhR
T
p u

p
h, PhR

T
p u

p
h) =

n∑
p=0

(AhR
T
p u

p
h,R

T
p u

p
h)

6 2(Ahuh,uh) + (1 + 5Nc
C+

C− )

n∑
p=1

(AhR
T
p u

p
h,R

T
p u

p
h)

6 2(Ahuh,uh) + (1 + 5Nc
C+

C− )τ

n∑
p=1

(BpRpuh,Rpuh).

Finally, assuming Equation (8) holds, we deduce
n∑

p=0

a(PhR
T
p u

p
h, PhR

T
p u

p
h) 6

(
2 +

(
1 + 5Nc

C+

C−

)
τ

Cloc

)
a(Phuh, Phuh).

Remark. It should be noted that the decomposition (up
h)

n
p=1 is necessary for the analysis, but it

does not need to be computed in practice. To use this coarse space, it is sufficient to compute Zτ

13



and then (R0AhR
T
0 )

−1 to be able to apply PASM (see definition given in Equation (7)). And to
do so, each local contribution to the coarse space defined in Equation (11) can be computed inde-
pendently in parallel, so that computing Zτ can be done efficiently. Then, to compute R0AhR

T
0 ,

one can use the fact that Zτ is sparse and distributed (since the eigenvectors are computed in
parallel). Finally, we need to invert (R0AhR

T
0 ) ∈ RN0×N0 and that is why a good coarse space

should be of minimum size while still containing relevant information for the convergence.

3.3 Concrete coarse spaces
Using Lemmas 3 and 6, it remains to find a sequence of local operators (Bp)

n
p=1 that satisfies

Equation (8) to be able to apply Theorem 1. The goal is to find a coarse space whose size is
as small as possible for a given τ because we need to invert R0AhR

T
0 ∈ RN0×N0 . However, the

choice of the set (Bp)
n
p=1 is not a priori unique, and we do not know the size of the coarse space in

advance for a given τ , so that numerical tests are necessary to see which one is the most efficient.
A first simple way to obtain a decomposition (Bp)

n
p=1 satisfying Equation (8) is to simply use

the continuous injectivity between H̃1/2(Γ) and L2(Γ).

Lemma 7. Let u ∈ H̃1/2(Γ), we have

CinjC
−

k1

n∑
p=1

‖u‖2L2(Γp)
6 a(u, u),

where k1 is defined in Equation (6), Cinj is the continuity constant of the injection of H̃1/2(Γ)
in L2(Γ), and they are both independent of h and n.

Proof. Using the fact that we have H̃1/2(Γ) ↪→ L2(Γ), we obtain

a(u, u) > C−‖u‖2
H̃1/2(Γ)

> CinjC
−‖u‖2L2(Γ)

>
CinjC

−

k1

n∑
p=1

‖u‖2L2(Γp)
.

Using the last lemma, we obtain a similar relation to Equation (8) with Cloc =
CinjC

−

k1
and

Bp = Mp for every 1 6 p 6 n where Mp is the mass matrix defined as

(Mp)i,j :=

∫
Γp

ϕσp(i)ϕσp(j) dγ, (14)

where Γp has been defined so that Mp ∈ RNp×Np . Then, we can obtain the following theorem

Theorem 2. We have the following condition number estimate

κ(PASM,injAh) 6 2max

(
1, Nc

5

2

C+

C−

)(
2 +

(
1 + 5Nc

C+

C−

)
τk1

CinjC−

)
,

where PASM,inj is defined with the GenEO coarse space and the localization from Lemma 7.

Proof. Using Theorem 1 and its notations, we have to satisfy its two hypotheses.

1. The first hypothesis is obtained using Lemma 3 with cR = 2max(1, Nc
5C+

2C− ).

14



2. The second hypothesis is obtained using Lemma 6 with Bp = Mp for every 1 6 p 6 n and
Lemma 7 so that c−1

T = 2 +
(
1 + 5Nc

C+k1

C−

)
τk1

CinjC− .

