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On the forces that cable webs under tension can support and how to
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March 4, 2019

Abstract

In many applications of Structural Engineering the following question arises: given a set of forces f1, f2, . . . , fN
applied at prescribed points x1,x2, . . . ,xN , under what constraints on the forces does there exist a truss
structure (or wire web) with all elements under tension that supports these forces? Here we provide answer to
such a question for any configuration of the terminal points x1,x2, . . . ,xN in the two- and three-dimensional
case. Specifically, the existence of a web is guaranteed by a necessary and sufficient condition on the loading
which corresponds to a finite dimensional linear programming problem. In two-dimensions we show that
any such web can be replaced by one in which there are at most P elementary loops, where elementary
means that the loop cannot be subdivided into subloops, and where P is the number of forces f1, f2, . . . , fN
applied at points strictly within the convex hull of x1,x2, . . . ,xN . In three-dimensions we show that, by
slightly perturbing f1, f2, . . . , fN , there exists a uniloadable web supporting this loading. Uniloadable means
it supports this loading and all positive multiples of it, but not any other loading. Uniloadable webs provide
a mechanism for distributing stress in desired ways.

1 Introduction

One of the main goals of Structural Engineering is to find performing structures when one incorporates into
the design a specific type of material or substructure. Many materials behave quite differently under tension or
compression: concrete and masonry structures are two examples of materials that perform much better under
compression. Some types of structures support also only specific loadings: a wire or cable, for example, can
only support tension and not compression. Here we are interested in the case where one incorporates a material
that works particularly well under tension so that a cable web is expected to be representative of the most
performing structure to be used. Thus, we address the following problem: given a set of forces f1, f2, . . . , fN
applied at prescribed points x1,x2, . . . ,xN , under what constraints on the forces does there exist a wire web (or
truss structure) with all elements under tension that supports these forces? Note that the problem is identical
if one is interested in the case where all elements are under compression. We are only interested in cable wires
which can be modeled as a set of straight truss elements: we do not consider the case of catenary elements, see,
e.g., [1, 2, 3, 16].

In the two-dimensional case, a complete answer to this problem is given by Theorem 1 in [13] in the special
case where the prescribed points are vertices of a convex polygon. This theorem states that, in this case, a web
exists if and only if the net torque going clockwise around any connected portion of the boundary is positive:
for any sequence (xi,xi+1, . . . ,xj) of consecutive vertices ordered clockwise (where xk is identified with xk−N )
we have:

j∑
k=i

det(xk − xi, fk) ≥ 0. (1)

Furthermore, by using the Airy stress functions theory, a representative web is explicitly given that contains no
closed loops (that is, there is no set of wires forming the boundary of a polygon). The reader is referred to [13]
for details.

So the question now is: what happens when the points are not the vertices of a convex polygon or what
happens in the three-dimensional case? Theorem 1.1 (see below), which is one of the main results of this paper,
answers this question completely. To make the statement clear, let us first introduce some terminology that
will be used throughout the paper:
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• Finite web: a collection W :=
(
[xi,xj ], [xk,xl] . . .

)
of segments (or bars) where x1, . . . ,xM are a finite

set of points called nodes.
• Terminal nodes: the nodes X = (x1, . . . ,xN ), N ≤M , where the forces are applied.
• Internal nodes: the remaining nodes, if any.
• Admissible web stress state: when each bar [xi,xj ] of the web is endowed with a non negative tension σij , we
say that σ = (σij , σkl, . . . ) is an admissible web stress state on W for the loading F at X if it is in equilibrium
under the action of the forces F = (f1, f2, . . . , fN ) applied at X = (x1,x2, . . . ,xN ). If there exists such an
admissible stress state then the web W is said to support1 F at X.
• Uniloadable webs: webs which support only one loading (up to a positive multiplicative constant).

Theorem 1.1 then reads as follows:

Theorem 1.1. Existence of a web under tension
Let AX be the cone of displacements U = (u1,u2, . . . ,uN ) at points X = (x1,x2, . . . ,xN ) defined by

AX := {U ∈ (Rd)N : ∀ 1 ≤ i < j ≤ N, (ui − uj) · (xi − xj) ≥ 0}. (2)

Then, the following condition
inf

U∈AX

F ·U ≥ 0 (3)

is necessary and sufficient to ensure the existence of a finite web under tension that supports the loading F at
points X. In such a case, the web connecting the terminal points X pairwise supports the loading F.

Section 2 is dedicated to the proof of Theorem 1.1 and related consequences, whereas Section 3 provides
insights on the mechanical meaning of the theorem with special reference to the two-dimensional case. In
general, from a mechanical point of view, the statement says that the work performed by F is non negative for
any (infinitesimal)2 displacements U corresponding to a global expansion of the system of points X. Notice that
condition (3) provides a characterization of the set A∗X of all the loadings F at points X which can be supported
by some finite web as the solution to a finite dimensional linear programming problem. Moreover, Theorem
1.1 states that a web supporting the given loading is the one that connects the terminal points pairwise (see
Example 1.1).

Example 1.1. Consider a balanced set of forces f1,. . . ,fN at points x1,. . . ,xN that are directed radially outwards
from a central point x0 (so that fi = ci(xi − x0) for some set of positive coefficients ci). Note that the balance
of forces implies that x0 must belong to the convex hull of the points x1,. . . ,xN .

x0x1

x2 x3

x4

x5

f1

f2
f3

f4

f5(a)

x0x1

x2 x3

x4
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Figure 1: In this example the forces F are directed radially outwards from a central point x0 and so the web
that connects the terminal points X to x0 supports such a loading. Among all the webs that can support F,
Theorem 1.1 provides the web connecting the terminal points pairwise and in Example 1.1 we determine the
stress state in each wire of such a web and we prove it is an equilibrium stress state.

