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Abstract 

The monitoring of machinery and especially ubiquitous bearings in all means of transport has gained 
importance for decades in the industry because of the need to increase the reliability of machines and reduce 
the possible loss of production due to failures caused by the different faults. Many of the available 
techniques currently require a lot of expertise to apply them successfully. New techniques are required that 
allow relatively unqualified operators to make reliable decisions without knowing the mechanism of the 
system and analyzing the data. Reliability must be the most important criterion of the operation. Artificial 
intelligence is the revolutionary answer in all areas of industrial control. The main goal of this paper is to 
propose new solutions for bearing diagnosis based on deep neural networks (DNN). However, in general the 
optimization of the neural network architecture is done by trial and error, and the features reduction problem 
is solved by using the principal component analysis. In this paper, the application of the neuro-evolution is 
proposed for bearing diagnosis where the optimization of the neural network topology as well as the features 
reduction are done by an evolutionary genetic algorithm. An application of the general procedure is proposed 
for real signals; that shows the superiority of the combination between neural networks and genetic 
algorithms for bearing diagnosis. 

1 Introduction 
Rolling element bearing is one of the most critical components used in rotating machinery and many other 
mechanical equipment [1]. In fact, most of such machines’ malfunctions are linked to bearing faults, such as 
fatigue, corrosion, overload, etc, that may occur unexpectedly if no predictive maintenance is used. This may 
lead to significant economic loss: high costs of maintenance and loss of revenue [2]. Therefore, bearing state 
monitoring and fault diagnosis are very important for discovering early bearing faults, assuring efficient and 
safe operation of all machines containing bearings. 
In general, all bearing condition monitoring approaches in the literature can be classified into two categories: 
statistical-based approaches and pattern recognition-based approaches. In statistical-based approach, various 
signal processing tools are used, followed by statistical thresholds to detect the presence of a fault as well as 
to classify the different types of bearing faults [3,4]. For pattern-recognition-based approaches, several 
machine learning and artificial intelligence techniques, such as Artificial Neural Networks ANN, Support 
Vector Machine, fuzzy Expert Systems, Random Forest, and many other, have been successfully employed 
in fault diagnosis [5,6]. More recently, deep learning algorithms, such as deep neural networks, 
convolutional neural networks and deep belief networks have shown great capabilities in the field of 
computer vision [7], speech recognition [8] and natural language processing [9], due to their ability to 
discover hidden patterns in the data by using architectures composed of several non-linear learning layers. 
These deep learning algorithms were also applied in the field of industrial diagnosis and have been very 
useful and effective [10,11]. 
In recent years, a new artificial intelligence approach known as the ‘Neuro-evolution’ has attracted 
considerable attention as they proved to be essential in so many applications. The basic idea is that it applies 
evolutionary algorithms, and more specifically genetic algorithms GA, in order to construct a well suited 
artificial neural network for a certain application. Earlier successful applications in the field of Neuro-
evolution are in reinforcement learning, evolutionary robotics, and artificial life. Sample applications include 
evolving behaviors for video games such as evolving new content in real time while the game is played [12], 
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controlling mobile robots such as evolving the neural networks of robots that were 3D-printed and could 
move around the real world [13], and investigating the evolution of biologically-relevant behaviors such as 
investigating abstract evolutionary tendencies, like the evolution of modularity or how biological 
development interacts with evolution [14]. 
Meanwhile, in order to benefit from such powerful tool of artificial intelligence in the field of industrial 
diagnosis, researchers in this domain have tried to apply this combination of neural networks and genetic 
algorithm on bearing fault classification problem: some have used the genetic algorithm for the weights 
optimization [15], and others for the features selection problem [16].  
The main goal of this paper is to apply this concept of Neuro-evolution in industrial automatic diagnosis 
without any human intervention, especially after the fourth industrial revolution characterized by the fusion 
of all modern technologies and the concept of digital factories [17]. In details, the optimization of the number 
of hidden layers and nodes in an artificial neural network is performed using this concept; in order to 
guarantee ANN architecture with the highest classification accuracy. In addition, feature reduction is 
obtained using the genetic algorithm instead of the Principal Component Analysis (PCA) [18], since it needs 
the tuning of some parameters whereas the GA gives good results without any assumptions.  
The main benefit behind this concept is to extend the optimization of the topology as well as the features 
from one dataset to another without any human intervention to find automatically the best classification 
accuracy; which could not be obtained using neural networks alone. The extracted features are divided into 
temporal classical and spectral ones. The spectral features are based on the indicators of probability of 
presence of faults introduced by S. Kass and Al based on the spectral coherence [19]. These indicators are 
very powerful due to their ability of condensing the whole information initially displayed in three dimensions 
into a scalar and returning information in terms of a probability of presence of a fault. They also take into 
consideration uncertainties in the bearing characteristic frequencies, which is crucial in bearing diagnosis. 
However, a statistical threshold was derived for decision making.  In this paper, this statistical threshold is 
absent and replaced by the techniques of artificial intelligence already mentioned above, and that will be 
detailed in the next sections. 
This paper is divided into seven sections, where section two introduces briefly the artificial neural networks 
and the third section describes the genetic algorithm. Section four presents in a general way the effectiveness 
of the combination between neural networks and genetic algorithm, and section five describes the application 
done in this paper. In section six, the features used as input to the neural network are presented and described 
and the proposed method is validated using two datasets in section seven. Conclusions are drawn in the last 
section.   
 
