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Abstract 
 

Gears and bearings are more and more used in every industrial area mainly due to their strong reliability. 

Nevertheless as every mechanical transmission system, failures appear during time life. It induces critical 

damage, time cost for maintenance services to repair the fault potentially on duty. A wide part of work in the 

scientific community already provides a large quantity of features to follow health status of these systems 

(e.g., RMS, kurtosis, crest factor, FM0) in order to detect the fault as soon as possible.  

Since few years, methods developed in signal post-processing are coupled with Machine Learning (ML). 

ML allows ability to detect novelty or fault based on a trained algorithm. According to the literature [1], to 

identify the type of damage, a supervised algorithm is needed. Consequently an accurate diagnosis implies 

labelled data which are often difficult to obtain practically. 

The aim of this paper is to provide keys, based on our knowledge about features in Structural Health 

Monitoring (SHM), to get higher information level in classification by adding a qualitative analysis (type of 

damage) without label or information about the type of fault.  

Work carries on a measurement database. The assumption is made about two classes “healthy” / “faulty” 

using a supervised algorithm. The contribution of our work brings a new step in the default analysis by 

adding a probability for a defect case to be identified. Indeed, by combining some sensitive features selected 

for their relevance to describe a type of fault, a probability to have this particular default can be given. This 

classification is tested against three fault classes: bearing, gear generalized, gear localized.  

Results show that a probability for having bearing fault can be identified using this method contrary to 

the gear generalized and localized fault which are more complex to characterize. This new step enables to 

help maintenance services to focus more efficiently on the incriminated faulty part of the system, inducing a 

reduction of time to repair for maintenance services, a shorter out of order time leading to a significant 

productivity gain.  
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1 Introduction 

Gears are used in a huge quantity of mechanical systems. As a consequence, monitoring their possible 

faults the most accurately possible is a major issue in the field of Structural Health Monitoring (SHM) as 

they can provoke critical damages.  

With the increasing use of ML techniques, different algorithms have emerged to deal with this problem. 

Support Vector Machine, Neural Network, Random Forest are examples of ML methods currently used to 

classify faulty and healthy sample. 

 

Looking at industrial maintenance services requirements, the needs in terms of monitoring may be 

resumed as: 

1- Find efficient condition indicators (CI) to monitor their systems, 

2- Use ML algorithms to allow a continuous monitoring and an high efficiency of faulty detection, 

3- Have a minimal cost and time to repair the faulty equipment. 

 

The first and the second point are already addressed in literature. This paper proposes to industrials a 

method to complete their process by the third part: a qualitative analysis of fault, leading to a reduction of 

cost and time for maintenance services. 

 

2 Presentation of the study case 

PHM Society proposes a challenge for monitoring and fault detection. They provide a measurement 

database (measured on a test bench). Students, researchers and companies can participate. Each one proposes 

their own method to classify the given database. This work is based on the database provided for the 2009 

challenge. Figure 1 presents the test bench used to build this measurement database. 

 

   
Figure 1: Presentation of the test bench used for measurements coming from PHM Society 2009 Challenge 

 

This test bench is built with two gear stages mounted on three shafts with six bearings. Two gear 

geometries are used: one using spur gears, the other one using helical gears.  

 

Table 1 presents the gear parameters for both configurations. 

 

Shaft Gear Spur gear Helical gear 

Input shaft input gear 32 16 

Idler shaft 1st idler gear 96 48 

Idler shaft 2nd idler gear 48 24 

Output shaft output gear 80 40 

Table 1 : Gear description for the two geometries: spur and helical 
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Whatever the gear geometry, the gear ratio between each gear stage is the same, leading to keep the same 

global gear ratio. Thus, from input to output the gear reduction ratio is 5 to 1 reduction: 

 

            
  

  
 
  

  
 
 

 
        

 

The instrumentation is composed of a limited number of sensors with two accelerometers mounted on the 

housing and one tachometer on the input shaft (see Figure 1). The tachometer delivers 10 tops by rotation. 

The sampling frequency is the same for the three sensors and fixed at 66666.67 Hz. Each sample of the 

database is composed of three raw data columns of one second length. 