Clearly, the web formed by the wires connecting the points x1,. . . ,xN to x0, Figure 1(a), supports this loading:
σi0 := ci‖xi − x0‖−1 is an admissible stress state on this web. But we can find another web which supports

1By “admissible stress state” we mean an equilibrium state in which all bars are either in tension, or carrying no load. Thus,
by “supporting”, we mean supporting with all bars either in tension, or carrying no load.

2Notice that we solve this problem within the context of infinitesimal elasticity: examples of applications of the finite deformation
theory to describe the geometric nonlinearity are given, for instance, by [6, 18, 17].
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the same loading: indeed, the web that connects the points x1,. . . ,xN pairwise, Figure 1(b), is suitable when
endowed with the stress state σij = ‖xi − xj‖cicj(

∑
k ck)−1, with the equilibrium condition

fi +
∑
j 6=i

σij
xj − xi
‖xj − xi‖

= ci (xi − x0) + ci

(∑
k

ck

)−1∑
j

cj(xj − xi)

= ci(xi − x0) + ci

(∑
k

ck

)−1
∑

j

fj −
∑
j

cj(xi − x0)

 = 0

being satisfied at each node xi.

Section 4 focuses on another major topic of the paper, that is, on channeling or redistributing stresses: we are
interested in webs able to channel forces in a controlled way. For example, if one considers, say, a bicycle wheel
or a suspension bridge, then, a desired distribution of forces is usually achieved by appropriately tightening
the spokes or cables (clearly, the layout of these substructures is also essential). By contrast here we seek to
distribute stress through judicious choices of the geometry of the web.

Notice that distributing stresses in wires is quite different than distributing electrical currents in conducting
wires. At a junction of more than two conducting wires one cannot tell in advance (without looking at the rest
of the circuit) how much flow will be channeled into the different wires (this is an advantage if one wants the
current to flow where most needed, a disadvantage if one wants to control the allocation of current, as in an
irrigation system). This is due to the fact that, in a conduction network, one only has to satisfy Kirchoff’s law
which states that the outgoing current has to balance the incoming current. By contrast, when distributing
stresses, one has that at a node where four noncoplanar wires join (for the three-dimensional case, or three non
collinear wires for the two-dimensional case), balance of forces implies that the tension in one wire, and the
geometry of the junction, uniquely determines the tension in the other wires. Thus, having at each internal
node a coordination number of four for the three-dimensional case, or three for the two-dimensional case, is
important to uniquely determining the loading that a web can support. This principle underlies the construction
of “pentamode materials” [14], which have a diamond-like structure with a coordination number of 4 at each
node of the structure. As a consequence, the stress field is essentially uniquely determined: like fluids which
only support a hydrostatic loading, pentamodes only support one loading but, unlike fluids, that loading can be
a combination of hydrostatic and shear forces. Pentamode materials have been studied for their use in cloaking,
in particular for cloaking against sonar. They can guide the acoustic wave around an object while having little
impedance mismatch at the membrane boundary with the surrounding fluid [15].

Webs of springs that support only one loading (up to a multiplicative constant) were instrumental in [5, 10].
The corresponding elastic energies have the form (F · U)2, when their terminal nodes have displacements
U = (u1,u2, . . . ,uN ), so that the webs are able to support only forces proportional to F. In that context, as
the elastic energy can be expressed using a rank-one matrix in the form U · (F⊗F) ·U , such webs were called
“rank-one webs”. In this paper, as we are interested in energies that are not necessarily quadratic, we prefer
to use the definition of uniloadable webs. In Section 4 we establish that, apart from some exceptional cases, if
forces f1, f2, . . . , fN at prescribed points x1,x2, . . . ,xN are supported by some web, they are also supported by
a uniloadable one.

The uniloadable networks we introduce here if prestressed could replace the pentamode materials in the
aforementioned cloaking applications, allowing much greater flexibility in the design and economy in the number
of junctions and wire elements.

One may not be interested only in uniloadable webs but more generally in webs W for which the set CWX of
supported loadings is prescribed. It is clear that, for a given web W with terminal nodes at X, the set CWX is
a convex cone contained in A∗X. In Section 4, we show that the converse is true too in an approximate sense:

given a convex cone C ⊂ A∗X, one can find a sequence of webs Wn such that CWn

X approaches C as n→∞. For
two-dimensional webs where the points X are the vertices of a convex polygon, a similar question was addressed
in Theorem 2 of [13].

2 On the existence of a web under tension

This Section is dedicated to the proof of Theorem 1.1 and it contains some mathematical technicalities. There-
fore, we recommend the reader who is more interested in the mechanical interpretation of the theorem to skip
to Section 3.

Given a set of forces F applied at the points X, we question the existence of a web supporting such a loading
that has all the wires under tension. Recall that the equilibrium of a wire web is achieved if the tension is
constant in each wire and if each node is in equilibrium. This situation admits a nice and synthetic, even if a
bit abstract, formulation in terms of measures which is convenient for proving Theorem 1.1.
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Given a web W , the associated measure is

W := H1|[xi,xj ]
+H1|[xk,xl]

+ . . . (4)

where H1|[xi,xj ]
stands for the line measure (the one dimensional Hausdorff measure) concentrated on the

segment [xi,xj ]. Accordingly the stress state σ can be represented by the measure

S := σij
xi − xj
‖xi − xj‖

⊗ xi − xj
‖xi − xj‖

H1|[xi,xj ]
+ σkl

xk − xl
‖xk − xl‖

⊗ xk − xl
‖xk − xl‖

H1|[xk,xl]
+ . . . (5)

Similarly, associated with the applied system of forces is the discrete measure

F :=

N∑
i+1

fi δxi (6)

where δxi
stands for the Dirac measure at point xi. The equilibrium condition then simply reads

∇ ·S + F = 0 (7)

and the requirement that all wires be under tension is equivalent to the requirement that the measure S take
values in the set of positive semi-definite symmetric matrices. We will denote withM+ the set of such measures.
Using this formulation, searching for a finite web boils down to finding S ∈ M+ of the form (5) such that (7)
is satisfied.

