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Abstract

The analysis of the squared envelope spectrum (SES) is one among the most used tools for bearing diagnosis.
It can easily reveals the characteristic frequencies related to the bearing fault [1, 2]. Actually, the envelope is
estimated through a demodulation process in a selected frequency band. The proper choice of the latter is really
challenging in a complex environment [3]. In addition to that, the frequency of the bearing fault is likely to
be masked by deterministic components. This can jeopardize the efficiency of classical techniques [3, 4, 5].
In this paper, a new approach for bearing diagnostic is proposed. It is based on a recently proposed order
tracking technique using the H., filter [7]. In details, the method starts by computing the squared envelope
(SE) of the raw signal over the full demodulation band without prior processing. Next, the SE is modeled in a
state space using a trigonometric series expansion. Last, an H., estimator is designed to extract the amplitude
of each harmonic related to the bearing fault signature. This estimator is well convenient to track the order
of bearing faults, particularly in the presence of deterministic components (i.e. the noise). Since this noise is
neither white nor Gaussian, the traditional Kalman filter order tracking is compromised [8, 9, 10]. Contrary
to the Kalman filter, the H. filter is based on the minimax optimization. The minimax approach leads to the
minimization of the estimation error for the worst possible amplification of the noise signal. More interestingly,
no prior knowledge about the statistical properties of the noise signals is required [11, 12]. The efficiency of
the proposed approach is demonstrated on simulated and real-world vibration signals in nonstationary regimes.

Keywords: H.. filter, state space modelling, order tracking, squared envelope, bearing diagnosis, vibration
signal, variable speed condition.

1 Introduction

Rolling element bearings are among the most widely used elements in rotating machines. Because of their
common role to carry high loads, bearings are likely to be exposed to sudden failures causing system out-
age. Thus, there has been an increasing interest in developing appropriate techniques for signal denoising and
incipient fault detection. Due to their non-invasive nature and their high reactivity to incipient faults, the devel-
opment of vibration-based techniques has spiked the interest of the scientific community [1]. In this context,
envelope analysis has long been recognized as a powerful bearing diagnosis technique. Typically, it consists
of a bandpass filtering step in a frequency band wherein the impulsive response is amplified, followed by a
demodulation that extracts the signal envelope. The spectrum of the envelope reveals the desired diagnostic in-
formation, including the repetition frequency of the fault as well as possible modulations. It has been shown in
[2] that it is preferable to use the squared envelope instead of the envelope as the latter is likely to introduce ad-
ditional interfering components in the envelope spectrum. Since that time, the envelope spectrum was replaced
by the squared envelope spectrum (SES) which has become the benchmark technique for bearing diagnostics.
A powerful solution to this issue was proposed through the spectral kurtosis [16] (and some derived tools such
as the kurtogram [17], the fast kurtogram [3], etc.) which provides an entirely blind way of identifying the
best demodulation band according to the impulsivity criterion. Despite its remarkable relevance in machine



signal analysis, the efficiency of the spectral kurtosis is compromised in many situations; for instance, in the
presence of energetic deterministic part or the presence of multiple impulsive sources or strongly in nonstation-
ary conditions. This paper comes in this context aiming at providing a new way to address bearing diagnostic
based on tracking bearing characteristic orders (i.e. fault frequencies referenced to the shaft frequency) in the
squared envelope, without the need of eliminating the deterministic component neither to filter the signal. The
method uses the fact that the SE signal comprises a cyclic patterns related to bearing fault. From this observa-
tion, the SE signal is described in the state space model using a trigonometric series expansion. Then, an H.
filter is designed to track bearing fault order components. This approach is different from the classical Kalman
filter based order tracking. The latter is a widespread method used to track sinusoidal components [8, 9, 10],
assuming that the exegeneous noises that affect the state model are white and Gaussian with known statistics.
In current situations, those assumptions are not valid. Indeed, the meshing components that mask the bearing
ones are neither white nor Gaussian. To address this issue, an H., filter is proposed. The latter minimizes the
estimation error for the worst possible amplification of the noises. This leads to a minimax optimization where
no prior knowledge about the statistical properties of the noises is required [11, 12].