2 Neural Network 
Inspired by the human brain, Artificial Neural Networks (ANN) are a family of machine learning models that 
mimic the structural elegance of the neural system and learn patterns inherent in observations [20]. There are 
several types of neural networks: Backpropagation networks, Deep Belief networks, Convolutional neural 
networks, Recurrent networks, Radial Basis Function networks, etc…  
One of the most widely used type of neural networks is the Backpropagation network which is a multi-layer 
perceptron consisting of an input layer with nodes representing input variables to the problem, an output 
layer with nodes representing the different classes of the corresponding classification problem, and one or 
more hidden layers containing nodes to help discovering the hidden patterns in the data. 
While, in theory, it is possible to apply different types of activation functions for different layers, it is 
common to apply the same type of an activation function for the hidden layers in the literature [21]. 
However, it should be a nonlinear function such as the ‘logistic sigmoid’ function σ (z) = 1/(1+exp[−z]), and 
the ‘hyperbolic tangent’ function tanh(z) = (exp[z]−exp[−z]) / (exp[z]+exp[−z]). 
In addition, the connections between different layers are weighted: These weights are initially randomly set, 
and then adjusted between successive training cycles (learning process) in order to increase the classification 
accuracy. This is generally done by minimizing a cost function using several well-known optimization 
algorithms: the gradient descent which is the simplest and most popular training algorithm [22], the 
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stochastic gradient descent which is a lighter algorithm and therefore faster than its all-encompassing cousin 
[23], the Adaptive Moment, Adam, which is based on adaptive estimates of lower-order moments [24], etc.  
For K-class classification, it is common to use a cross-entropy cost function defined as follows: 

                                                         (1) 
where  is the weights set, tkn denotes the kth element of the target vector tn and ykn is the kth 
element of the prediction vector yn for xn, given a training data set {xn,tn}, n=1…N. 
 
3 Genetic Algorithm 
Genetic algorithm (GA) was first introduced by John Holland, from the University of Michigan, in 
1975 in its publication ‘Adaptation in Natural and Artificial System’ [25]. It is a general-purpose 
optimization algorithm that is, like neural networks, a bio-inspired artificial intelligence tool. It is a 
particular class of evolutionary algorithms that are based on the mechanics of natural selection and 
natural genetics. Unlike other optimization algorithms that improve a single solution at a time, GA 
uses a strategy of parallel search by working on a population of candidate solutions (also called 
individuals) to an optimization problem that evolves toward better solutions, enabling extreme 
exploration and massive parallelization. The basic idea is that over time, evolution will select the 
most suitable solutions [26]. This is done by evaluating, for each individual in a generation, the 
fitness function: the higher the fitness, the most probably the individual will be selected. 
Technically, when solving an optimization problem using the GA, one must first define: 

• Individual (or chromosome): Composed of several genes, it can be binary or real encoded. An 
individual represents one possible solution of the problem; the collection of multiple chromosomes 
forms the population which represents a subset of the whole searching space.  

• Fitness function: It is the function we tend to maximize; if the problem consists in minimizing a 
certain function, the latter should be transformed into a fitness function by simply inverting it. The 
fitness function corresponds to an evaluation of how good the candidate solution is. 