If we drop the constraint that S must be of the form (5), we are led to an interesting generalization: a
generalized web W is a positive measure, and it supports the loading F if there exists some S ∈M+ absolutely
continuous with respect to W satisfying the equilibrium condition (7). The relation between this generalized
formulation and the so-called Michell problem is provided in Section 2.3.

2.1 Proof of Theorem 1.1

Proof. To prove that condition (3) is necessary, we consider an admissible web stress S for the loading F. As
S is a positive semidefinite tensor-measure with compact support, by Green’s generalized formula we have (see
Section 6 of [13]):

0 ≤
〈
S, e(u)

〉
= −

〈
∇ ·S,u

〉
=
〈
F ,u

〉
= F ·U. (8)

for all C1 fields u such that e(u) := (∇u(x)+(∇u(x))T )/2 is positive semidefinite. Now, let U = (u1,u2, . . . ,uN )
be an element of AX. For any κ > 0, Lemma 1 (see below) provides a Lipschitz extension ũ : Rd → Rd satisfying
ũ(x`) = u` and

∀(x,y) ∈ (Rd)2, (ũ(x)− ũ(y)) · (x− y) ≥ −κ‖x− y‖2. (9)

This extension field is differentiable a.e. and, at every point x of differentiability, inequality (9) implies that
e(ũ) ≥ −κI. In order to apply Green’s formula, we introduce a regularized field uη := ũ∗ρη, ρη being a smooth
convolution mollifier (i.e., non negative, supported in the ball of radius η, and such that

∫
ρη = 1). It can

be readily checked that the strain e(uη) associated with uη is smooth and satisfies everywhere the inequality
e(uη) ≥ −κI. By applying (8) to the field u = uη + κx, we deduce that∑

i

fi · uη(xi) + κ
∑
i

fi · xi ≥ 0.

As uη → ũ uniformly on every compact set, we can pass to the limits η → 0 and κ → 0 in the last inequality
to obtain the desired inequality F ·U ≥ 0 (see equation (3)).

To prove that condition (3) is sufficient, we consider F such that F ·U ≥ 0 for any u ∈ AX. The linear
conditions (ui − uj) · (xi − xj) ≥ 0 can be rewritten in the form F(i,j) ·U ≥ 0, where:

F(i,j) = (f
(i,j)
1 , f

(i,j)
2 , . . . , f

(i,j)
N ) with f

(i,j)
` =


xj − xi if ` = i,

xi − xj if ` = j,

0 otherwise.

(10)

Hence, thanks to Farkas Lemma[8], we know that F is a linear combination of the linear forms F(i,j) with non
negative coefficients:

F =
∑

1≤i<j≤N

λi,j F(i,j) , λi,j ≥ 0. (11)
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It is then easy to check that the positive semidefinite symmetric tensor measure

S =
∑

1≤i<j≤N

λi,j
(xi − xj)⊗ (xi − xj)

‖xi − xj‖
H1|[xi,xj ]

, (12)

is a possible web stress for the loading F . Indeed, for any a and b in Rd, we have
∇ · ((b − a) ⊗ (b − a)H1||[a,b]

) = ‖b − a‖ (b − a)(δa − δb), thus ∇ ·S = −
∑
i fiδxi = −F . Let us emphasize

that this web stress measure involves only the original nodes (x1,x2, . . . ,xN ) as claimed in the theorem.

We now state and prove the interpolation lemma which was needed in the previous proof.

Lemma 1. Interpolation Lemma
Let A be a finite subset of Rd, and u : A → Rd the field satisfying (u(x) − u(y)) · (x − y) ≥ 0,∀(x,y) ∈ A2.
Then, for any κ > 0 there exists a Lipschitz extension ũ of u on Rd satisfying

∀(x,y) ∈ (Rd)2, (ũ(x)− ũ(y)) · (x− y) ≥ −κ‖x− y‖2. (13)

Proof. As u is bounded on the bounded set A, there exists M such that, for any x ∈ A, ‖u(x)‖ ≤ M and
‖x‖ ≤ M . Moreover, as A is finite, there exists δ > 0 such that, for any distinct points x and y in A,

‖x− y‖ ≥ δ. We set λ = 8M2

δ2 and choose s such that 0 < λs < min(κ, 1). Let us consider φ defined on A by3

φ(x) = (1− λ s2)x− su(x). (14)

For any distinct points x and y in A, we have, by straightforward computation

‖φ(x)− φ(y)‖2 = ‖(1− λ s2)(x− y)− s(u(x)− u(y))‖2

= ‖(x− y)− s (u(x)− u(y) + λs(x− y))‖2

= ‖x− y‖2 + s2‖u(x)− u(y) + λs(x− y)‖2

−2s
(
(x− y) · (u(x)− u(y) + λs‖x− y‖2

)
≤ ‖x− y‖2 + s2‖u(x)− u(y) + λs(x− y)‖2 − 2λs2‖x− y‖2

≤ ‖x− y‖2 + 4s2
(
‖u(x)‖2 + ‖u(y)‖2 + (λs)2‖x‖2 + (λs)2‖y‖2

)
− 2λs2‖x− y‖2

≤ ‖x− y‖2 + 16M2 s2 − 2λ δ2 s2

≤ ‖x− y‖2. (15)

Kirszbraun’s Theorem [11] proves the existence of an extension φ̃ of φ on Rd satisfying the same condition: for
any (x,y) ∈ (Rd)2,

‖φ̃(x)− φ̃(y)‖ ≤ ‖x− y‖. (16)

Let us now define ũ on Rd by setting

ũ(x) =
(1− λ s2)x− φ̃(x)

s
. (17)

For any x ∈ A we have ũ(x) = u(x). Moreover ũ is a Lipschitz function which satisfies

(ũ(x)− ũ(y)) · (x− y) = s−1
(

(1− λ s2)‖x− y‖2 − (φ̃(x)− φ̃(y)) · (x− y)
)

≥ −λ s ‖x− y‖2 ≥ −κ‖x− y‖2. (18)

2.2 Support of the stress field

From a physical viewpoint it seems obvious that a finite web supporting the loading F at the points X =
(x1,x2, . . . ,xN ) should have an associated stress measure vanishing outside the convex hull of the points
x1,x2, . . . ,xN . This section is devoted to proving this fact which turns out to be valid also for generalized
webs.

