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Milling Diagnosis using Machine Learning Approaches

The manufacturing industries more and more pay close attention to artificial intelligence (AI). For example, smart monitoring and diagnosis, real time evaluation and optimization of the whole production and raw materials management can be improved by using machine learning and big data tools. In this work, a smart milling diagnosis has been developed for composite sandwich structures based on honeycomb core. The use of such material has grown considerably in recent years, especially in the aeronautic, aerospace, sporting and automotive industries. But the precise milling of such material presents many difficulties. The objective of this work is to develop a data-driven industrial surface quality diagnosis for the milling of honeycomb material, by using supervised machine learning methods. In this approach cutting forces are online measured in order to predict the resulting surface flatness. The developed diagnosis tool can also be applied to the milling of other materials (metal, polymer, …).

Introduction

The manufacturing industries more and more pay close attention to artificial intelligence (AI). For example, smart monitoring and diagnosis, real time evaluation and optimization of the whole production and raw materials management can be improved by using machine learning and big data tools [START_REF] Beskri | Systèmes de surveillance automatique en usinage: Moyens et méthodes (Automatic monitoring systems in machining: tools and methods)[END_REF]. An accurate milling process implies a high quality of the obtained material surface (roughness, flatness) [START_REF]Usinage: Tournage Fraisage (IFPM courses : Machining: Milling Turning)[END_REF]. With the involvement of AI-based algorithms, milling process is expected to be more accurate during complex operations.

T. Mikołajczyk et al. developed an Artificial Neuronal Network (ANN) for tool-life prediction in machining with a high level of accuracy, especially in the range of high wear levels, which meets the industrial requirements [START_REF] Mikołajczyk | Predicting tool life in turning operations using neural networks and image processing[END_REF]. D. Pimenov et al. evaluated and predicted the surface's roughness through artificial intelligence algorithms (random forest, standard Multilayer perceptron) [START_REF] Pimenov | Artificial intelligence for automatic prediction of required surface roughness by monitoring wear on face mill teeth[END_REF]: in their investigation the obtained performance depends on the parameters contained in the dataset. M. Correa et al. compared the performances of Bayesian networks (BN) and artificial neural networks for quality detection in a machining process [START_REF] Correa | Comparison of Bayesian networks and artificial neural networks for quality detection in a machining process[END_REF]. Even ANN models are often used to predict surface quality in machining processes, they preferred BNs for their significant representation capability and for the fast model building.

The work of C. Zhang et al. [START_REF] Zhang | Tool Condition Monitoring and Remaining Useful Life Prognostic Based on aWireless Sensor in Dry Milling Operations[END_REF] focused on monitoring the condition and life of the cutting tool in dry milling environment. From de-noised vibration signal they extract some relevant features such as the root mean square, the skewness and the kurtosis in both time and time-frequency domain. Based on Neuro-Fuzzy Network (NFN), they implemented a tool wear prediction model which performs the best, with the smallest Mean Squared Error (MSE) and Mean Absolute Percentage Error (MAPE) compared with Back Propagation Neural Network (BPNN) and Radial Basis Function Network (RBFN) algorithms. Z. Rui et al. [START_REF] Rui | Machine Health Monitoring Using Local Feature-Based Gated Recurrent Unit Networks[END_REF] implemented a hybrid approach combining handcrafted feature design with automatic feature learning for machine health monitoring: local feature-based gated recurrent unit (LFGRU) networks. By comparison with some other methods such as the Support Vector Machine (SVM), the k-nearest neighbor (kNN), they verified the effectiveness and robustness of the proposed LFGRU model for tool wear prediction. D. Wu et al. [START_REF] Wu | Cloud-Based Machine Learning for Predictive Analytics: Tool Wear Prediction in Milling[END_REF] have worked on cloud-based machine learning for tool wear prediction in milling. The research was about the development of a novel approach for machinery prognostics using a cloudbased random forest algorithm. Their experimental result have shown that despite the fact that random Forests give the best accuracy for large dataset, parallel random forest algorithm has the best ratio training time/accuracy. Future more, they will predict tool wear with other machine learning algorithms such as support vector machines as well as to make a comparison with their actual algorithms.