 

Several configurations are listed such as: 

- 14 gear cases:  

o 8 configurations on spur gear [7 faulty and 1 healthy], 

o 6 configurations on helical gear [5 faulty and 1 healthy], 

- 5 rotational speeds [30 Hz, 35 Hz, 40 Hz, 45 Hz, 50 Hz], 

- 2 load cases [high, low].  

 

This leads to 140 different configurations. Each configuration is repeated four times to give at least 

560 measurement inputs. 

 

3 Method 

The methodology developed and exposed here is composed of three main steps: 

- CI computing, 

- Classification using ML, 

- Qualitative analysis using relevant selected features for each chosen default. 

 

3.1 Condition indicators computing 

 

Figure 2 and Figure 3 present the post-processing used to build a matrix with all indicators. 

 

 
Figure 2 : Signal post-processing used to access to the different needed types of signals 
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Figure 3 : List of indicators calculated on each signal 

 

From raw signals, based on literature on bearings and gearboxes monitoring, some CI are extracted. 

Taking into account the difficulty to add a lot of different sensors, most of usual CI used in industry are 

directly computed from accelerometers raw signals (conditioned signal) such as RMS, kurtosis, crest factor. 

Based on [3], some new indicators, using residual or differential signals, requiring a tachometer information 

allow to increase strongly the efficiency of fault detection. 

 

In order to complete this list of CI, some other indicators are computed from the frequency domain, such 

as gear mesh harmonics, shaft rotational frequencies and specifics bearings frequencies.  

All these frequencies are calculated and added in the panel of features using the following equations: 

 

                                         
  

 
      

  
  

            

 

                                         
  

 
      

  
  

            

 

                          
  

    
       

  
  
 

 

               

 

with f the number of revolutions per second, Db the ball diameter, Nb the ball number, Dp the pitch 

diameter and α the contact angle. 
 

 
                                          

 

with fsh(i) the rotational speed frequency of the shaft “i” and nteeth(i) the number of teeth on the gear 

mounted on the shaft “i”. 

 

Considering the two accelerometers, a total of 298 indicators are extracted. 
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3.2 Classification using Machine Learning 

Based on all our indicators, the second step of the methodology consists in the classification of the 

560 signals in two classes: healthy or faulty. Although the labels are not given in the database from the PHM 

Society, in [2], authors give the label of all healthy samples they have classified. Based on this, an approach 

using supervised algorithms is possible for the classification. 

 

A wide range of supervised algorithms exists in the literature. Among them, a classification is proposed 

using four of them implemented within the Scikit-learn Python module [5]:  

- Nearest Neighbors classifier (KNN) [6], 

- Random Forest classifier (RFC) [7], 

- Support Vector classifier (SVC) [8], 

- Multi Layer Perceptron Classifier (MLPC) [9]. 

 

Each algorithm works with a specific method to classify. SVC determines a boundary between the two 

classes using only the data of each class which are close one to the other, the so-called support vectors. KNN 

looks at the same class nearest samples of a particular observation to build the boundary between classes. 

RFC builds decision trees and it combines them together to give its final classification. Finally MLPC relies 

on a trained neural network to decide that class the tested observation belongs to. 

 

The considered input signals for this step are the 560 one second duration signals provided by the PHM 

database. So an observation for the following of the contribution refers to a vector of dimension 298 

gathering all the features computed from one of these 560 signals. These 560 signals are splitted in two 

categories: a train set and a test set. 80 % of the database is used for the train set (448 signals) and 20 % for 

the test set (112 signals). 

 

The efficiency of these algorithms without any optimization is around 90% of good classification. An 

efficient solution to increase the performance of a ML algorithm is to optimize some hyper parameters. Table 

2 presents results before and after optimization on SVC algorithm. 

 

 

SVC 

algorithm 

Before 

optimization 

After 

optimization 

Accuracy 0.893 0.973 

Precision 0.893 0.971 

Recall 1.000 1.000 

Table 2 : Results of Support Vector Classifier before and after hyper parameters optimization 

 

The optimization phase enables to increase significantly the accuracy of the considered algorithm from 

89.3 % to 97.3 %. After an optimization of the hyper parameters on every algorithm, each individual 

algorithm gives interesting results with a percentage of good classification between 90 % and 97.1 %. 