3Physically, when s is small, we can think of φ(x) as a deformation x→ φ(x) associated with the displacement field u(x). The
additional uniform contractive factor of (1 − λ s2) is needed to account for the finite deformation corrections when u(x) − u(y)
is perpendicular to x − y (with say u(y) = 0 and y = 0, and u(x) orthogonal to x, the distance |x − su(x)| lengthens as s is
increased).
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Theorem 2.1. Let F be a vector measure with compact support K and S in M+ such that ∇ · S + F = 0.
Then the support of S is contained in the convex envelope co(K) of K.

Notice that, from this result, we can deduce that the support of S is contained in the subspace spanned by
the vectors4 x1, x2, . . ., xN and thus that the loading forces fi belong to this subspace. Hence, we will be able
to reduce our problem to this subspace and assume without loss of generality that x1, x2, . . ., xN span Rd.

Proof. By Hahn-Banach separation theorem [7], proving that S vanishes outside the convex envelope co(K) of
K reduces to checking that S vanishes on all half spaces P+

m,a := {x : x ·m > a} with a ∈ R and m ∈ Sd−1

which do not intersect K. This verification is achieved in several steps. We first remark that, as P+
m,a and K

do not intersect, we have ∇ ·S = 0 on P+
m,a.

Step 1: Let us consider first a field S̃ ∈ C1(Rd,Rd2sym) such that S̃ ≥ 0 and ∇ · S̃ = 0 on P+
m,a. Without

loss of generality assume that m = e1, where e1 is the unit vector along the x1-axis (where x1 is not to be
confused with the point x1). Let us apply Green’s formula in the half ball ΩR := {x : x1 > a, |x| < R}. We
have ∫

∂ΩR

(S̃ · e1) · n dHd−1 =

∫
ΩR

(∇ · S̃) · e1 dHd = 0, (19)

where n stands for the outward normal. Dividing the boundary ∂ΩR into ΣR := {x : x1 = a, |x| < R} and
S+
R := {x : x1 > a, |x| = R} we get

−
∫

ΣR

(S̃ · e1) · e1 dHd−1 +

∫
S+
R

(S̃ · e1) · n dHd−1 = 0. (20)

Thus we have ∫
ΣR

(S̃ · e1) · e1 dHd−1 ≤
∫
S+
R

|S̃|dHd−1. (21)

As S̃ ∈ L1,
∫ +∞

0
(
∫
S+
R
|S̃|dHd−1) dR < +∞ and so there exists a sequence Rn → +∞ such that∫

S+
Rn

|S̃|dHd−1 → 0.

This implies that

lim
n→∞

∫
ΣRn

(S̃ · e1) · e1 dHd−1 = 0. (22)

As (S̃ · e1) · e1 ≥ 0 we get (S̃ · e1) · e1 = 0 on the whole hyperplane {x : x1 = a}. As S̃ ≥ 0, we deduce that
S · e1 = 0 on this hyperplane.

Step 2: We remark that, if S̃ ≥ 0 ∈ C1(Rd,Rd2sym) satisfies ∇ · S̃ = 0 on the whole space Rd, then by applying

the result of step 1 to every pair (m, a) ∈ Sd−1×Rd we get S̃ = 0 everywhere. We also remark that this result
holds true for any space dimension d.

Step 3: Going back to the case where S̃ ≥ 0 ∈ C1(Rd,Rd2sym) satisfies ∇ · S̃ = 0 only on the half space

P+
m,a, we apply Step 1 to every pair (m, t) with t > a and we deduce that S̃ · m = 0 on the hyperplane

Σt := {x : x ·m = t}. The restriction of S̃ to this hyperplane is tangential and divergence free. For almost

every t > a,
∫

Σt
|S̃| < +∞, by applying the result of Step 2 to Rd−1, we deduce that S̃ vanishes on almost all

hyperplanes Σt. Hence, S̃ vanishes on P+
m,a.

Step 4: In order to extend this result to measures, we introduce a smooth mollifier ρη and Sη := S ? ρη.
Clearly Sη belongs to L1 ∩ C∞(Rd2sym), Sη ≥ 0 and, for any t > a, and for η small enough we have ∇ ·Sη = 0

on P+
m,t. By applying the result of Step 3 to Sη we get Sη = 0 on P+

m,t, and by passing to the limit η → 0 we

get S = 0 on P+
m,t. The theorem is proven by passing finally to the limit t→ a.

2.3 Link with the Michell problem

A very old problem in Mechanical Engineering consists in minimizing the total volume of a network of elastic
bars (trusses) while the resistance to a given load remains constant. It reduces to a linear programming problem
which, according to our notation, reads:

inf
σ

∑
i

∑
j

|σij |‖xj − xi‖ : fi +
∑
j 6=i

σij
xj − xi
‖xj − xi‖

= 0 , ∀i

 (23)

4Here we choose x1 as the origin for identifying points and vectors.
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The classical dual formulation is the following maximization problem on deformations:

sup
U

{∑
i

fi · ui : |(ui − uj) · (xi − xj)| ≤ ‖xi − xj)‖2 , ∀i 6= j

}
(24)