For machining result prediction, similar algorithms could be used but the recurrent problem is how to increase the accuracy of those algorithms. K. Javed. et al. [START_REF] Javed | Enabling Health Monitoring Approach Based on Vibration Data for Accurate Prognostics[END_REF] have worked on an enabling health monitoring approach based on vibration data for accurate prognostics. They have shown that prognostic efficiency is closely related to the extracted features and by the same way proposed a method for enabling features that can lead to simple and accurate prognostics. K. Durmus [START_REF] Karayel | Prediction and control of surface roughness in CNC lathe using artificial neural network[END_REF], by using neuronal networks, worked on the prediction and the control of surface roughness in CNC lathe using artificial neural network. His study has concluded that artificial neural network (ANN) can produce an accurate relationship between cutting parameters and surface roughness. Based on the ANN training model, he could find the best machining parameters for obtaining a desired surface roughness.

By also using neuronal artificial neural network M. Azlan [START_REF] Mohd Zain | Prediction of surface roughness in the end milling machining using Artificial Neural Network[END_REF] has developed a surface roughness prediction models for end milling machining, in the logic to find the best ANN network structure for surface roughness prediction.

Another approach consists to measure and analyze the drive power (for example by current measuring) [START_REF] Yu | Artificial intelligence for automatic prediction of required surface roughness by monitoring wear on face mill teeth[END_REF], which is not applicable in our experiment. In this paper few artificial intelligence methods are tested: random forest (RF), standard Multilayer perceptrons (MLP), Regression Trees, and radial-based functions.

In our work, a smart milling diagnosis has been developed for composite sandwich structures based on honey-comb core. The use of such material has grown considerably in recent years, especially in the aeronautic, aerospace, sporting and automotive industries. Recent development projects for Airbus A380 or Boeing 787 confirm the in-creased use of the honeycomb material. But the precise milling of such material presents many difficulties.

The objective of this work is to develop a data-driven industrial surface quality diagnosis for the milling of honeycomb material, by using supervised machine learning methods. Therefore, cutting forces are online measured in order to predict the resulting surface flatness.

Description of the Experiments

Workpiece material and tools

The workpiece material studied in this investigation is Nomex® honeycomb cores with thin cell walls. It is produced from aramid fiber dipped in phenolic resin (Fig. 1). The honeycomb cores consist of continuous corrugated ribbons of thin foil bonded together in the longitudinal direction. The aim of such a process is to create a structure allowing lightness and stiffness together thanks to the hexagonal geometry of formed cells. Figure 1 illustrates the geometric characteristics of the honeycomb core. The use of honeycomb material in sandwich composite is limited by the fragility of each wall of the honeycomb, which influences the quality of obtained surfaces after machining [START_REF] Kindinger | Lightweight structural cores[END_REF][START_REF] Gay | Matériaux composites (Composite materials)[END_REF][START_REF] Carl | Three-dimensional honeycomb core machining apparatus and method[END_REF].

The Nomex® honeycomb machining presents several defects related to its composite nature (uncut fiber, tearing of the walls), the cutting conditions and to the alveolar geometry of the structure which causes vibration on the different components of the cutting effort [START_REF] Jaafar | A 3D FE modeling of machining process of Nomex® honeycomb core: influence of the cell structure behaviour and specific tool geometry[END_REF].

It is clear that the use of ordinary cutting tools and also the mechanical and geometrical characteristics of honeycomb cores will have a crucial effect on machinability and on the quality of the resulting surface [START_REF] Mendoza | Development of a new milling cutter for aluminum honeycomb[END_REF]. In fact, ordinary cutting tools for machining honey-comb core produce generally tearing of fibers and delamination of cell structures. Subsequently, these cause a reduction of bond strength between the skin and the honey-comb core, and thus a weaker joint for composite sandwich structures.

In our study, the used milling cutter is provided from our industry partner, the EVATEC Tools Company. As shown in figure 2, the used EVATEC tool is a combined specific tool with two parts designed to surfacing/dressing machining operation. The first part is a cutter body made of high speed steel with 16 mm in diameter and having ten helixes with chip breaker. This tool part is designated by Hogger. The second part is a circular cut-ting blade made of tungsten carbide with a diameter of 18.3 mm and having a rake angle of 22° and a flank angle of 2.5°. These two parts are mechanically linked to each other with a clamping screw. 

Milling experiments

All experimental milling tests illustrated in this paper were carried out on a three-axis vertical machining center Realmeca® RV-8.