The proposed approach is presented in this paper as follows. In Section 2, the SE of a discrete vibration signal
is described in the state space model using a trigonometric series expansion. In Section 3, the methodology to
design an H., filter is exposed. In Section 4, the proposed approach is first applied to a simulated vibration sig-
nal. Then, it is applied to analyze real-life vibration signals acquired from a wind turbine under nonstationary
conditions. Conclusions of this paper are given in Section 5.

2 State space modeling of the squared envelope signal
Condider the discrete measured vibration signal as follows:

y[k] = yr[k] 4y, [k] + b[k] )

where y,[k] is the signal related to the bearing vibration, y,[k] is the meshing signal and b[k] is the signal
composed of all the exegeneous vibrations such as the background noise for all k = 1,--- | N. N is the number
of signal samples. The meshing signal, in the case of a tooth crack, exhibits amplitude and phase modulations
[6]. The corresponding signal in nonstationary regimes can be written as:

Velk] = K(@[K]) Y an[K]e/ e/ )

in which k(w[k]) is a modulation function depending on the machine regime, w[k] = 27 f,[k| is the shaft
angular speed and f, is the machine rotating frequency, a,, and ¢,, are respectively the amplitude and phase
modulations, 6,, is the instantaneous meshing angular displacement and j is the complex number such as

j? = —1. Concerning the bearing vibration signal, it exhibits a series of impulses which can be modelled as [1]:
d
yelk] = w(o[k))M[K] Y Aillk— [T:£]] 3)
i
in which:

e MIk] is the load distribution function for an inner-race under radial load. In stationary conditions, this
function is periodic at the shaft rotating period [18];

e A; is the amplitude of the ith impact so that A; = A + 0A;. A is the mean value of the distribution and §A;
is a zero-mean random part with oy its standard deviation;

e T; is the instant of apparition of the ith impact;

e [ is the damping response that depends on the damping factor and the resonance frequency of the bearing
structure;

e d is the number of impacts resulting from the bearing fault;



o f; is the sampling frequency;
e [-] stands for the integer part of a decimal number.

Since the bearing’s rolling elements are subject to slipping phenomena, the time of occurence from one impact
to another is not constant. This time exhibits a random part and, as mentionned in [1], can be modelled in
stationary conditions as:

T; =iT + 6T; 4

where T is the time isntant between two consecutive impacts and 07; is a random variable with a Gaussian
distribution. This modelling is no longer valid in nonstationary conditions. In this context, Borghesani et al.
[19] and Abboud et al. [20] have written the instant of impact occurrence as follows:

Ti:t(i9d+69,~) )

in which 6 is the angular period of the bearing fault and 86, is a zero-mean Gaussian distribution.
The squared envelope of the measured vibration signal, which is of interest in this work and denoted SE, is
given as follows:

SE[k] = E{y[k]y[k]} ©)
E{ (yr[K] +yg k] +bIK]) (3 [k] + g [k] 4 b[K]) } ©)
where a is the conjugate of the complex number a and E{-} stands for the expectation symbol.

In this paper, it is assumed that the bearing, the meshing and the noise signals are mutually not correlated.
Hence, the squared envelope becomes:

SE] = BE{yr[k]y,[K]} + E{ys[k]ys K]} + E{b[K]b[k]} ®)
= E{y,[kly-[k]} + n[k] ©)

where n[k] = E{y,[k]y,[k]} + E{b[k]b[K]} is considered as a noise signal. Otherwise, the SE can be expressed
using the autocorrelation function (ACF) denoted by %. The latter, applied to the bearing signal y, in equation
(3), can be written as [20]:

d
Zlk, ] = (A* + o) (0[k)M*[K] Y E{glk— [T£], 1} (10)
i=1

where gk, j| = I[k]I[k — j]. By writing this function in the angular domain, one gets:

QU

Rlka ] % (A + 03) R (0lka)) M [ka] Y E{gka — [6:Na], 1} (1)
i=1
with X the angular transformation of the time variable x, k, the sample index in the angular domain, Na the
angular sampling frequency and 6; the angle instant of the ith impact occurrence. Refering to equation (5), the
latter is modelled as 6; = i6; + 0 6; [22]. Thus, the ACF becomes:

Rlka, j] = (A% + 03) K (@[ka) )M ko]

M=~

E{g[ku - ka,i - 6ku,iu J]} (12)
1

where k,; =~ [i6;4N, | is the angular sample of the ith impact occurrence and dk,; ~ [ 66;N, | is a random integer.
The above equation of ACF has been proven by Abboud et al. in [20]. By taking advantage of this equation,
the SE, using the ACF, can be expressed as:

SE[ka] = ‘%[ka,j = O] +ﬁ[ka] (13)
= (A2 + 62 (w[ks)) M [ka] iﬂi{g{ka — kg i — Okq i, j = O]} +7ilky] (14)

i=1
=+ ORI Bl s b+l (15)



Assume that the random variable k, — k,; — Ok,; has a probability density function f[0k, ;| centered at
kq — kq; with a constant standard deviation. According to the law of the unconscious statistician [15], the above
equation is written as:

SElkd] = (A”+03)R*(@[ka))M? k] i iilz [ka — ka,i — Oka,i| fOka,i] +filka] (16)
= (A% +03) R (wlkd )M [ky ]f( W ® f)lka = ka) + filka] (17)
SE[k,) = (A2 + Gf) kz(w[ka])Mz [Ka] is[ka — kai] +7ilkq] (18)

Il
—_

in which ® stands for the convolution symbol and s[k,] = (h> ® f)[k,] is the convolution between the function
h? and f. The function M?[k,] is deterministic and can be approximated by a Fourier series such as M?[k,] =
Y As[ka]e’ Vslkal gisOrlkal wwhere A, and i are respectively the sth variable amplitude and phase of the Fourier
series and O, is the angular period of the shaft. In same way, the sum in the SE formula can also be expressed
by Y4 | stk —kai] = X, pe[kq|e/#Ikd eibilkal with p, and @, respectively the zth variable amplitude and phase of
the Fourier series and 68, the angular period of bearing fault. This leads to:

SE[k,] = (A2 + Gi)gZ(w[ka])gq{Z As[ka] p: [ka]e./'(%[ka]+¢z[ka])ej(29d[ka}is9r[ka])} + i[kq] (19)

where R{.} defines the real part of a complex number. In this paper, all the components related to the shaft
angular period are not of interest. Therefore, the SE is written as:

SE[ke] = (A%+0})&2(w[kd)R{ Z Ao[ka] pa[ka]e/Yolkal+0:lkal) o1 Oulka)} 4y k] (20)
s=0,z
I
~ Z a) €08 (204 [kq] + :[ka]) +v[ka] (21)
in which o [k,] = (A% + 63) K> (@[ka]) Ao [ka] Pz [ka)s Oz[ka] = Wolka] + @;[k,] are respectively the zth amplitude

and phase of the Fourier series, v[k,| is the noise comprising the initial noise 7i[k,] and all the components
related to the shaft angular period 6, [k,] and / is the higher order of the series. The latter defines the number of
the bearing component of interest in the estimation procedure. In the state modelling approach that is proposed
in this paper, v[k,] is the so-called measurement error or measurement noise.

At this stage, the detection of the bearing fault is reduced to the estimation of the amplitude ¢, and the phase
¢, of the zth order component. This estimation can be done using a linear or a non-linear filtering approach.
However, the non-linear approach are subject to a divergence issue. To obtain a linear model, the SE signal is
presented in the following form:

SElk = Y bl [ka]x:[ka] + v[kd] (22)

where:

o hky) = ( cos(z04[ka]) sin(z64[ka]) )T € R?*! is the zth measurement vector. R stands for the ensem-
ble of the real number and (-)” for the transpose symbol. In the rest of this paper, the lowercase symbols
in bold stand for vectors and the uppercase ones in bold stand for matrices;

o x ko) = ( o[kq]cos(@.[ks]) o [ky]sin (9 [ka)) )T € R2*! is the zth state variable.

Using equation (22), the estimation of the amplitude and the phase of the Fourier series reduces to the estimation
of the state variable x,. In this context, the simultaneous estimation of x; leads to write the SE as:

SE[ka] = h" [ka)x[kq) + v[kd] (23)



in which hlk,) = ( h][ks] -~ ] [ki] )T e RV and x[k,) = ( xi[ks) -+ xi[kd] )T € R?*1 are respec-
tively the measurement vector and the state variable. Assuming that the angular period of the bearing fault is
known, the detection of the latter is reduced to the estimation of the state variable x[k,]. In this context, it is
proposed to estimate x[k,] in a recursive manner using a state space modelling approach.
For this reason, the SE signal is described in a state space. That is to say the dynamic of the state variable has
to be defined. In this paper, all parameters include in the state variable x[k,] are supposed to follow, roughly
speaking, a random walk so that:

x[k, + 1] = x[k,] + wlk,] (24)

where w[k,| is a random or deterministic signal with bounded energy. Equations (23) and (24) form the state
space model of the SE signal. From the latter, an H.. filter is designed in the next section for the state variable
estimation.