As no assumption is made on the number of bars, this belongs to the class of topological optimization problems
and it is well known that, in general, no optimal solution exists. Indeed, during the optimization process, the
number of bars may increase to infinity leading thus to diffuse structures. The crucial contribution of Michell
[12] in the 1900’s was to formulate a generalized version (called Michell problem) in order to take into account
all possible structures which may appear in the limit. In the generalized version, attention is focused on the
stress carried by the structure rather than on its geometry. Michell stated a duality principle and obtained the
optimality conditions on the stress and strain tensors: they share the same eigenvectors (principal directions)
and the eigenvalues of the strain tensor have a fixed absolute value. Moreover, Michell noticed that, in the
two-dimensional case, when the eigenvalues of the strain tensor have opposite sign and when the eigenvector
fields are smooth enough to define stream lines (called “lines of principal action”), then these lines constitute
a so-called Hencky-net. This is a family of orthogonal curves which represents the limit of the families of bars
through the optimization process. We refer to [4] for a detailed mathematical study where optimality conditions
for a generalized truss are established in a rigorous way. The generalized stress formulation derived by Michell
in dimension d = 2 reads as follows:

inf
S

{∫
ρ0(S) : ∇ ·S + F = 0

}
(25)

where ρ0(S) := |λ1(S)| + |λ2(S)| denotes the sum of the moduli of the two principal values of S. The
corresponding dual problem reads:

sup
ũ

{< F , ũ >: |(ũ(x)− ũ(y)) · (x− y)| ≤ |x− y|2} (26)

An admissible pair (u,S) is then optimal if and only if the following extremality relation holds (see [4])

< F ,u > =

∫
ρ0(S) dx. (27)

We can now emphasize the link between our problem and the Michell problem described above. It turns
out indeed that admissible stress states associated with a loading F in the cone A∗X are solutions of the Michell
problem.

Theorem 2.2. Let F be a bounded vector-measure with compact support K and S ≥ 0 in Md2

sym such that
∇ ·S + F = 0. Then
i) S is a solution to the Michell problem for F ,

ii) any solution S̃ to the Michell problem for F satisfies S̃ ≥ 0.

Proof. Clearly u(x) := x is admissible for the dual problem. As −∇ ·S = F , the following relation holds:

< F ,x > = < −∇ ·S,x > = < S,∇x > =

∫
Tr(S). (28)

If we assume that S ≥ 0, then Michell’s dual energy ρ0(S) coincides with Tr(S) as both λ1(S) and λ2(S) are
non-negative. In particular, we have

∫
ρ0(S) =

∫
Tr(S), hence by (28) the pair (x,S) satisfies relation (27).

The optimality of (x,S) follows. This proves point i).

To prove point (ii), it is enough to notice that, for any other solution S̃ of the primal problem, the couple

(x, S̃) is optimal and thus must satisfy the optimality condition (27) so that, by (28), one has

< F ,x >=

∫
Tr(S̃) dx =

∫
ρ0(S̃) dx.

As ρ0(S̃) ≥ Tr(S̃), we deduce that ρ0(S̃) = Tr(S̃) and so S̃ ≥ 0.

3 Theorem 1.1 in two dimensions

To get a better insight on the mechanical interpretation of the statement of Theorem 1.1, we focus on the two-
dimensional case which was also analyzed in [13]. In particular, we will show that when the points x1,x2, . . . ,xN
are vertices of a convex polygon, our condition (3) is a generalization of the condition (1) proved in [13].

7



3.1 Mechanical interpretation of the extreme rays of the cone AX

Given a set of points x1,x2, . . . ,xN that are vertices numbered clockwise of a convex polygon, let us consider

the following displacement field u
(j,i)
k defined by:

u
(j,i)
k =

{
−R⊥(xk − xj), for k = j, j + 1, . . . , i− 1,

0 otherwise ,
(29)

where

R⊥ =

[
0 1
−1 0

]
(30)

is the matrix for a 90◦ clockwise rotation and, if necessary, we identify k with k−N . We call u
(j,i)
k a “clam-shell”

displacement (see 2) as it corresponds to the infinitesimal rotation between two non-overlapping subpolygons
the polygon of terminal points can be divided into: by keeping fixed one of the two subpolygons, the rotation

of the other opens the clam. Given any points xk and x` on opposite sides of the clam (where u
(j,i)
k 6= 0, while

u
(j,i)
` = 0) we have

(u
(j,i)
k − u

(j,i)
` ) · (xk − x`) = −[R⊥(xk − xj)] · (xk − x`) ≥ 0, (31)

where the last inequality follows from the convexity of the polygon and the clockwise numbering of the points.
Thus, this clam-shell movement is an admissible displacement as it satisfies (2). This implies that F satisfies
the constraints (3), that is,

0 ≤
N∑
k=1

fk · u(j,i)
k =

i−1∑
k=j

(xk − xj) · [R⊥fk], (32)

which are precisely the same as the constraints (1) that characterize AX
∗, that is the set of all the loadings F at

X which can be supported by a finite web. Thus, in this case of the xi forming the vertices of a convex polygon,
the displacements U correspond precisely (up to an infinitesimal rigid body motion) to these “clam-shell”
movements, and do not include any other movements.

i  −1 i  −1

(a) (b)

x

x

x

x
x

x

x j j

x ii

k

l

Figure 2: Given a set of points xi that form the vertices of a convex polygon, as in (a), an extremal infinitesimal
movement is obtained by breaking the polygon into two non-overlapping subpolygons connected at one vertex
xj , as in (b). The “clam-shell” movement then consists of fixing one subpolygon, in this example the lower
triangle, and infinitesimally rotating the other subpolygon anticlockwise about the point xj , so the “clam” opens
slightly, thus moving any vertex xk on the upper subpolygon away from any vertex x` on the lower subpolygon.