 

Finally a method to increase strongly the performances relies on combining different algorithms with 

different approaches. This method called “ensemble learning” reduces individual weaknesses of each 

algorithm. In the present case, the precision reaches 100 % using ensemble learning on the three best 

algorithms, namely RFC, SVC and MLPC.  
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3.3 Qualitative analysis 

The classification in healthy or faulty cases enables to alarm maintenance service immediately after or 

ideally a short time before the failure. However, no information is given about the type of fault.  

The methodology proposed in this work consists in adding a qualitative information in the classification.  

The work presented here proposes a method to estimate the probability for a faulty observation to 

correspond to one of these three types of faults: 

- Bearing faults, 

- Gear generalized faults, 

- Gear localized faults. 

 

The wide quantity of indicators to monitor bearings and gearboxes given in the first section does not 

describe the same input signals’ features. Consequently they are not equally sensitive to the different types of 

faults [4]. 

Where RMS represents the energy of the signal leading to an accurate indication about the general state 

of the complete system, the peak-peak value is in opposition, very sensitive to any localized phenomenon on 

the signal, enabling to discriminate a localized fault such as crack on tooth or more critical case like a 

missing tooth. A solution based on the physics described by each indicator is investigated to predict the type 

of fault.  

 

3.3.1 Feature selection 

The selection proposed is composed of: 

- 70 indicators for generalized faults: 

o Rms on TSA signal: 

 Rms on conditioned TSA signal on the 1
st
 shaft, 2

nd
 shaft and 3

rd
 shaft, 

 Rms on residual TSA signal on the 1
st
 shaft, 2

nd
 shaft and 3

rd
 shaft, 

 Rms on differential TSA signal on the 1
st
 shaft, 2

nd
 shaft and 3

rd
 shaft. 

o Absolute mean: 

 Absolute mean on conditioned signal, 

 Absolute mean on conditioned TSA signal on the 1
st
 shaft, 2

nd
 shaft and 3

rd
 shaft, 

 Absolute mean on residual signal, 

 Absolute mean on residual TSA signal on the 1
st
 shaft, 2

nd
 shaft and 3

rd
 shaft, 

 Absolute mean on differential signal, 

 Absolute mean on differential TSA signal on the 1
st
 shaft, 2

nd
 shaft and 3

rd
 shaft. 

o MA6: 

 MA6 on differential signal, 

 MA6 on differential TSA signal on the 1
st
 shaft, 2

nd
 shaft and 3

rd
 shaft. 

o Gear mesh harmonics: 

 1
st
 gear mesh frequency, harmonics 1 to 5, 

 2
nd

 gear mesh frequency, harmonics 1 to 5. 

- 14 indicators for localized faults: 

o FM0: 

 FM0 on conditioned TSA signal on the 1
st
 shaft, 2

nd
 shaft and 3

rd
 shaft. 

o Peak-peak value on residual signal: 

 Peak-peak value on residual signal, 

 Peak-peak value on residual TSA signal on the 1
st
 shaft, 2

nd
 shaft and 3

rd
 shaft. 

- 18 indicators for bearing faults: 

o BPFO: 

 BPFO on 1
st
 shaft, 2

nd
 shaft and 3

rd
 shaft. 

o BPFI: 

 BPFI on 1
st
 shaft, 2

nd
 shaft and 3

rd
 shaft. 

o BSF: 
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 BSF on 1
st
 shaft, 2

nd
 shaft and 3

rd
 shaft.  
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From the 298 indicators, a total of 102 indicators are extracted for this qualitative analysis, they are 

summarized in Table 3. 

 

Type of fault Type of CI 
Number of indicators (for 2 

accelerometers) 

Generalized 

RMS on residual signals 18 

MA6 8 

Absolute mean 24 

Gear mesh harmonics 20 

Localized 

FM0 6 

peak-peak value on residual 

signal 
8 

Bearing 

BPFO 6 

BPFI 6 

BSF 6 

Table 3: List of CI used for the qualitative analysis 

 

3.3.2 Characterization method 

Once feature selection is performed according to their relevance for each of the investigated fault, the 

method to highlight the cases associated with a particular fault relies on the Principal Component Analysis 

(PCA) method [10]. The goal of PCA is to find, in a point cloud, the direction on which the projection of its 

point cloud has a maximum variance. This direction is called the first principal component and the next ones 

are the orthogonal directions of this first one that again explain the maximum variance. In this contribution 

each feature selection for each fault gives a point cloud of high dimension: 

- Dimension 70 for the gear generalized faults, 

- Dimension 14 for the gear localized faults, 

- Dimension 18 for the bearing faults. 