3 H. filter order tracking

Considering equations (23) and (24), the H.., filter will be designed to estimate some arbitrary linear com-
bination of the state, say:

$Tka) = h" [ka]%[k] (25)
where £[k,| satisfies the following recursion:
&lka] = &lka — 1]+ glk] (SE[ka — 1] = h" [ka — 1][ks — 1]) (26)

where g[k,] is the H. gain and X[k,] is the estimate of x[k,]. The state variable is estimated for any v|[k,]
and w(k,] of bounded energy.
Let e[ky| = s[ka] — $[kq] be the estimation error, then the H.. gain is found by minimizing the following cost
function given by [12]:
2
£ el

el + E8 -t (Il + vk I3

a

J=

(27)

where (e[1],wlk,],v[k]) # (0,0,0), e[1] represents the initial error, P[1] > 0, @ > 0 and R > 0 are positive
definite weighting matrices, N is the number of samples and ||e[k,]||s = e[ka)” Se[k,]. This can be interpreted as
the energy gain from the unknown disturbances P~'/2[1]e[1] and {Q ™ *wlk,],R~/*v[k,] }2\: _, to the estimation
error {e[k,|}} _,. It is quite clear that if the ratio in (27) is small then the estimation is better, and vice versa.
However, this ratio depends on the quantities e[1], w[k,] and v[k,| which are unknown. In this context, the worst
case is considered below:

Sup J<1/y (28)
e[1],wlka],v[kd]
where ”Sup” stands for the supremum and ¥ is the performance bound. Otherwise, the goal of the H.. problem
is to find an estimation {§ [ka]}i\: _, that minimizes the worst-case energy. This is equivalent to minimize the
following scalar quadratic form:

N N N
Jr=e [P ' [1le[1]+ Y wika]" Q@ 'wlko] + ¥ vika] R "lka] — 7 Y elka]" e[kd] (29)
ko=1 ko=1 k,=1
so that J¢ > 0 for all vectors e[1], for all nonzero signals wk,] and v[k,] of bounded energy.
Giving the cost function Jy, the worst case minimization is reduces to minimize J; in respect to $[k,] and to
maximize Jy in respect to e[1], wik,] and v[k,] for all k, = 1,--- ,N. This leads to a minmax optimization
formulated in such a way that:

{$lka]}p _, = arg (msjne{ﬂgf_v(lf)) (30)

This optimization problem can be solved by the well known Lagrange mutliplier approach. The solution to the
above optimization is given by the theorem quoted below [11, 12, 14].



Theorem 1 Let vy > 0 be the user-specified performance bound. Then, there exists an Hw estimation for s[k,| if
and only if there exists a symmetric positive definite matrix P[k,] € R**? that satisfies the following discrete-
time Riccati equation:

Plk,) = Plk,— 1Tk, — 1]+ Q 31)

when
Tlko) = (I — vh" [kelhlka)Plk] + h{keJR BT (ko] P[k,]) " (32)

and I; € R¥*? is the identity matrix.
Then, the H.. gain g[k,] € R**! is given by:

glka) = Plkq]T[ky — 1]hlk,JR ™ (33)

It should be noted that for some weighting matrices P[1], @ and R the performance criterion in (28) is achieved
if and only if the performance bound 7 satisfies the following inequality:

y<R! (34)

Since 7y defines the noise level attenuation or the performance bound, it should be as high as possible. And,
it has been shown in a previous paper [7] that when ¥ is greater than its optimal value, the matrix P is not
symmetric positive definite. Otherwise, when ¥ tends to zero, the H. filter is not constrainted. Then, it is
equivalent to the standard Kalman filter for which R and Q are defined respectively as the covariance matrix of
the measurement noise and the state noise.