More generally, to check the criterion (3) it suffices to check it for those U corresponding to the extreme
rays Um of the cone AX. These rays are perpendicular to the “faces” of the polar cone −AX

∗ (see Figure
3). We use an integer m = 1, 2, . . . ,M to index these rays. For any given m there exist associated loadings
Fmh , h = 1, 2, . . . , D − 1 all perpendicular to the extreme ray indexed by m. Here, for a given m, each value
of h signifies a pair (i, j) = (i(h,m), j(h,m)) such that Fmh = F(i,j), and linear combinations of the Fmh ,
h = 1, 2, . . . , D− 1 with positive weights generate the “face” perpendicular to the extreme ray of the cone AX.
Let Um = (um1 ,u

m
2 , . . . ,u

m
N ) be on this extreme ray. Then, we have

Fmh ·Um = 0, for h = 1, 2, . . . , D − 1. (33)

In particular, if Fmh = F(i(h,m),j(h,m)), then the orthogonality implies that

(umi(h,m) − umj(h,m)) · (xi(h,m) − xj(h,m)) = 0. (34)

If we think of Um as corresponding to a displacement, then this restriction says that (within the infinitesimal
displacements framework) there is no change in distance between xi(h,m) and xj(h,m): the constraint is equivalent
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Figure 3: Schematic illustration of the cone AX and the polar cone −A∗X, the negative of the dual cone A∗X.
Here the F(i,j) are the extreme rays of the dual cone A∗X, while the Um are the extreme rays of the cone AX.

to only allowing those deformations compatible with rigid rods joining the pairs of points (xi(h,m),xj(h,m)) for
h = 1, 2, . . . , D − 1. After eliminating the trivial infinitesimal rigid body motions (translations and rotations)
from Um, by requiring it to satisfy, for instance,

N∑
i=1

ui = 0 ,

N∑
i=1

xi ·Aui = 0 (35)

with A any d×d antisymmetric matrix, there still must be one degree of freedom associated with the infinitesimal
motion corresponding to Um. The equality (ui − uj) · (xi − xj) = 0 cannot hold for all i 6= j as this then
would correspond to a trivial overall (infinitesimal) rigid body motion, which must be zero by (35). To fix the
one-degree of freedom, we can impose the normalization condition that Um ·X = 1. Without loss of generality
this can be seen by noting that for any U ∈ AX,

0 ≤
N∑

i,j=1

(ui − uj) · (xi − xj) =

N∑
i,j=1

ui · ui + ujuj − 2

N∑
i=1

ui

N∑
j=1

uj = 2U ·X, (36)

where, to get the last equality, we use (35). Furthermore, U ·X = 0 implies that U is a rigid body motion,
which we excluded. So U ·X > 0, and by replacing U with U/(U ·X) we see that we can assume U ·X = 1.

To conclude, we showed that if the terminal points are the vertices of a convex polygon, then all the
extremal displacements correspond to clam-shell movements but notice that if there is at least one terminal
point inside the convex hull of the terminal points, then besides clam-shell movements there are also other types
of displacements, as shown in Figure 4.

3.2 Simplifying the two-dimensional web

In two dimensions, in any web, we define a loop to be any polygon such that its edges are the wires of the
web. A minimal loop is one with no other wires inside the polygon. Any web with all pairs of terminal points
interconnected, as in Figure 1 (b), can then be replaced by an equivalent one with at most P minimal loops
where P is the number of points x1, . . . ,xN that lie inside the convex hull of these N -points. To show this we
first place internal nodes where any pair of wires (xi,xj) and (xr,xs) cross. Then take any minimal loop in the
network. The vertices of this loop may include a terminal point xj so long as the net force acting on the loop
at xj (including fj and the forces acting on xj due to the tension in the other wires outside the loop) points
outside the loop. As the wires are all under tension, the loop then is necessarily convex and exerts forces −f ′m
at the nodes numbered clockwise around the loop. These forces necessarily satisfy (1), and the loop can be
replaced by an open web. The number of minimal loops in the web is thus reduced by one. This procedure
can be continued until there are at most P minimal loops, and each of these loops is non-convex and thus its
vertices include at least one terminal node xi where the associated force fj points inside the loop. Video1
(see Supplementary Material) shows an example of a web whose wires connect all the terminal points pairwise
(initial frame), and how to replace each closed loop with an open web so that the final frame represents an
equivalent web in which there is only one minimal loop due to the presence of one point, x4, inside the convex
hull of the terminal points.
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Figure 4: Consider the following 4 points which form an arrowhead in the plane: x1 = [0; 0], x2 = [1; 1],
x3 = [0.5; 0], and x4 = [1;−1]. The displacements corresponding to the extreme rays of the cone AX for this
special geometry can be divided into two groups: clam-shell movements and non-clam-shell movements. In this
figure, the black lines represents the rigid wires and the green lines represents the deformable bonds. Clearly,
(a) is an example of a non-clam-shell displacement, whereas (b) is an example of a clam-shell displacement (the
rigid wire connecting the points x1 and x2 can rotate infinitesimally about the point x2 while the rigid triangle
formed by x2, x3, and x4 is held fixed). Notice that the existence of non-clam-shell movements is due to the
fact that the point x3 does not belong to the convex hull of the terminal points.

4 Channeling the stresses in a web

In this Section we address the problem of designing wire webs that can support one and only one loading, up
to a positive multiplicative factor. Note that the stress is not distributed in a unique way as there are many
networks, i.e. stress patterns, that work. In a given wire web, this is possible if one can determine the stress in
each wire in a unique way up to an overall proportionality constant: clearly this happens if at each internal node
only four non-coplanar wires for the three-dimensional case (or three non-collinear wires for the two-dimensional
case) meet and at most three non-coplanar wires meet at any terminal node for the three-dimensional case (or
two non-collinear wires for the two-dimensional case). Here we provide a procedure to achieve such a goal
so that at each internal node the coordination number is four for the three-dimensional case, or three for the
two-dimensional case, while only one wire is connected to each terminal node.

Then, it is important to uniquely determine the loading that a web can support. Let us call CWX the set of
all the loadings F that the web W can support at X. Clearly CWX is a convex cone. Indeed, if the web supports
the loadings F1 and F2 with admissible stresses S1 and S2, respectively, then for any λ1 ≥ 0 and λ2 ≥ 0 it
also supports the loading F = λ1F

1 + λ2F
2 with the associated stress λ1S

1 + λ2S
2. Also, by definition, CWX

must be a subset of the admissible loading cone A∗X.
Here we address the converse question: given a convex cone C ⊂ A∗X can one find a web W such that CWX = C?