Once the fitness function is properly defined, the genetic algorithm generally starts by randomly 
generating the initial population. It should be large enough so that any solution in the search space 
can be later engendered [27]. Then, the algorithm loops over an iteration process to make the 
population evolve. Each iteration consists of the following genetic operators: 

• Selection: After evaluating the fitness f(i) for each individual i, Roulette wheel selection is applied in 
order to give the fittest individuals a higher chance to be selected than weaker ones. This is done by 
calculating the probability of selection of each individual as follows: 

                                                                        (2) 
where N is the total number of individuals in the population. 

• Crossover: Selected individuals should be paired randomly, with a crossover rate Pc, for 
recombination. The latter is done by exchanging genes between one or more crossover points that 
are randomly generated. 
 

0 0 0 0 0 0 

     

1 1 1 1 1 1 
 

1 1 1 0 0 0 

     

0 0 0 1 1 1 
 

 
• Mutation: It randomly alters one or more genes in a chromosome, with a mutation rate Pm, changing 

it from 1 to 0 and vice versa. It is a powerful operator used to avoid falling into a local optimum. 
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0 1 1 0 0 1 

 

0 1 0 0 0 1 
 

 
• Replacement: The new selected, recombined and probably mutated individuals form a new 

population that replaces the old one.  

Commonly, the algorithm terminates when either a maximum number of generations has been 
produced, or a satisfactory fitness level has been reached for the population. When the algorithm 
terminates, the individual with the highest fitness is regard as the approximate optimal solution. 
 
4 Combination of neural networks with genetic algorithm 
Generally, when constructing an ANN classification model, choosing its various parameters, such as its 
topology, activation functions, training sample size, etc, may greatly impact the classification results [28]. 
Basically, one of the most critical tasks in artificial neural network design is choosing the best topology 
(architecture) that gives the highest classification accuracy. One starts with no prior knowledge as to the 
number of hidden layers and number of hidden nodes required [20]; Choosing a small number of hidden 
layers and nodes will lead to an ‘underfitting’ problem: ANN will not be able to reveal complex and hidden 
patterns in the data. In contrast, a network with too many hidden nodes tries to model exactly the training 
dataset following all its noise, and leading to a poor generalization for additional untrained data: this is 
known as the ‘overfitting’ problem. In the literature, several researchers have proposed different 
methodologies for fixing the number of hidden neurons. Most of the methodologies are presented in a review 
where the authors also proposed a new method to fix the hidden neurons in Elman networks for wind speed 
prediction in renewable energy systems [29]. In general, the most used technique for finding the optimal 
architecture is by trial and error. The latter approach has several limitations such as it is time-consuming and 
the obtained network structure may not be optimal. 
In recent years, new topology optimization techniques based on evolutionary algorithms have gained great 
interest by the researchers in the domain of artificial intelligence. The combination between artificial neural 
network and genetic algorithm, also known as ‘Neuro-evolution’, has shown important capabilities and 
effectiveness in so many fields as it meets the potential of the increasing high performance computation 
capabilities in our days [30]. Initially, the use of Neuro-evolution was only restricted to the optimization of 
neural networks weights in order to overcome some limitations of the backpropagation algorithm. Later, this 
combination was extended to optimize also the ANN architecture. The following flowchart describes the 
principal steps of the ANN architecture optimization algorithm. 

 
                                Fig.1 Flowchart of the ANN architecture optimization algorithm 
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5 Application 
As mentioned in section “GA”, in order to apply the GA for any optimization problem, one must first define 
the encoding way of an individual: the process of representing individual genes. We may have binary or real 
encoding; The encoding depends mainly on the application. The most common way of encoding is binary 
strings, which is used in this paper. 
For the architecture optimization problem, the chromosome is a binary string composed of 22 bits (genes). 
The first two bits are reserved for the binary representation of the number of hidden layers, while the other 
20 bits are devided into four parts, each of five bits, representing the binary representation of the number of 
nodes in each hidden layer. This results in a number of hidden layers varying between 1 and 4 layers, and a 
number of nodes in a layer varying between 1 and 32 nodes. Such chromosome can be illustrated as follows: 
 
 
 
 
 
 
 
 

 
 
On the other hand, such optimization problem tends to maximize the classification accuracy. 
Therefore, the fitness function must be directly linked to it. The only difference is that a mapping is 
used in a way to make 90% accuracy worth 10% fitness and 100% accuracy worth 100% fitness. 
The algorithm that illustrates this idea is as follows: 
If accuracy<90%: 
     Fitness=10% 
Else: 
     Fitness=((Accuracy-90%)/(100%-90%)) *(100%-10%) + 10% 

The main reason for this mapping is the use of the ‘Roulette wheel’ selection technique that 
calculate the probability of selection based on the fitness values. Accordingly, mapping is essential 
in order to ensure that probabilities of selection in a population are not so close in the selection 
process. 