We will refer to the coarse space based on Lemma 7 as GenEO mass coarse space. Another
approach to build a coarse space is to use a well-established inequality from adaptive BEM [5,
Corollary 6] to obtain the next lemma.

Lemma 8. Let uh ∈ S̃l(Th), we have

CadC
−

k1

n∑
p=1

‖h1/2T ∇Γuh‖2L2(Γp)
6 a(uh, uh),

where Cad depends only on Γ, the shape-regularity of Th and l.

Proof. According to [5, Corollary 6], we have

a(uh, uh) > C−‖uh‖2H̃1/2(Γ)
> CadC

−‖h1/2T ∇Γuh‖2L2(Γ)

>
CadC

−

k1

n∑
p=1

‖h1/2T ∇uh‖2L2(Γp)
.

Using the last lemma, we obtain a similar relation to Equation (8) with Cloc = CadC
−

k1
and

Bp = Kp for every 1 6 p 6 n where Kp is the stiffness matrix defined as

(Kp)i,j :=

∫
Γp

hT ∇Γϕσp(i)∇Γϕσp(j) dγ, (15)

where again, Kp ∈ RNp×Np due to the definition of Γp. Then, we can obtain the following
theorem

Theorem 3. We have the following condition number estimate

κ(PASM,adAh) 6 2max

(
1, Nc

5

2

C+

C−

)(
2 +

(
1 + 5Nc

C+

C−

)
τk1

CadC−

)
,

where PASM,ad is defined with the GenEO coarse space and the localization from Lemma 8.

Proof. Using Theorem 1 and its notations, we have to satisfy its two hypotheses.

1. The first hypothesis is obtained using Lemma 3 with cR = 2max(1, Nc
5C+

2C− ).

2. The second hypothesis is obtained using Lemma 6 with Bp = Kp for every 1 6 p 6 n and
Lemma 8 so that c−1

T = 2 +
(
1 + 5Nc

C+k1

C−

)
τk1

CadC− .

We will refer to the coarse space based on Lemma 8 as GenEO stiffness coarse space. A third
approach is to directly split the H̃1/2-norm, but we cannot directly split this norm in a sum of
local contributions of H̃1/2-norms. Actually this kind of inequality has been proved wrong in
the appendix of [1]. But we can bound H̃1/2-norm from below by a sum of local contributions
of H1/2-norms using the following lemma
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Lemma 9. For u ∈ H1/2(Γ), there holds

C−

k1

n∑
p=1

‖u|Γp
‖2H1/2(Γp)

6 a(u, u),

where k1 is defined in Equation (6).

Proof. The proof is in two parts. First, we bound the H̃1/2-norm from below by the H1/2-norm,
and then we split the H1/2-norm. We denote∫

Γ

∫
Γ′
[u] :=

∫
Γ

∫
Γ′

|u(x)− u(y)|2

|x− y|d+1
dγ(x,y),

where we borrowed the notation from [28, Lemma 4.1.49 (b)].
— First part. We have Γ ⊂ Γ̃ = ∂Ω with Ω ⊂ Rd, a Lipschitz polyhedron. Then, for

u ∈ H̃1/2(Γ), we have by definition

‖u‖2
H̃1/2(Γ)

= ‖EΓ(u)‖2H1/2(Γ̃)
=

∫
Γ

|u|2 +
∫
Γ̃

∫
Γ̃

[EΓ(u)]

= ‖u‖2L2(Γ) +

∫
Γ

∫
Γ

[u]︸ ︷︷ ︸
=‖u‖2

H1/2(Γ)

+2

∫
Γ̃\Γ

∫
Γ

[u] +

∫
Γ̃\Γ

∫
Γ̃\Γ

[u]︸ ︷︷ ︸
>0

> ‖u‖2H1/2(Γ).

— Second part. According to the definition of the norm, we have

‖u‖2H1/2(Γ) = ‖u‖2L2(Γ) +

∫
Γ

∫
Γ

[u].

