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ABSTRACT

We present an algorithm that aims to extracting from a
N*N additive mixture a cyclostationary source whose
cyclic frequency is known. It consists in minimising an
uncomplicated criterion based on the cyclic and station-
ary temporal moments of the measures. We show that it
exhibits an absolute minimum and that this minimum
ensures the source extraction. The method can be applied
whatever the temporal and spectral structure of the mixed
sources are, provided that the source to be extracted ex-
hibits one cyclic frequency that is a priori known and that
is not shared with any other source.

Keywords: source extraction, cyclostationarity.

1 INTRODUCTION

This study arose from an issue specific to predictive
monitoring of rotating machinery. Among the various
parameters that are collected in order to monitor a ma-
chine under operation, some very widely spread are the
vibrations. Indeed, each rotating part generates vibra-
tions whose shape reveals its state and can be used to
diagnose it. Such an early diagnostics avoids unplanned
stopping and costly delays.

Due to their symmetric geometry and periodic move-
ments, rotating machines produce repetitive, i.e. cyclo-
stationary, vibrations [1],[2]. They are usually designed
to have unsynchronised movements for reducing wear,
so that they exhibit different cyclic frequencies. These
vibrations usually spread over a wide frequency band
and mingle with each other, so that diagnosing a specific
part of the machine from the mixtures recorded on the
accelerometric sensors can be difficult.

Since the cyclic frequency of each specific part can
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be computed from its geometry and rotation frequency,
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we wish to use this information to extract its vibrations.
Our algorithm is based on the only cyclic frequency of
the part to be diagnosed, in order to be applicable to
complex machinery for which a thorough review of ail
the contributing parts is not always feasible. It must be
simple and allow embedded implementation.

Some cyclostationary source separation methods al-
ready exist [3]-[6], that surpass our goal but would not
be easily implemented on an embedded calculator. The
method presented here is an extension to the N*N case
of a 2*2 algorithm previously presented in [7].

In part 2, we give the hypothesis and the principle of
the algorithm and its implementation. In part 3 we prove
theoretically that the algorithm leads to extraction. In
part 4, some examples are given on artificial mixtures,
with either artificial or real vibration signals.

2 HYPOTHESES

We suppose that N sensors receive additive mixtures
of N sources. These sources can be either stationary or
cyclostationary. The one to be extracted is cyclostation-
ary and exhibits a cyclic frequency that is a priori known
and shared by no other sources. The sources are sup-
posed to be uncorrelated and zero mean.

The source vector will be denoted by

S =[s1s2...sN]T and the mixture vector by

X = [xlxz...xN]T where T denotes the transpose op-

erator. These two vectors are related by the N*N mix-
ture matrix 4 : X = AS . Let us suppose, with no loss
of generality, that the cyclostationary source to be re-

trieved is §, and denote its cyclic frequency ¢, .
We are looking for an estimate §, of s, ie. for a
vector B = [blbz...bN], such that z, = BX =§,.

2.1. Criterion

The criterion that we propose to minimise in order to
estimate the source s, is
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where R, (0) and R: (O) are coefficients of the Fou-
rier series decomposition of the autocorrelation function
of 2, respectively for cyclic frequencies 0 and ¢, and
zero time lag, that is to say :

R, (0)= Ti [T' R, (1,0)at )

0
1

R (0)= Ti [OT' R, (£,0)e” 7 dt 3)
1

with
R, (,0)= Elz, 1)z ()] ©
where E[.] denotes statistical averaging, * conjugation
and T} =i.
o

2.2. Implementation

The criterion can be computed from the Fourier coef-
ficients of the correlation matrix of the measures for
zero time lag and from matrix B, and minimised over
B coefficients. As shown in the proof section 3, it ex-
hibits an absolute minimum versus B coefficients that
leads to the extraction vector. From (1) and from the

definition of B we derive :

()= 2Rx (0)B”

~ BR%(0)BT ®
with
R,(0) =% [OT E[x()x7(¢)] ar
‘ ®)
R%(0)= % [OT' Elx()x ()] e ar

3 PROOF

The criterion can be theoretically calculated versus
all Yy alN

the mixture matrix A = , the extrac-

Ayy o Qyy

tion vector B and the Fourier coefficients of the corre-
lation matrix of the sources.

R,(0) =Ti (" Els@)s (¢)] ar

| o1 @)
R%(0)= - [0' E[s@)s ()] e 27 ar
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Due to the hypotheses made in section 2 on the
sources,

R,(0)= ®)

is diagonal with T ,.2 the power of source §; and

R*(0) .. 0
R$(0)= ©)
0 .0

exhibits only one non-zero component.
From (1), (8) and (9) we derive :

N (N 2
2 Z(Z bliaﬁ) o;

C(B)=| A I AN S

R (0) R (0)‘@: b.a, ]2

i=1

(10)

w. N
By introducing Y; = -p?j , with W, = Z b,a; ,
1 i=1l
equation (10) can be written as