 

Consequently the PCA is used in this case to perform a dimensionality reduction in order to be able to 

represent in a two-dimensional space data which came from these high-dimensional spaces. From this 

representation the observations which represent a particular fault are expected to be significantly far away 

from the healthy and the other default cases. 

 

Therefore once the PCA is performed on each case, the probability density function (PDF) derived from 

the healthy cases is estimated. According to isolines corresponding to specific probability values three 

categories are differentiated: 

- A category with a low probability to have the studied fault type whose data are close to the 

healthy ones after PCA, 

- A category with a medium probability to have this fault which are a little bit further from the 

healthy data, 

- A category with a high probability to have this fault which are far away from the healthy data. 
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4 Results and analysis 

4.1.1 Bearing defaults 

Once the 18 features which should represent well the bearing faults are selected, the PCA is performed 

and Figure 4 is obtained. 

 

 
Figure 4: PCA result with the bearing faults feature selection. Yellow and purple lines represent respectively 

the        and       isolines of the probability density function derived from the healthy data. Healthy 

cases are given by blue dots, cases with a low / medium / high probability to have a bearing faults are given 

by green crosses / orange diamonds / red squares. 

 

It clearly shows a distinct group further than the       probability isoline that gives candidates for 

having bearing fault. Then in between the two probability isolines the observations are classified as possible 

to have bearing fault. Finally data which are lying among the healthy cases are not likely to have bearing 

fault at all. 

 

Consequently the feature selection made beforehand has allowed a qualitative analysis of the data. 

Indeed, thanks to their position compared to the healthy cases some observations can be classified within a 

bearing fault category with a given probability. 

 

4.1.2 Localized and generalized defaults 

Concerning gear localized and generalized faults, the results are more difficult to interpret as it is shown 

in Figure 5 with the PCA result of the localized fault case and in Figure 6 with the generalized fault case. 
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Figure 5: PCA result with the gear localized fault feature selection. The yellow line represents the      

isoline of the probability density function derived from the healthy data. Healthy cases are given by blue dots 

and faulty cases are given by orange crosses.   
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Figure 6: PCA result with the gear generalized fault feature selection. The yellow line represents the      

isoline of the probability density function derived from the healthy data. Healthy cases are given by blue dots 

and faulty cases are given by orange crosses. 

 

In these cases the feature selection has not allowed to distinguish different categories within the fault 

cases. It means that the selected features are not a relevant set enough to predict both gear localized or 

generalized faults. Some work is in progress to find better sets of features in order to be able to reproduce the 

results obtained with the bearing fault identification.  

 

5 Conclusion 

This work presents the full method to diagnose and follow the healthy condition of a rotating equipment: 

from the conditions indicators to the classification. From 298 relevant conditions indicators obtained from 

accelerometer signals, a first supervised classification step enables to decide whether or not a considered 

observation is healthy or faulty using ensemble learning with three combined ML algorithms. To add a 

qualitative analysis of the faulty cases, a new step is performed using principal component analysis on a 

feature subset of the 298 ones. Three different faults are studied, bearing faults and gear localized and 

generalized faults, bringing three different subset of features of dimension 18, 14 and 70, respectively. The 

dimensionality reduction obtained using the principal component analysis allows to represent in a two-

dimensional space, corresponding to the two first principal components, both healthy and faulty cases. From 

this representation a probability density function of the healthy cases is determined and the faulty cases can 

be marked as having a low or high probability to indeed, having this specific fault from their position 

compared to this function. 

Results show that bearing faults can be identified using this methodology with three different categories 

highlighted: low, medium and high probability for having this fault type. However the feature selection made 

for the gear localized and generalized faults have not allowed to distinguish clearly between healthy and 

faulty cases and consequently there is no specific observation which can be identified with these fault types. 

Work is in progress on the feature selection to be able to reproduce the bearing fault results and other 

methods are investigated to perform a better dimensionality reduction such as manifold learning techniques. 

These two ideas could bring the missing part to be able to give a complete qualitative assessment of the fault 

types.  
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