We already used the fact that
∑n

p=1‖u|Γp
‖2L2(Γp)

6 k1‖u‖2L2(Γ) to prove Lemma 7, it remains to
prove

∑n
p=1

∫
Γp

∫
Γp
[u] 6 k1

∫
Γ

∫
Γ
[u].

Let 1 6 l 6 n, we consider all the intersections of l subdomains among the n subdomains.
Note that there can be several areas shared by possibly different sets of l subdomains, see Figure 4
for an example. That is why, we define an arbitrary numbering {1, . . . , nl} of all the set of l
subdomains that intersect each other. More precisely, we define

∆l =
{
{i1, . . . , il} ⊂ {1, . . . , n} s.t. 1 6 i1, . . . , il 6 n and ∩l

i=1 Γik 6= ∅
}
= {∆l,i}nl

i=1.

Let us denote θl,i = ∩k∈∆l,i
Γk the ith part of Γ shared by l subdomains. In particular, we have

θ1,p := Γp \ (∪n
m=1,m 6=pΓm), i.e., θ1,p corresponds to the pth subdomain without its overlap. We

denote

Θ := {(l, i) ∈ N2 | θl,i 6= ∅},

and remark that {θl,i}l,i defines a partition of Γ, so that∫
Γ

∫
Γ

[u] =
∑

(l,i)∈Θ

∑
(m,j)∈Θ

∫
θl,i

∫
θm,j

[u]. (16)
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θ1,1 θ1,2

θ1,3 θ1,4

θ2,1

θ2,2

θ2,3

θ2,4 θ4,1

Figure 4: Example of a partition defined as in the proof of Lemma 9.

For every subdomain Γp, we also define

Θp := {(l, i) ∈ N2 | θl,i ∩ Γp 6= ∅},

so that Γp = ∪(l,i)∈Θp
θl,i and

n∑
p=1

∫
Γp

∫
Γp

[u] =

n∑
p=1

∑
(lp,ip)∈Θp

∑
(mp,jp)∈Θp

∫
θlp,ip

∫
θmp,jp

[u]

=

n∑
p=1

∑
(l,i)∈Θ

∑
(m,j)∈Θ

1(l,i)∈Θp
1(m,j)∈Θp

∫
θl,i

∫
θm,j

[u]

=
∑

(l,i)∈Θ

∑
(m,j)∈Θ

n∑
p=1

1(l,i)∈Θp
1(m,j)∈Θp

∫
θl,i

∫
θm,j

[u], (17)

where 1(l,i)∈Θp
= 1 if (l, i) ∈ Θp and 0 otherwise. And, by definition, a given pair (l, i) ∈ Θ

cannot be in more that k1 sets Θp, otherwise it would mean that θl,i is shared by more than k1
subdomains. Thus,

n∑
p=1

1(l,i)∈Θp
1(m,j)∈Θp

6 k1.

Finally, we obtain the expected result using Equations (16) and (17) associated with the previous
inequality.

Using the last lemma, we obtain a similar relation to Equation (8) with Cloc = C−

k1
and

Bp = Hp for every 1 6 p 6 n where Hp is the matrix associated with the scalar product of
H1/2(Γ) defined as

(Hp)i,j :=

∫
Γp

ϕσp(i)ϕσp(j) dγ +

∫
Γp

∫
Γp

(ϕσp(i)(x)− ϕσp(i)(y))(ϕσp(j)(x)− ϕσp(j)(y))

|x− y|d+1
dγ(x,y),

(18)
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where again, Hp ∈ RNp×Np due to the definition of Γp. Then, we can obtain the following
theorem

Theorem 4. We have the following condition number estimate

κ(PASM,sloAh) 6 2max

(
1, Nc

5

2

C+

C−

)(
2 +

(
1 + 5Nc

C+

C−

)
τk1
C−

)
,

where PASM,slo is defined with the GenEO coarse space and the localization from Lemma 9.