4 Application

4.1 Synthetic signal analysis

Here, a synthetic signal is presented to evaluate the performance of the proposed approach in estimating
bearing order components. The signal is composed of the bearing, the meshing and the noise signal. They
represent respectively 20%, 30% and 50% of the synthetic signal energy. The non-stationary condition is simu-

lated using a non-linear rotating frequency varying between 5 Hz and 30 Hz such as f,[k] = 5+25sin (g((ll\‘,:ll)))
for 1 <k < N where N is the number of samples. The time duration of the signal is 5 s.

Concerning the meshing signal, sampled at the frequency f; = 10 kHz, it is computed using equation (2) and
contains five meshing components. The latter is composed of the 45th and 49th shaft order component with
amplitude and phase modulations. The generation of these modulations is presented in details in Appendix A.
About the bearing signal, it is generated using equation (3) in which the resonance frequency and the damping
factor are respectively equal to 4 kHz and 2000.

The rolling bearing considered is subject to a local defect occurring on the outer-race. Its characteristic
order, ball-pass-order on the outer-race denoted BPOO, is equal 8.7 times the rotating frequency with a slight
random variation. Last, the additive noise is generated using a white Gaussian noise modulated by the rotating
frequency.

The different contributions of the signal are displayed in Figure 1. It can be seen in the SES of the raw signal
(Figure 1 (g)) that the bearing fault order is masked by deterministic components. Thus, the proposed approach
is applied to track the order component of the bearing fault. The number of order harmonic of interest / is equal
to 15. Also, the parameters of the filter take the following values: R =1, Q@ = 0 x I;, ¥ = 0.9R~! and the filter
initial values are P[1] = Iy and x[1] = [ 1 --- 1 | € R¥*!. The choice of Q is motivated by the fact the
coefficients of the trigonometric series expansion are assumed to be constant. This means that the state noise
wlk] is null forall k =1,--- ,N.

The result of the estimation provided by the H.. estimator for the choosen parameters is presented on Figure 2.
There, the number of peaks estimated by the proposed approach correponds to the expected ones, i.e 15 peaks.
Moreover, the deterministic components present in the SES of the raw signal have been greatly attenuated.
Besides of that, some peaks, with lower energy level, appear around the bearing order components. This is due
to the fact that the H.. filter, like all type of filter, don’t atteanuate uniformely all the frequencies outside the
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band of interest.

To evaluate the performance of the proposed approach, the signal-to-noise ratio is calculated by the following
Zszl s*[K]

. O\ sk ) ) e .

estimate. When the bearing signal is totally influenced by the meshing and the noise signal, that is the worst

case estimation, the estimation error is §[k] — s[k] = b[k]. In this case, the snr is equal to —6 dB and defines
the lower limit of the performance bound. On this basis, it can be stated that all estimations provided by the
proposed approach should have a snr greater than —6 dB. It follows that a higher snr leads to a better estimation.
For this first simulation, after a 200 Monte-Carlo simulations, the estimation error leads to a snr equal to 1.48
dB. This value is greater than the performance bound and corroborates the quality of the estimation displayed
on Figure 2.

formula snr = 10 x logl()( ) where s is the SE related only to the bearing signal and § is its

Influence of the fault frequency incertitude

In the results presented above the frequency (or order) of the bearing was exactly known. In real situations,
this frequency is known with uncertainty. This can be due (i) to the fluctuation of the shaft rotating frequency,
(ii) to the imperfection of the speed sensor or (iii) to the sliping phenomena of the bearing rolling’s elements. In
this section, the influence of the uncertainty of the bearing fault order on the estimation quality is investigated.
Thus, the snr is evaluated for different values of uncertainty on the bearing fault order. This uncertainty varies
from 0 % to 5 % of the real value of the order of the bearing fault. The snr obtained in the range of the
uncertainty is displayed on Figure 3. There, the snr remains constant when the uncertainty varies from 0% to
2.5%. This is interesting for the bearing health monitoring since the uncertainty on a potential fault frequency
can reach 2% in real situations as mentionned by Randall and Antoni [1]. Beyond this value, the snr decreases;
thus the quality of the estimation is degraded and the proposed approach is no longer robust to track the bearing
order components.
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Figure 2 — Estimation of the SES of the bearing sig-
nal provided by the H.. filter. Here, the uncertainty
on the bearing fault order is equal to zero.

Figure 3 — Signal-to-noise ratio (snr) evolution
against the uncertainty on the bearing fault order.