We first focus on the case where C is reduced to a single ray and then look for what we call uniloadable webs
(that is webs which support only one loading F, up to a multiplicative constant). If C is a ray in the interior of
A∗X, then we can prove the existence of a uniloadable web for any ray C. If C does not belong to the interior of
A∗X, then the existence of a uniloadable web is not guaranteed. Finally, we will answer the question in case C
is not simply a ray but a convex cone. Specifically, we will give a positive answer in the following asymptotic
sense: one can find a sequence of finite webs Wn such that CWn

X approaches C as n→∞. For two-dimensional
webs where the points X are the vertices of a convex polygon, a similar question was addressed by Theorem 2
in [13], and the proof given here is similar.

4.1 Reducing the number of wires meeting at a point

In two dimensions the procedure for replacing a junction with M > 3 wires by a localized web in which at most
three wires meet is straightforward and described in Section 3 of [13]. Briefly, and as illustrated in Figure 5,
one finds the associated Airy stress function in the neighborhood of the junction. This is a convex cone with
flat faces with the discontinuity in slope at the edges corresponding to the tension in the wires ( Figure 5(b)).
By cleaving the top of this cone, creating a polygonal face ( Figure 5(c)), one obtains an associated web (Figure
5(d)) supporting the same loading as the original junction (Figure 5(a)), but with at most three wires meeting
at every junction.

In three dimensions the procedure we use for replacing a junction with M > 4 wires is more complicated.
The steps are illustrated in Figure 6, where we begin in (a) with a junction where M = 6 wires meet. First
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(a) (d)

(b) (c)

Figure 5: In two dimensions a junction of many wires at an internal node as in (a) can be replaced by a web in
which at most three wires meet at every junction. First one determines an associated convex Airy function in
the vicinity of the crossing, as in (b). Then one cleaves it by a plane as in (c), and the associated web, as in
(d), then has at most three wires meeting at every junction.

we pick 4 of the wires (those marked in blue in Figure 6(a)), and points x1, x2, x3 and x4 on the four wires
such that the tetrahedron T formed by x1, x2, x3 and x4 encloses the junction, which without loss of generality
can be taken to be at the origin x0 = 0 (this requires that the four wires be chosen so that they do not all
lie on one side of any plane through the origin: balance of forces at the origin ensures that at least one choice
of such four wires exists). The tensions in these four wires generally do not balance. However, consider the
“tensegrity network” consisting of rods from the origin to the points x1, x2, x3 and x4 under compression,
balanced by wires along the edges of the tetrahedron T that are under tension. Example 1.1 (see Section1)
gives the explicit solution for the compressive forces in the rods and the tensions in the wires in this “tensegrity
network”. We next superimpose this “tensegrity network” on our junction with the tensions in the “tensegrity
network” scaled so after superposition the tension near the junction in one wire cancels, while the tension in
the other wires remain nonnegative, as sketched in Figure 6(b). We thus obtain a web under tension where the
number of wires joined to the origin is now M − 1 or less. However, we typically have also created junctions, at
some of the points x1, x2, x3 and x4 where 5 wires meet, like those in Figure 6(c). These junctions are rather
special in that one wire goes straight through the junction (but typically has different tensions on opposite sides
of the junction). These junctions are then locally replaced by networks in which at most four wires meet as
illustrated in Figure 6(d). Lemma 2 below guarantees this can be done. The last step is to successively repeat
the argument until the junction at the origin has at most 4 wires.

Lemma 2. The five wires problem
Consider five wires with tensions Ti > 0, directions vi and joining at the origin x = 0. Assume that the three
first directions are independent while v5 = −v4. Then we can replace these wires by a web in tension such that
at each of its nodes, no more than 4 wires are joining.

Proof. We can assume without loss of generality that T5 = αT4 so that balance of forces implies that T1v1 +
T2v2 +T3v3 +(1−α)T4v4 = 0. Set t > 0 and s > α

3 . Set also x1 = tT1v1, x2 = tT2v2, x3 = tT3v3, x4 = t sT4v4

and x5 = −t rT4v4 where r := s
3s−α . As the real parameter t can be arbitrarily chosen provided it is small

enough, then we can avoid creating new nodes where a node already exists or where a wire lies. The parts of
the wires which lie between the points xi and the origin are replaced by six wires [xi,x4], [xi,x5] (i ∈ {1, 2, 3}).
When these wires have respective (positive) tensions

Ti4 =
r

t(r + s)
‖xi − x4‖, Ti5 =

s

t(r + s)
‖xi − x5‖, (37)

the web is in equilibrium. Indeed at each node xi for i ∈ {1, 2, 3} we have

Ti4
x4 − xi
‖xi − x4‖

+ Ti5
x5 − xi
‖xi − x5‖

+ Tivi =
rs− sr
t(r + s)

tT4v4 +
r + s

t(r + s)
(−tTivi) + Tivi = 0. (38)

Moreover, at nodes x4 and x5 we have

3∑
i=1

(
Ti4

xi − x4

‖xi − x4‖

)
+ T4v4 =

1

r + s

(
rα+ s− 3rs

)
T4v4 = 0. (39)
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Figure 6: Steps in the replacement of a junction of many wires under given balanced tensions, with a network
localized around the junction such that at most 4 wires meet at any junction in the new network, and the
network still supports the same tensions in the wires meeting the network.

3∑
i=1

(
Ti5

xi − x5

‖xi − x5‖

)
+ T5v5 =

1

r + s

(
− s− αr + 3rs

)
T4v4 = 0. (40)

4.2 Uniloadable webs

Given a ray C ⊂ A∗X, we want to determine whether there exists a uniloadable web which can support the
corresponding loading λF, with λ ≥ 0. In case C does not belong to the interior of the cone A∗X, then the
existence of a uniloadable web is not guaranteed. When F belongs to the interior of A∗X, then we prove the
existence of a uniloadable web supporting such a loading (up to a multiplicative constant).