For the features reduction problem, the total algorithm is the same, but with a single difference 
which is the way of representing an individual. Here, each chromosome in the population is 
composed of n bits, where n is the total number of features. The value of each bit can be either 1, 
which indicates the presence of the corresponding feature, or 0, which indicates its absence. In this 
case, the chromosome can be illustrated as follows: 
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Fig.2 Combination between ANN and GA in two cases of ANN architecture and Feature optimization. 
 
6 Features 

6.1 Classical Features 
Feature extraction is a very important step in a bearing diagnosis problem. Any feature chosen to be 
extracted from bearing signals will directly impact the classification results. Therefore, one must properly 
select the best feature set before moving to the next step of choosing the best classifier. 
For detecting the change in bearing signal, traditional statistic features can be used. The advantages of using 
these features is essentially the ease of implementation and the low computational time. Accordingly, this 
paper proposes the use of traditional time-domain features presented in the following table: 
 

RMS 

 
Kurtosis 

 
Peak to peak  

Crest Factor 
 

Shape factor 

 
Impulse factor 

 
Margin factor 

 
 

Tab.1 Temporal features 
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Along with the above traditional features, extra powerful features for bearing fault classification, 
based on the second order of cyclostationarity, are used in this paper. These features are deduced 
from a recently developed indicator that will be detailed in the next section. 
 

6.2 Spectral features 
Souhayb and al [19] introduces a new autonomous method of bearing diagnosis in the case where the fault 
characteristic orders are known, taking into account all factors that may hinder this diagnosis. It is based on 
the development of new scalar indicators, which can be interpreted in terms of the probability of the presence 
of a fault. These indicators result from a post-processing of spectral coherence, calculated using the fast 
version of the spectral coherence algorithm proposed by Antoni et al [31]. It was chosen as a basis for the 
indicator because it is considered to be the optimal three-dimensional representation in which the bearing 
failure manifests itself clearly despite extreme operating situations. 
In details, the envelope spectrum is calculated, as a first step, by integrating the spectral coherence according 
to the frequency variable. Therefore, all information initially displayed in three dimensions will be 
condensed into two dimensions. The next step is to recognize the characteristic peaks of the defects. This 
recognition must be confirmed by checking the presence of these peaks (theoretical fault frequency and its 
harmonics) in the envelope spectrum. This step then consists in searching for the maximum amplitude mi in 
narrow bands centered on the expected theoretical orders. The search for faults harmonics in bands is 
intended to compensate for the effects of the sliding phenomenon; The latter is critical since it causes a 
random deviation from the theoretical orders given by the manufacturer and compromises the automatic 
tracking of fault harmonics when performed on a single specific order. Therefore, a band B1 is first defined, 
centered at the theoretical fault characteristic order , with a deviation tolerance of 100X%, typically 
between 5% and 10%. The lower and the upper bounds  and  of band B1 are thus defined as: 
 

                                                              (3) 
After defining the highest peak m1 in B1, a measure that represents the probability of the presence of 
the first harmonic of the fault, PPF1, is calculated based on the statistical threshold  already 
obtained from the histogram of the envelope spectrum with p=0.1. PPF1 is calculated as follows: 
 

                          (4) 
The basic idea is that, as with visual inspection, the presence of the characteristic peaks of the 
defects is confirmed according to the intensity of their amplitudes. If these amplitudes are greater 
than a statistical threshold, representing background noise, then these peaks are considered 
symptoms of the defect. 
In the case of the non-zero value of PPF1, the algorithm then searches for the presence of the 
second harmonic in a new band B2. In order to properly define B2, the center of the first band is first 
corrected to account for the possible mismatch between the actual and the theoretical fault order by 
defining  such that =α where the highest peak m1 was found. Thus, B2 is centered on 

= 2 *  and given the same bandwidth as B1, PPF2 is calculated. The algorithm terminates 
when either PPFi is equal to zero, or a maximum number of harmonics is set. The general formula 
describing the theoretical fault frequency correction is: 
 