4.2 Experimental signal analysis

This subsection deals with signals acquired from a 2 megawatts wind turbine high speed shaft on which a
condition monitoring system is installed. The bearing has an inner race fault which is increasing in severity
across the 50-day period. At the end of the test, the bearing was inspected and a crack has been identified in the
inner race. Acceleration signals were recorded on a daily basis (one signal per day) together with tachometer
signals, over a 6 s duration each with a sampling frequency equal to 97656 Hz. The nominal speed of the
bearing shaft is 1800 rpm (30 Hz). Note that the speed variability has reached 15 % of the nominal speed
in some records; the reason why the regime is considered nonstationary. The theoretical fault frequencies
referenced to the shaft frequency are as follows:

e Ball pass order on outer-race: BPOO = 6.72;

e Ball pass order on inner-race: BPOI = 9.47;



e Ball spin order: BSO = 1.435;

e Fundamental train order: FTO = 0.42.

More information can be found in [21]. In this section, the proposed approch is applied to track the order
components locolated at i x BPOO, i x BPOI, i x BSO and i x FTO where i = 1,2,3. The parameters of the H.
filter take the following values: R =1, Q = 0 x I3 and y = 0.95 and the filter initial values are P[1] = I3 and
x[1] = [ 1 .1 ] € R®*!. To monitor the health state of each component of the bearing during the 50-day
periods, the energy of each order component is evaluated. Figure 4 shows the evolution of this energy during
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the 50 days. Concerning the order components located at i x FTO and i x BSO with i = 1,2, 3, their energy
remains constant till the 49th day where an amplification is observed. This may be related to a degradation
of the bearing train and rolling elements at the end of the test. About the BPOO components, their energy
is almost constant and negligible compare to that of the FTO and BSO. Therefore, the bearing outer-race is
healthy. Otherwise, the energy of the order components located at i x BPOI increases along the days. This
amplification is related to the evolution of the inner-race fault severity. A significant jump in the energy can
be seen from the 30th day. According to the inspection done after the 50th day, a crack in the inner-race has
been noticed at the 50th day. Thus, the proposed order tracking approach is efficient to detect earlier a bearing
fault. Based on the bearing order component estimation provided by the H. filter, different indicators can be
designed to monitor bearing health state.

5 Conclusion

In this paper, an order tracking technique was proposed to diagnose a bearing fault under a nonstationary
condition. The proposed method consists of estimating a certain number of bearing order components whitout
removing the deterministic components. The method described the squared envelope signal in the state space
model using a trigonometric series expansion. Then, an H.. filter is designed to track bearing fault order com-
ponents. Firstly, the theoretical foundation of the proposed approach has been described in details. Secondly, a
synthetic signal has been generated to evaluate the performance of the proposed approach. It has been shown
that the approach was able to track the bearing order components without removing the deterministic compo-
nents. Moreover, the performance of the proposed approach remains stable for an uncertainty error on bearing
orders less than 2.5%. Finally, the efficiency of the proposed approach has been demonstrated with wind turbine
vibration signals under a nonstationary condition. The order components related to the bearing fault has been
estimated by the proposed approach throughout 50-days of measurement. A fault on the bearing inner-race has
been successfully detected earlier at the 30th day. In terms of perspective for this research, the authors will
work on the design of a robust H.. filter to deal with a large uncertainty on the order of the bearing fault.
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A Synthetic meshing signal generation

The meshing signal is composed of five components and presented as follows:

5
velk] = k([k]) Z Yem K] (35)
m=1
where y, ,, is the mth meshing component. The latter is defined by the expression below:
Vem[k] = AnlK](1 +an[k] ¥ (36)
in which:
e a, is the amplitude modulation of the mth meshing component;

e A, is the amplitude of the mth meshing component so that it is a random value comprises between 0 and
1 and k(w[k]) = @?*[k]/max(®[:]) is the modulation correponding to the variation of the regime in which
o is the angular speed of the machine;

e O[k] =2mt;Y*_, f,[c] is the instantaneous angular displacement of the shaft rotating at frequency f,. f is
the sampling period;
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e o, corresponds to the mth order of the meshing signal. It takes respectively the following values:45,
2 x45,3x45,1.089 x49 and 2 x 1.089 x 49.