For assessing the performance of the machining process of Nomex® honeycomb core we monitored and measured the cutting forces generated during cutting, by using the Kistler dynamometer model 9129AA. The Kistler table is mounted below the Nomex sample in order to measure the three components of the machining force as shown in figure 3. During the measurements, the x-axis of the dynamometer is aligned with the feed direction of the milling machine and the longitudinal direction of the workpiece (parallel to core ribbons and the direction of honeycomb double wall). The three orthogonal components of machining force (Fx, Fy and Fz) were measured according to figure 3 Table 1 : Milling experiment conditions Two main modes of surface damage are observed (Figure 4): uncut aramid fibers along the machined surface and tearing of the walls. The appearance of the uncut fibers is a machining defect specific to the composite material which depends on the type of the fibers and their orientation. The tearing of Nomex® paper, linked to the cellular appearance of the honeycomb structure, occurs under the shear loading effect [START_REF] Mohd Zain | Prediction of surface roughness in the end milling machining using Artificial Neural Network[END_REF][START_REF] Codjo | Milling diagnosis using machine learning techniques toward Industry 4[END_REF]. Uncut fibers are observed on Figure 4 -a and-c. It is well known that the surface quality is of high importance for the use of the Nomex ® honeycomb in sandwich materials. The machining defects cause a reduction of bond strength between the skin and the honeycomb core, and thus a weaker joint for composite sandwich structures. The case (b) represents the best milling result

Measured signals

Many milling experiences have been made in our study. For example, figure 5 shows the milling forces measured for honeycomb at 2000 rpm spindle speed and 3000 mm/min feed rate. Cutting forces are in the order of a few Newtons, they do not exceed 60 Newtons. Generally, the force in vertical direction (Fz) is quite small, thus, it is advised that to keeping vertical forces small in milling composite due to the delamination issue. In our case, the vertical cutting force component is greater than other forces components which can be attributed to the mechanical properties of the honeycomb structure where the honeycomb structure is characterized by a better out-of-plane compression behavior than its tensile and shear strength. The evolution of cutting forces shows significant oscillations. These oscillations are caused by vacuum in the cells of the honeycomb and the angle between the cutting direction and the honeycomb cell wall direction.

Figure 6 shows the obtained evolution of the surface quality (flatness) for various combinations of cutting conditions (spindle speed and feed rate). The defect of shape is higher for low speeds. Thus, for high feed rates that exceed the 1500 mm/min, the unevenness exceeds 500 µm which characterizes the severe tearing of the honeycomb walls. Given the low level of cutting forces, the quality of the obtained machined surface allows to establish criteria for determining the machinability of the honeycomb structures. The appearance of the uncut fibers is a machining defect specific to the composite material which depends on the type of the fibers and their orientation. The tearing of Nomex® paper, linked to the cellular appearance of the honeycomb structure, occurs under the effect of shear loading [START_REF] Correa | Comparison of Bayesian networks and artificial neural networks for quality detection in a machining process[END_REF][START_REF] Tchoutouo | Adhesiveless honeycomb sandwich structure with carbon graphite prepreg for primary structural application: a comparative study to the use of adhesive film[END_REF].

Alternatively a surface response [START_REF] Myers | Response surface methodology[END_REF] could have been built in order to predict the milling surface quality. But close milling parameters (such as splindle speed, feed rate, depth of cut) can lead to different results, depending on the material, the quality of the machining tool, etc. Therefore, in our approach supervised machine learning techniques (with labeled measurements for the model training) are used. These tools need the construction of features associated with the measurements.

Milling diagnosis using machine learning techniques

Machine learning techniques can be separated mainly in two categories [START_REF]Mastering Machine Learning A Step-by-Step Guide with MATLAB[END_REF][START_REF] Shalev-Shwartz | Understanding Machine Learning: From Theory to Algorithms[END_REF]:

-Unsupervised approaches: based only on input data (data are unlabeled). The goal is to find groups and structures in the data set, in order to classify new observations (measurements) into the different groups.

-Supervised approaches: based on input and output data (Now the data are labelled.

The raw data (measurements) are firstly filtered, with low pass filters in order to eliminate high frequency noises, and labeled ("obtained signals for good surface quality", "obtained signals for bad surface quality"). Then the features are calculated offline or online.