Proof. Using Theorem 1 and its notations, we have to satisfy its two hypotheses.

1. The first hypothesis is obtained using Lemma 3 with cR = 2max(1, Nc
5C+

2C− ).

2. The second hypothesis is obtained using Lemma 6 with Bp = Hp for every 1 6 p 6 n and
Lemma 9 so that c−1

T = 2 +
(
1 + 5Nc

C+k1

C−

)
τk1

C− .

We will refer to the coarse space based on Lemma 9 as GenEO Slobodeckij. Another pos-
sibility is to approximate the H1/2-norm in Lemma 9. It is natural to introduce the weakly
singular operator V : H̃−1/2(Γ) → H1/2(Γ), whose range is the right space under consideration.
We suppose that V is symmetric positive definite, which is true when we assume that the global
hypersingular operator W also has this property. Then, we can define the local weakly singular
operator Vp as

〈Vpup, vp〉H1/2(Γp)×H̃−1/2(Γp)
:= 〈V EΓp

(up), EΓp
(vp)〉H1/2(Γ)×H̃−1/2(Γ)

for every up, vp ∈ H̃−1/2(Γp). Now, we can define a norm on H1/2(Γp) using the inverse of the
local weakly singular operator and equivalent to ‖u‖2

H1/2(Γp)
. We are still working on its analysis,

and it would be too much of a digression to present it here. That is why, we only define the
associated discrete local operator Bp = C̃p := MpV

−1
p Mp, for every 1 6 p 6 n where Vp is the

discretization of the single layer defined as

Vp(i, j) := 〈Vp(ϕσp(j)|Γp
), ϕσp(i)|Γp

〉H1/2(Γp)×H̃−1/2(Γp)
, (19)

where again, C̃p ∈ RNp×Np due to the definition of Γp. The choice of C̃p comes from the fact
that we need to approximate the discretization V −1

p by the inverse of the discretization of Vp,
which is classical in Calderón preconditioning, see [23, 30]. We will refer to this coarse space as
GenEO single layer.

In conclusion, we have introduced four coarse spaces and Theorems 2 to 4 show that at
least three of them lead to a bounded condition number for the preconditioned linear systems
independently of the mesh size and the number of subdomains. The size of the coarse spaces
will adapt to the user-defined parameter τ , which is one of the advantages of this approach. The
downside, though, is that we do not know these sizes a priori. For example, if one has to take all
the eigenvectors in the local generalized eigenproblem defined in Equation (10), the size of the
coarse space will be the size of the global matrix, and thus inverting R0AhR

T
0 will be as costly as

using a direct method. We have to verify how relevant these coarse spaces are numerically, and
which one retains the most of relevant information. In other words, we have to check numerically
that the sizes of the coarse spaces are small compared to the size of the global problem, and
which one is the smallest while improving the convergence.
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The only intuition we can have a priori is about GenEO single layer. Indeed, looking at the
associated local generalized eigenproblem, it can be rewritten as a local eigenproblem

M−1
p VpM

−1
p DpRpAhR

T
p Dpv

p
h,k = λpkv

p
h,k. (20)

The matrix product appearing in the left hand side of Equation (20) is really close to a local
Calderón preconditioning apart from Dp. The subdomains usually correspond to screens and it
is a well-known fact that Calderón preconditioning does not work well in this case. In [18, Fig.
4.1] for example, we can see that a few high eigenvalues appear, which is what we want in our
approach.

In Figure 5, we show the spectra obtained for Equation (20) using the geometry described
in Figure 6 with eight subdomains, h = 0.1 and the problem described in Section 4.1. We see
that GenEO single layer, GenEO Slobodeckij and GenEO stiffness have a few high eigenvalues so
that we know at least that we should be able to discriminate a few eigenvectors for these coarse
spaces. We see that we obtain the same type of spectrum for GenEO single layer as in [18]. We
also observe that the spectrum obtained with the GenEO mass coarse space is not adequate with
our approach, and we will see afterward that it does not contain enough relevant information to
improve the convergence.