It is well known that when a fault appears on a gear tooth, the resonance frequency of the gear structure is
excited by an impulse [6]. The generated impulse signal modify the shape of the amplitude modulation so that
the latter can be described by a series of impulsive. Each impulse is modeled by a narrow bandwidth gausian
function. This function is defined by as below:

ext[k] = Ze_%(W) (37

i

where Ll; is the center of the Gaussian function determined by the time instant for which the impulse occurs on
the gear tooth and o defines the width of the Gaussian function. In this simulation ¢ = 1073, Since the gear
attenuates the impulse generated by the fault, a transfert function is included in the model so that the amplitude
modulation becomes:

amlk] = pm X s[k] ® ext[k] (38)

in which s[k] = e (k=Dis sjn (27r f,(gi) (k— l)ts) is the transfert function of the gear structure and p,, is a

random value comprises between 0 and 1. é(g) and fr(gi) are respectively the damping factor and the resonance
frequency of the gear structure. They are respectively equal to 5000 and 4000 Hz.

References

[1] Randall, R. B., and Antoni, J. Rolling element bearing diagnostics-a tutorial. Mech. Syst. Signal Process.,
25(2), 485-520, 2011.

[2] Ho, D., & Randall, R. B. (2000). Optimisation of bearing diagnostic techniques using simulated and actual
bearing fault signals. Mech. Syst. Signal Process., 14(5), 763-788.

[3] Antoni, J. (2007). Fast computation of the kurtogram for the detection of transient faults. Mech. Syst. Signal
Process., 21(1), 108-124.

[4] Wang, D., Peter, W. T., & Tsui, K. L. (2013). An enhanced Kurtogram method for fault diagnosis of rolling
element bearings. Mech. Syst. Signal Process., 35(1-2), 176-199.

[5] Sawalhi, N., Randall, R. B., & Endo, H. (2007). The enhancement of fault detection and diagnosis in rolling
element bearings using minimum entropy deconvolution combined with spectral kurtosis. Mech. Syst. Signal
Process., 21(6), 2616-2633.

[6] McFadden, P. D. (1986). Detecting fatigue cracks in gears by amplitude and phase demodulation of the
meshing vibration. Journal of vibration, acoustics, stress, and reliability in design, 108(2), 165-170.

[7] Assoumane, A., Sekko, E., Capdessus, C., & Ravier, P. (2017). Order tracking using H., estimator and
polynomial approximation. Mechanics & Industry, 18(8), 808.

[8] Pan, M. C., & Lin, Y. F. (2006). Further exploration of Vold-Kalman-filtering order tracking with shaft-
speed information-I: Theoretical part, numerical implementation and parameter investigations. Mech. Syst.
Signal Process., 20(5), 1134-1154.

[9] Pan, M. C., and Wu, C. X. Adaptive Vold-Kalman filtering order tracking. Mech. Syst. Signal Process.,
21(8), 2957-2969, 2007.

[10] Pan, M. C., Chu, W. C., & Le, D. D. (2016). Adaptive angular-velocity Vold-Kalman filter order tracking-
Theoretical basis, numerical implementation and parameter investigation. Mech. Syst. Signal Process., 81,
148-161.

11


https://www.sciencedirect.com/science/article/pii/S0888327010002530
https://www.sciencedirect.com/science/article/pii/S0888327010002530
https://www.sciencedirect.com/science/article/pii/S0888327000913049
https://www.sciencedirect.com/science/article/pii/S0888327000913049
https://www.sciencedirect.com/science/article/pii/S0888327005002414
https://www.sciencedirect.com/science/article/pii/S0888327005002414
https://www.sciencedirect.com/science/article/pii/S0888327012003767
https://www.sciencedirect.com/science/article/pii/S0888327012003767
https://www.sciencedirect.com/science/article/pii/S0888327006002603
https://www.sciencedirect.com/science/article/pii/S0888327006002603
https://www.sciencedirect.com/science/article/pii/S0888327006002603
https://vibrationacoustics.asmedigitalcollection.asme.org/article.aspx?articleID=1473066
https://vibrationacoustics.asmedigitalcollection.asme.org/article.aspx?articleID=1473066
https://www.mechanics-industry.org/articles/meca/full_html/2017/08/mi160261/mi160261.html
https://www.mechanics-industry.org/articles/meca/full_html/2017/08/mi160261/mi160261.html
https://doi.org/10.1016/j.ymssp.2005.01.005
https://doi.org/10.1016/j.ymssp.2005.01.005
https://doi.org/10.1016/j.ymssp.2005.01.005
https://doi.org/10.1016/j.ymssp.2007.06.002
https://doi.org/10.1016/j.ymssp.2007.06.002
https://doi.org/10.1016/j.ymssp.2016.03.013
https://doi.org/10.1016/j.ymssp.2016.03.013
https://doi.org/10.1016/j.ymssp.2016.03.013