C(B)=- o — ﬁ:Y?a? a1
R% () [R#(0) =

If the set of {Yj} can take any value over RY, then
the criterion exhibits an absolute minimum for
{¥y,ern ¥y } =1{0....,0}. Let us investigate what are the

conditions for this requirement to be fulfilled.
The question can be expressed in another way: for

any (N —1)-uplet {Y;,...,7, o} does there exist a B
vector that leads to that (N —1)-uplet? Now, this ques-

tion can be re-expressed: does equation (13) always
have a solution?
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This depends on the determinant of a G matrix de-
fined by

ap

G= (alz _Yzau) (azz —Y2a2l)

Ay

(ay, ~Yhay) | (13)
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Due to the fact that G is a combination of A matrix
and the first row of A, and based on the properties of
matrix determinants, it can easily be shown

that det(G) = det(4). Thus, unless det(4)=0, the
proposed criterion exhibits a unique minimum that is
reached for W, =W, =...=W, =0.

Then, z, =W,s, is proportional to the source s,
which means that the extraction is achieved. We thus
demonstrated that provided that the matrix A is not ill-
conditioned, minimising the proposed criterion leads to
extraction.

4 SIMULATIONS

All the simulations are performed over artificial
mixtures and in a 3 sources * 3 measures case. The first
simulation is applied to a mixture of three synthetic sig-
nals: two cyclostationary ones at different cyclic fre-
quencies and a stationary one. The second simulation is
applied to one real vibration and two artificial sources
(one cyclosationary and the other stationary).

The mixture matrix is a rotation matrix, which en-
sures that it is well conditioned. Its coefficients are :

0.4330 0.5537 0.7113
A=|-0.7500 0.6590 -0.0564 (14)
-0.5000 0.3000 1.288

The statistics of the measures are estimated over 60
realisations, which corresponds to different numbers of
samples depending on the chosen cyclic frequency. In-
deed, one realisation corresponds to the period of cyclo-
stationarity.

For the first simulation, the sampling frequency is
S, =40kHz and 60 realisations correspond to 18001

samples. For the second one, f, =100kHz and 60

realisations correspond to 15383 samples.

The coefficients of matrix B are optimised by being
made vary with a step equal to 0.1 between —1 and 1. It
is not a problem to restrict the research to this interval,

since any solution B could lead to a solution within that
interval by being divided by its biggest coefficient.

In order to evaluate the extraction method efficiency,
we compute the mean square error between normalised
versions of the source §; and its estimate. This error is

given in dB. We also compute the product B*A that
should exhibit two zero coefficients in case of perfect
extraction.

4.1 Artificial sources

The sources s, and §, are both white random noises

modulated by cosine functions at different frequencies,
i.e. typical second order cyclostationary signals. The
third one is a white random noise. The three of them
spread over the whole spectrum so that no classical fil-

tering method would extract the source s, . The criterion

is computed with the cyclic frequency of the source s,
in order to extract it.

Fig I shows the temporal representations of the three
sources. The two cyclostationary ones have close cyclic
frequencies (62 Hz and 66 Hz) so that they look like
each other. -

Sources

-Si . L I — i i
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Figure 1. Temporal representations of the three
sources.

The mean square error between the source 5, and its
estimate is —35 dB and the matrix product is
BA=[-0.8031 -0.0040 -0.0051],  which

means that the two other sources are rather well sup-
pressed.

The algorithm was applied to 100 different mixture
rotation matrices and the figure 2 shows the error ob-
tained for these 100 tests. In 99% of the tests the error
does not exceed —25 dB, in 68% of the tests it is smaller
than —30 dB and in two of these cases it is even smaller
than —40 dB.
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Figure 2. Emor between the source and its
estimate for 100 different mixture matrices.

4.2. Real vibrations

The source to be retrieved §, is now a damaged

roller bearing vibration, whose vibration spectrum is
shown on fig. 3. The vibration spreads over the whole
frequency range of the sensor and is amplified by some
resonances of the structure.

It exhibits no peculiar spectral line but is a typical cy-
clostationary signal whose cyclic frequency can be com-
puted from its geometric characteristics and the rotation
speed of the shaft. This cyclic frequency is equal to
390.05 Hz and is used to extract the vibration from the
mixture.

0.025

0.02

0.015+

fraquency (Hz)

Figure 3. Spectrum of the roller bearing vibra-
tion.

The mean square error between the source s, and its
estimate is —42dB and the matrix product is
B4 = [— 0.8031 -0.0040 -0.005 1] . Extraction

has been properly achieved.

S CONCLUSION

The source extraction method presented here allows
retrieving a cyclostationary source from set of additive

mixtures. The cyclic frequency of that source is sup-
posed to be known and shared with no other source. The
additional assumptions that were made are the second
order decorrelation of the sources and having as many
Sensors as sources.

The method was shown to be efficient on any number
of sources from a theoretical point of view and some
simulations were given in the 3*3 case, both for simu-
lated signals and real vibrations.

In order for this method to be applied to real mix-
tures, the hypothesis must be enlarged to a more realistic
scheme. In particular, the additive mixture assertion
does not fit to these real mixtures features. An extension
of the algorithm to the convolutive case is in progress.
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