4 Numerical experiments
To see if the previous coarse spaces are well-adapted in practice, we need to verify that they
improve scalability. Several definitions of scalability can be given. For strong scalability tests,
we study how the number of iterations varies when we increase the number of subdomains for a
given problem size. By contrast, for weak scalability tests the local problem size is kept constant,
in other words doubling the number of subdomains means doubling the global problem size. In
both cases, the method is said to be scalable if the number of iterations does not increase with
the number of subdomains. In a HPC context, where we usually assign one subdomain per core,
this yields robust methods in terms of computing times (for example, constant computing time
for weak scalability tests). Indeed, the computing time should be proportional to the size of
the subdomains and the number of iterations, provided the coarse problem (R0AhR

T
0 ) is small

enough to be solved efficiently with a direct method.
According to Theorems 2 to 4, we see that the condition number of the linear system used

in Equation (4), preconditioned by the additive Schwarz preconditioner defined in Equation (7)
with the coarse spaces we introduced, is independent of the number or size of subdomains. The
numerical experiments in this section will illustrate Theorems 2 to 4 with up to 512 subdomains
and show that the proposed methods are scalable, as the resulting coarse problems remain small
enough for a direct solver.

Note that the preconditioners we introduced are independent of compression techniques, but
one has to implement them efficiently with a compression technique to be able to run tests of
reasonable size. That is why we developed HTool, an open source C++ library for hierarchical
matrices that offers with HPDDM a way to use DDM preconditioners with MPI and OpenMP.

In particular, it allows to illustrate numerically the efficiency of the previous coarse spaces and
their costs. We use BemTool1 to compute the coefficients associated with the interaction between
two degrees of freedom and a P1-Lagrange discretization, HTool2 to compress the matrices using
hierarchical matrices as described in [6, 14, 25] and HPDDM [19] which provides iterative solvers.
The setup of the DDM preconditioners for BEM matrices is shared between HPDDM and HTool.

1https://github.com/xclaeys/BemTool
2https://github.com/PierreMarchand20/htool
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Figure 5: Spectrum obtained from Equation (20) with the geometry described in Figure 6 and
eight subdomains.
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Concerning compression, hierarchical matrices are built upon a hierarchical decomposition of
the degrees of freedom in clusters that is usually called cluster tree. Each block of the global
matrix can be seen as the interaction between two nodes of this tree. Then, we define the block
tree as the product of this cluster tree with itself, so that each node corresponds to a block in
the global matrix. Because of the nature of the integral kernels, some of these blocks can be
considered as admissible meaning that they correspond to far interactions so that they can be
well approximated using low-rank matrices, while others are not admissible because they are
associated with close interactions. In the latter case, one has to look at the subblocks via the
block tree or the block needs to be built as a dense block.

To determine if a block is admissible, we use the admissibility condition described in [25,
(3.15)]. A block is considered to be admissible if the minimum of the diameters of both clusters
over the distance separating them is lower than a user-defined parameter η. Then, we use
Adaptive Cross Approximation with partial pivoting similarly to [25, Algorithm 3.9] to compress
the admissible blocks. The stopping criterion of this algorithm looks at the Frobenius norm
between two consecutive approximations and if it is lower than a given threshold ε. In our
numerical tests, we take η = 10 and ε = 0.01. Note that the compression may depend on how
the hierarchical matrix is parallelized, but in the case of the strong scaling, we made sure that
the compression was the same to have a fair comparison with different subdomains.

Our domain decomposition is actually defined by the cluster tree. More precisely, one of the
levels in the cluster tree defines a partition without overlap, to which we add overlap. Notice
that the algorithm used to build the cluster tree tries to do a balanced decomposition between
the clusters of nodes to have a better compression and load-balanced decomposition.