[11] Shen, X. (1995, May). Discrete H.. filter design with application to speech enhancement. In Acoustics,
Speech, and Signal Processing, 1995. ICASSP-95., 1995 International Conference on (Vol. 2, pp. 1504-
1507). IEEE.

[12] Shen, X. M., & Deng, L. (1997). Game theory approach to discrete H/sub/spl infin//filter design. I[EEE
Trans. Signal Process, 45(4), 1092-1095.

[13] Pinkus, A. (2000). Weierstrass and approximation theory. Journal of Approximation Theory, 107(1), 1-66.

[14] Banavar, R. N., & Speyer, J. L. (1991, June). A linear-quadratic game approach to estimation and smooth-
ing. In 1991 American control conference (pp. 2818-2822). IEEE.

[15] Ross, S. M. (2013). Introduction to stoachastic process. In Applied probability models with optimization
applications (p. 2). Courier Corporation.

[16] Antoni, J., & Randall, R. B. (2006). The spectral kurtosis: application to the vibratory surveillance and
diagnostics of rotating machines. Mech. Syst. Signal Process., 20(2), 308-331.

[17] Antoni, J. (2006). The spectral kurtosis: a useful tool for characterising non-stationary signals. Mech.
Syst. Signal Process., 20(2), 282-307.

[18] McFadden, P. D., & Smith, J. D. (1984). Model for the vibration produced by a single point defect in a
rolling element bearing. Journal of sound and vibration, 96(1), 69-82.

[19] Borghesani, P., Ricci, R., Chatterton, S., & Pennacchi, P. (2013). A new procedure for using envelope
analysis for rolling element bearing diagnostics in variable operating conditions. Mech. Syst. Signal Process.,
38(1), 23-35.

[20] Abboud, D., Antoni, J., Eltabach, M., & Sieg-Zieba, S. (2015). Angle \ time cyclostationarity for the
analysis of rolling element bearing vibrations. Measurement, 75, 29-39.

[21] Bechhoefer, E., Van Hecke, B., & He, D. (2013, October). Processing for improved spectral analysis. In
Annual Conference of the Prognostics and Health Management Society, New Orleans, LA, Oct (pp. 14-17).

[22] Antoni, J., Bonnardot, F., Raad, A., El Badaoui, M. (2004). Cyclostationary modelling of rotating ma-
chine vibration signals. Mechanical systems and signal processing, 18(6), 1285-1314.

12


http://ieeexplore.ieee.org/abstract/document/480570/
http://ieeexplore.ieee.org/abstract/document/480570/
http://ieeexplore.ieee.org/abstract/document/480570/
https://ieeexplore.ieee.org/document/564201
https://ieeexplore.ieee.org/document/564201
https://ieeexplore.ieee.org/document/4791915
https://ieeexplore.ieee.org/document/4791915
https://web.ma.utexas.edu/users/gordanz/notes/introduction_to_stochastic_processes.pdf
https://web.ma.utexas.edu/users/gordanz/notes/introduction_to_stochastic_processes.pdf
https://www.sciencedirect.com/science/article/pii/S0888327004001529
https://www.sciencedirect.com/science/article/pii/S0888327004001529
https://www.sciencedirect.com/science/article/pii/S0888327004001517
https://www.sciencedirect.com/science/article/pii/S0888327004001517
https://www.phmsociety.org/sites/phmsociety.org/files/phm_submission/2013/phmc_13_006.pdf
https://www.phmsociety.org/sites/phmsociety.org/files/phm_submission/2013/phmc_13_006.pdf

	Introduction
	State space modeling of the squared envelope signal 
	H filter order tracking 
	Application 
	Synthetic signal analysis 
	Experimental signal analysis 

	Conclusion 
	Synthetic meshing signal generation 