                                                 (5) 
Once the PPFis in all concerned bands have been calculated, an overall indicator PPF is calculated 
as the mean value. 
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                                                                  (6) 
It should be noted that PPF increases with the severity of the fault. This is because the severity of 
the fault affects the amplitudes and number of peaks that characterize it. 
In [19], defect detection was performed using a non-parametric hypothesis test using the proposed 
indicator. However, this article follows a different direction in which four of the proposed indicator, 
each on one of the four fault frequencies: Ball Pass Frequency Inner race (BPFI), Ball Pass 
Frequency Outer race (BPFO), Ball Spin Frequency (BSF) and Fundamental Train Frequency 
(FTF), are used as input parameters for the neural network. The four features, PPF_BPFI, 
PPF_BPFO, PPF_BSF and PPF_FTF, are used to calculate the probability of presence of different 
types of faults; inner race (PPF_BPFI), outer race (PPF_BPFO) and ball fault (PPF_BSF and 
PPF_FTF). 
 
7 Experimental Results 

7.1 Bearing Data Center 
The performance of the proposed algorithm is now evaluated on the bearing signals provided by the CWRU 
database. The CWRU database has been used in many references and can be considered as a reference to test 
newly proposed [32]. 
The datasets are divided into four categories: 48k baseline, 12k drive end fault, 48k drive end fault and 12k 
fan end fault – according to the sample frequency and the fault’s location. The experimental setup consists of 
a 1.4914 kW, reliance electric motor driving a shaft on which a torque transducer and encoder are mounted. 
Torque is applied to the shaft via a dynamometer and electronic control system. Four types of vibration 
signals are collected (normal, ball fault, inner-race fault, and outer-race fault), acquired by accelerometer 
sensors under different operating loads and speeds. The bearing type is a deep groove ball bearing SKF6205-
2RS JEM. 
 
 
 
 
 

Tab.2 Multiplicative factors to calculate four fault frequencies 
 
The table below presents some of the signals from this dataset with some of their corresponding features 
values (calculated for the four fault frequencies). 
 
 
Signal PPF_BPFI PPF_BPFO PPF_BSF PPF_FTF Kurtosis RMS Peak to 

peak 
Margin 
factor 

Inner 
fault 

0.99 0.53 0.15 0.54 5.38 0.29 3.11 10.42 

Outer 
fault 

0.76 0.96 0.04 0.48 6.94 0.31 4.64 14.99 

Ball 
fault 

0.45 0.1 0.55 0.89 3.77 2.14 20.36 7.83 

Normal 0.18 0.06 0.2 0.03 2.9 0.06 0.66 7.56 

                                    Tab. 3 Some of the signals with their features 
 
As indicated in this table, for an inner race faulty signal, the probability of presence of a fault indicator that 
searches for the presence of BPFI (PPF_BPFI) has a high value=0.99, which insure the presence of the inner 
fault. The same is for the outer race and inner race faulty signals that have [PPF_BPFO=0.96] and 

BPFI BPFO FTF BSF 
5.415 3.585 0.3983 2.357 
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[PPF_BSF=0.55 & PPF_FTF=0.89] respectively. However, the temporal features values clearly show their 
ability for detection. 
 

7.2 Second Dataset 
In order to validate the proposed algorithm, the latter is evaluated also on another dataset acquired by John 
Stokes in the University of New South Wales (UNSW) in Australia. The test bench has a gearbox composed 
of two shafts, one of which is driven by a three-phase motor. The power flows through a hydraulic motor and 
pump. The two input and output shafts are placed parallel to each other, and are connected to the gearbox by 
two bearings each. An accelerometer was installed above the defective bearing, and the signals were 
temporally sampled with a sampling frequency of 48 KHz. The defects installed are localized defects in the 
form of a small superficial notch placed either on the outer ring, or on the inner ring or on one of the balls. 
The vibration signals were acquired under different conditions of rotational speed, 3, 6 and 10Hz, and load 
torque, 25, 50, 75, 100 Nm. The bearing under-test, Koyo 1205, has the following fault frequencies: 
 
 
 
 

Tab.4 Multiplicative factors to calculate four fault frequencies 
 
 
The table below presents some of the signals from this dataset with some of their corresponding features 
values (calculated for the four fault frequencies). 
 