We would like to point out that we are using Gmsh [10] to create all the meshes in our test
cases and LAPACK [4] to solve generalized eigenproblems. Besides, we use right preconditioning,
we set the tolerance for the iterative solvers in HPDDM to 10−6, and we have not used any restart
with GMRes.

4.1 2D test case
Let Ωout = [−2, 2] × [−2, 2] ⊂ R2 and Ωin = [−1, 1] × [−1, 1] ⊂ R2. In this first numerical
experiment, we want to solve the following equation

−∆u+ κ2u = 0, in Ω := Ωout \ Ωin (21)

where κ = 0.1 with the Neumann condition u|∂Ω = f(x, y) such that

f(x, y) =

{
100× (x+ 1.5)2 if x > 1.5

0 otherwise.

This problem can be reformulated with a BIE according to [28, Section 3.4.1.1] as Equation (1)
but with

〈Wu, v〉H−1/2(Γ)×H̃1/2(Γ) =

∫
Γ×Γ

G(x− y) curlΓ u(x) · curlΓ v(y) dγ(x,y)

+ κ2
∫
Γ×Γ

G(x− y)(n(x),n(y))u(x)v(y) dγ(x,y)

with G(z) := 1
4 iH

(1)
0 (iκ) where H(1)

0 is the Hankel function of order zero and of first kind (see [7,
§10.2(ii)]). The bilinear form is symmetric positive definite according to [28, Theorem 3.5.4].
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4.2 2D strong scaling
We consider a discretization of the geometry described in Figure 6 with a mesh size h = 0.001 so
that the number of degrees of freedom N is equal to 24 000. We solve the linear system associated
with our test case and preconditioned with the coarse spaces introduced in the previous section
for several numbers of subdomains: {8, 16, 32, 64, 128}. We only add one layer of elements for the
overlap. To have a fair comparison between these coarse spaces, we take τ = 60 for the GenEO
stiffness coarse space, and we take the same number of eigenvectors in the local eigenproblems to
build the coarse component of the other coarse spaces, so that the sizes of the local contributions
to the coarse space and the size of the global coarse space are the same for a given number of
subdomains with all the coarse spaces.

The resulting numbers of iterations using CG and GMRes are given in Figure 8. Since τ is
fixed, the condition number is bounded independently of the number of subdomains according
to Theorem 3 for GenEO stiffness, so that we expect the number of iterations to be constant
contrary to the case without the coarse component.

The numbers of iterations without preconditioner are 656 for CG and 450 for GMRes, and
they do not depend on the number of subdomains so that they are not shown in Figure 8. We
first observe that the preconditioner without coarse component greatly reduces the number of
iterations since it is approximately between 40 and 120 iterations instead of several hundreds
without preconditioner. But as expected, the one-level preconditioner does not scale with the
number of subdomains. It goes from 57 iterations for 8 subdomains to 114 iterations for 128
subdomains with CG for example. We do not show the results for the GenEO mass coarse space
because the results are at best close to the one-level. We conclude that this coarse space needs
to be much larger to scale in terms of iterations. The GenEO Slobodeckij, GenEO stiffness and
GenEO single layer coarse spaces scale, their number of iterations stagnates respectively between
10 and 27 iterations for CG. Note that the number of iterations for the latter is always greater
than the other two. It shows that the size of the GenEO single layer coarse space needs to be
greater to maintain the same amount of information. We call the number of eigenvectors taken to
build Zp,τ , local contribution to the global coarse space associated with the pth subdomain and
we show Figure 9 how the mean of these local contributions and the size of the global coarse space
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Figure 8: Strong scaling to solve Equation (21) with the geometry described in Figure 6

vary with the number of subdomains. It is interesting to see how the mean local contribution
decreases with the number of subdomains so that the size of the global coarse space does not
increase more than linearly.