All the experiments are then split into two groups: 75% for the machine learning model training, 25% for the obtained model evaluation also called test phase in the literature (another percentage can be chosen, for example 60% -40%, depending on the number of experiments). This can be made randomly, but the ratio "good surface quality" and "bad surface quality" must be kept in each group.

Features calculation

The features are calculated in the time domain and the frequency domain [6,[START_REF] Rion | Prediction of the adhesive fillet size for skin to honeycomb core bonding in ultra-light sandwich structures[END_REF] from the raw signal represented on figure 7, in steady state behaviour. In fact, transient zones (that means when the cutting tool entries or exits the honeycomb core) are not taken into account. Secondly another 19 features are calculated in frequency domain in a similar way for the measured milling force signal. Therefore, the Fast Fourier transform (FFT) of the signal has been calculated.

All the calculated features (in time and frequency domains) are normalized and stored in a table whose lines and columns respectively represent the experimental number (also called instance) and the associated feature values. The description of the used features are indicated in [START_REF] Codjo | Honeycomb Core Milling Diagnosis using Machine Learning in the Industry 4.0 Framework[END_REF] The reduction of the features is then be made by using PCA (Principal Component Analysis) [START_REF] Vidal | Generalized Principal Component Analysis[END_REF].

Labeled data

From the evaluation of the effect of the cutting parameters on surface flatness result, we defined two classes of surface quality applied to the output data of each observation (see 

Applied supervised learning algorithms

In this work, several classification algorithms have been implemented in the Matlab software environment [START_REF] Wei | Numerical control machine tool fault diagnosis using hybrid stationary subspace analysis and least squares support vector machine with a single sensor[END_REF][START_REF] Zhang | Tool Condition Monitoring and Remaining Useful Life Prognostic Based on aWireless Sensor in Dry Milling Operations[END_REF]: k-nearest neighbor (kNN), Decision trees (DT), Support Vector Machine (SVM). The different machine learning algorithms (with their adapted tuning parameters) are applied to the normalized labeled training data set (75% of the total experiments). The obtained trained models are then tested on the labeled test data set (25% of the total experiments). The objective is to find again the labels of the test data set: table 3 We used some news experimental data set in order to evaluate the performance of the trained model. The goal is to predict online (during milling) the surface quality. The results are presented here for the trained model by using the linear SVM classifier algorithm: The class B was the best predicted class. Despite the fact that linear SVM algorithm lost in performance for data set with large predictors (i.e. large number of features), it has been an accurate algorithm with a good prediction rate and the lowest training time.

Conclusion

The milling's performance is qualified by evaluating the roughness or the flatness of the resulted surface. In this work, different supervised machine learning algorithms have been implemented and compared. To do this, features were firstly calculated from measured milling forces and then each Artificial Intelligence (AI) based model has been trained by the labeled set of features. From the prediction results, SVM algorithm seems to be a good efficient diagnosis algorithm in this application of honeycomb material milling. The developed diagnosis approach can also be applied to the milling of other material.
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 1 Nomex® honeycomb cores and the main geometrical characteristics
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 2 Figure 2: Milling cutter used for Nomex® honeycomb core ''CZ10''.
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 4 Figure 4: Obtained honeycomb machining surfaces. The case (b) represents the best milling result
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 5 Figure 5: Milling force measurements for 2000 rpm spindle speed and 3000 mm/min feed rate: (a) during all process; (b) during 0.2s (zoom)
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 6 Figure 6: Effect of cutting parameters on surface flatness
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 7 Figure 7: Measured milling force in time domain: (a) total data plot, (b) signal during steady-state phase
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	Label Flatness (µm) Qualitative value
	'A'	0 -600	Best surface quality
	'B'	600 -…	Worst surface quality

Table 2 :

 2 Label table for the experimental observations
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 3 shows the obtained accuracy result of each algorithm. Prediction error for the normalized data set

	Algorithms	Accuracy
	KNN	83.4%
	KNN k=2	81.3%
	Weighted KNN k=2	83.4%
	Chebychev KNN k=2	87.5%
	Tree	99%
	Pruned tree	66.67%
	Linear SVM	83.4%
	Gaussian SVM	66.67%

Table 4 :

 4 Performance of the prediction using SVM classifier