Signal PPF_BPFI PPF_BPFO PPF_BSF PPF_FTF Kurtosis RMS Peak to 

peak 
Margin 
factor 

Inner 
fault 

0.95 0.08 0.01 0.00 2.89 9.89 65.88 5.83 

Outer 
fault 

0.2 0.82 0.14 0.10 3.25 4.17 3.65 1.35 

Ball 
fault 

0.16 0.19 0.83 0.18 3.00 5.65 45.5 5.59 

Normal  0.055 0.18 0.27 0.57 4.01 4.26 9.25 2.21 

                                    Tab. 5  Some of the signals with their features 
 

7.3 Results 
The same code was applied on both of the datasets; Even the GA parameters were set the same. These 
parameters were chosen based on GA logic and concept of starting with a large population in order to be able 
to obtain a large variety of solutions, and evolving the population over too many generations so we attend the 
desired solution. Accordingly, the total number of individuals was set to 20, and the maximum number of 
generations to 30. These numbers may differ from one application to another. In addition, the crossover 
probability was set to 0.7, which indicates that only 70% of the individuals will be recombined to form the 
new population. And finally, it is well-known that the mutation probability must not be high, since it will, in 
that case, negatively influence the main GA concept of evolving the population towards fittest solutions. 
Consequently, it was set to 0.03 (3%). 
For the Bearing Data Center, results have shown that there may be several architectures giving the highest 
accuracy = 99%. This result is very logic since we are not solving an optimization problem with a well-
defined equation and a unique solution. Having several topologies could be very helpful and essential in 
many applications especially when the data is too large and requires many hidden layers. The architectures 
found by the GA are formed by two or three hidden layers: 
 
 

BPFI BPFO FTF BSF 
7.11 4.89 0.41 2.65 
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                                     Fig.3 Two possible architectures obtained by the GA 
 
 
For the features optimization, only six features out of eleven are relevant for the ANN. Those features are: 
PPF_BPFI, PPF_BPFO, PPF_FTF, Margin Factor, Peak to Peak, RMS. They are able to give the same 
classification accuracy 98% when fed into the ANN having the best architecture. The results were very 
convincing: this combination of both temporal features, capable of detecting the presence of a fault, and the 
spectral features, capable of classifying the different fault types, will surely be enough for getting good 
classification results. The figure below is an example of an envelope spectrum obtained for an inner race 
faulty signal. It explains clearly why the spectral indicator was able to classify the different faults by 
searching on the theoretical fault frequencies taking into consideration the slip phenomenon that may occur. 
 
 
 
 
 
 
 
 
 
 
    
 
 

 
                    Fig.4 Envelope Spectrum for an inner race faulty signal 
 
Below is the confusion matrix of the resulting classification model, where 0 indicates normal signals, 1 inner 
race fault, 2 outer race fault and 3 ball fault. 
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Fig.5 Normalized confusion matrix  
 
Applying the same code on the second dataset also gave important results. The same GA was able to find 
ANN architectures giving a 100% classification accuracy. These architectures are formed by a single hidden 
layer containing 31 nodes, or by 2 hidden layers having number of nodes higher than 20. The GA 
convergence was much faster in this case than in the bearing data center dataset. The main reason is that the 
envelope spectrum for this database was more clear and without noise which directly influenced the spectral 
indicators values. This is also the reason of obtaining a higher classification accuracy. Below is an envelope 
spectrum of an inner race faulty signal from the second database: 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
                    Fig.6 Envelope Spectrum for an inner race faulty signal 
 
 
For the features optimization problem, here also, the number of features was reduced from 11 to 6: 
PPF_BPFI, PPF_BPFO, PPF_BSF, Margin Factor, Peak to Peak, RMS, with a single difference of having 
PPF_BSF instead of PPF_FTF. This result was a little bit confusing, for both of the datasets, since it is well-
known that a signal with a ball fault is characterized by the presence of the combination of the ball spin and 
the fundamental train frequencies. Below is the confusion matrix of the resulting classification model: 
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                         Fig.7 Normalized confusion matrix  

 
8 Conclusion 
This study presents an algorithm based on neuro-evolution for bearing fault classification problems. 
Although it is widely known that Neural Networks alone are used for such applications, the fact that its 
architecture is fixed makes it not adaptive to change. This study suggests optimizing the neural network 
architecture and reducing the number of features using the genetic algorithm. This technique was tested on 
bearing fault detection and classification with two datasets and gave promising results. This concept of 
applying the neuro-evolution is very powerful and effective in so many fields especially when having a huge 
dataset to train and a big number of features. Additional work can be done with neuro-evolution like weight 
optimization in order to overcome some limitations of the classical gradient descent method. 
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