Finally, we also did the experiment with a Calderón preconditioning based on the weakly
singular operator V defined as

〈V u, v〉H1/2(Γ)×H̃−1/2(Γ) =

∫
Γ×Γ

G(x,y)u(x)v(y) dγ(x,y),

that we discretize like the hypersingular operator (see Section 1.3) using S̃l
h(T ), we denote Vh

the resulting matrix. It is also symmetric positive definite according to [28, Theorem 3.5.4.]. In
this case, the preconditioner is defined as [30, (5.15)]

PCalderón := M−1
h VhM

−1
h

where Mh is the global mass matrix. Using PCalderón to precondition the linear system associated
with the considered test case, we obtain 17 iterations with CG and GMRes.

To conclude, we were able to obtain a number of iterations comparable to Calderón pre-
conditioning with the GenEO stiffness coarse space and GenEO single layer coarse space, while
maintaining a good behavior when increasing the number of subdomains. In this case, DDM
preconditioners are interesting alternatives to Calderón preconditioning because they are less
expensive to compute since only local computations are needed while Calderón preconditioning
requires a global mass matrix, its inversion and a matrix-vector product with another BEM
matrix. They are also more likely to scale better thanks to their parallel nature, and they give
similar performances according to our results.

4.3 2D weak scaling
We consider the following array of mesh sizes: h = [0.0005, 0.001, 0.002, 0.004, 0.008] that will
be used to discretize the geometry shown in Figure 6. For each mesh size h[i], we obtain a
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Figure 9: Mean local contribution to coarse space and size of the latter for 2D strong scaling

number of degrees of freedom N [i] with N = [48 000, 24 000, 12 000, 6000, 3000]. We associate
a number of subdomains n[i] to each mesh such that N [i]/n[i] = 750. The resulting array of
number of subdomains is n = [64, 32, 16, 8, 4]. The results about the number of iterations are
given Figure 10. The same remarks as for the strong scaling can be formulated here.

4.4 3D test case
In agreement with the fact that Theorems 2 to 4 do not depend on the geometric dimension,
we observe similar results to the 2D case. We consider a similar test case, with cubes instead
of squares. To be more precise, we have now Ωout = [−2, 2] × [−2, 2] × [−2, 2] ⊂ R3 and
Ωin = [−1, 1]× [−1, 1]× [−1, 1] ⊂ R3 as described in Figure 7, but we still consider Equation (21)
with the same boundary condition. The main difference, besides the geometry, is the Green
function which is now defined as G(z) := 1

4π
e−κ‖z‖

‖z‖ .

4.5 3D strong scaling
We take a mesh size of 0.039 so that we obtain a number of degrees of freedom N equal to
104 738. We solve the linear system associated with our test case and preconditioned with the
coarse spaces we introduced earlier using several numbers of subdomains: {32, 64, 128, 256, 512}.
We only add one layer of elements for the overlap. As for the 2D strong scaling, we take a
fixed τ , here equal to 5, for the GenEO stiffness coarse space, and we take the same number of
eigenvectors in the local eigenproblems to build the coarse component of the other coarse spaces.

The resulting numbers of iterations are shown in Figure 12. We observe the same behavior
as in 2D. Note that here the number of iterations without preconditioner is 156 with CG and
101 with GMRes.

4.6 3D weak scaling
We consider the following array of mesh sizes: h = [0.05, 0.07, 0.1, 0.15, 0.2]. For each mesh size
h[i], we obtain a number of degrees of freedom N [i] with N = [63 360, 33 200, 15 922, 7201, 3846].
We associate a number of subdomains n[i] to each mesh such that N [i]/n[i] ' 1000. The resulting
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Figure 10: Weak scaling to solve Equation (21) with the geometry described in Figure 6
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Figure 12: Strong scaling to solve Equation (21) in 3D
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Figure 14: Weak scaling to solve Equation (21) in 3D

array of number of subdomains is n = [64, 32, 16, 8, 4]. The results about the number of iterations
are given in Figure 14. The same remarks as for the strong scaling can be made here. But note
that the 3D weak scaling is approximated contrary to the 2D weak scaling.
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