4.2.1 Stuck loadings

Let us start with the following remark : let F = (f1, . . . , fN ) belong to A∗X with X = (x1, . . . ,xN ). Then, it
also belongs, for any t ≥ 0, to the admissible loading cone A∗X+tF of the shifted points (x1 + tf1, . . . ,xN + tfN ).
Indeed, taking a web W which supports F at X and adding to W all the wires [xi, x̃i] leads clearly to a web
supporting F at X + tF. When t < 0 things are less clear. We say that F at X is an unstuck loading if there
exists ε > 0 such that

∃ε > 0, ∀t < ε, F ∈ A∗X−tF,

otherwise we say that F is a stuck loading. A particular case of stuck loadings, referred to as completely stuck
loadings, is when there exist some k ∈ {1, . . . , N} and ε > 0 such that,

∀ 0 < t < ε, F 6∈ A∗
X̃

with X̃ = (x1, . . . ,xk−1,xk − tfk,xk+1, . . . ,xN ).

The stuck or completely stuck conditions can only occur when the loading F is a ray on the boundary of
the cone of admissible loadings A∗X, as we will prove in the next subsection that any F in the interior of A∗X is
unstuck. For a better insight, let us consider two examples of completely stuck loadings.

Example 4.1. Consider forces f1 = [−1; 0], f2 = [3/4; 1], f3 = [3/4;−1], and f4 = [−1/2; 0] at the four points
considered in Figure 4, that is, x1 = [0; 0], x2 = [1; 1], x3 = [1;−1], and x4 = [1/2; 0]. They are supported by
the web in Figure 7(a).

Our objective is to show that this is the only web supporting these forces, thus implying that the loading is
“completely stuck”. First move the force f4 = [−1/2; 0] back to the origin, by attaching a wire joining the origin
to x4, as in Figure 7(b). Then the net force acting on the origin is [−3/2; 0] and is balanced by the forces f3 and

12



4

x
 2

(a)

x
1

x

x
3

4

x
 2

x
1

x

x
3

4

x
 2

x
1

x

x
3

(c) x
3

(d)

x
2 x

4

(b)

x
1

Figure 7: Examples of webs with ”completely stuck loadings” in two dimensions. We argue in Example 4.1 that
(a) is the unique web that supports the given forces at the terminal nodes. A wire can be attached to the node
x4, as in (b), in order to uniquely define the associated Airy stress function, up to the addition of an affine
function. This Airy stress function then lies above the triangular pyramidal Airy stress function associated
with the net forces applied at the three points x1, x2, and x3, as in (c). At the same time it must have a
discontinuity in slope across the line between x1 and x4 corresponding to the tension in the wire joining those
two points. This then uniquely determines the Airy stress function (modulo the addition of an affine function)
and thus uniquely determines the web. Figure (d), as discussed in Example 4.2, provides another example of a
web with a ”completely stuck loading” where the web is uniquely determined once the loading is specified.

f4. The open web in Figure 7(c) supports these three forces, and the associated Airy function (up to addition of
an affine function, see also [9]) is

φL(x) = max{−3|x2|/4, 1/4− x1}, (41)

where x1 and x2 are the coordinates of x.
Now suppose we have any web supporting the four forces f1, f2, f3, and f4. Necessarily this web will be

confined within the convex hull of the three points x1,x2,x3. To define the associated Airy stress potential, in
say all of R2, we need to move the four forces to infinity by attaching infinite wires to the four points in the
direction of infinity (the wire attached to x1 overlaps the wire attached to x4 left of the origin). The existence
of these wires implies a discontinuity of slope of the Airy stress function across them, matching the tension in
the wire. Now consider the Airy stress function in the vicinity of the point x4. In particular take the tangent
plane at a point x0 that approaches x4 from the left remaining infinitesimally above the wire that joins x4 to the
origin. Similarly take the tangent plane at a point x′0 that approaches x4 from the left remaining infinitesimally
below the wire that joins x4 to the origin. The maximum of these two tangent planes is the valley function φV
that takes the form

φV (x) = −|x2|/4 + ax1 + bx2 + c. (42)

As the web is confined to the convex hull of x1,x2,x3, the Airy stress function outside this convex hull can
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be taken to be φL (modulo an affine function that can be set to zero without loss of generality). Convexity of
the Airy stress function then implies the inequalities φL(xi) ≥ φV (xi) for i = 1, 2, 3 and φL(x4) ≤ φV (x4).
Elementary calculations then show that these inequalities allow one no freedom in the choice of a, b and c and
one necessarily has a = −1/2, b = c = 0. By convexity, the Airy stress function of any web supporting the four
forces must be above

φ(x) = max{φL(x), φV (x)} = max{−3|x2|/4, (1/4)− x1,−|x2|/4− x1/2}, (43)

and must coincide with it at the four points x1, . . . ,x4. But the polyhedral nature of φ(x) means that any other
candidate convex Airy stress function must cleave it in the vicinity of x4, which is forbidden. Thus (modulo the
addition of an affine function) φ(x) given by (43) is the unique possibility for the Airy stress function, and the
web in Figure 7(a), is the only web that can support the four forces at the four points.

Example 4.2. A second example of a web with completely stuck loading is shown in Figure 7(d). Forces
f1 = [2; 0], f2 = [−2; 2], f3 = [−4;−6], and f4 = [4; 4] are applied at the points x1 = [0; 0], x2 = [−1/2; 1],
x3 = [−1/2; 1], and x4 = [1; 1]. The unique web that supports them is that drawn in Figure 7(d), and the
associated Airy stress potential (modulo addition of an affine function) is

φ(x) = max{2x1,−2x2 + 1,−|x2| − (4x1 − 1− 3x2)+}, (44)

where q+ = max{0, q}. The proof proceeds similarly to the first example. The completely stuck nature of the
webs in our two examples has been verified numerically.

In two dimensions when the terminal points X are at the vertices of a convex polygon, the existence of an
open web supporting (the assumed admissible) loading F implies that such webs are never ”completely stuck”
with respect to the loading F. One may wonder: is a similar result true in three dimensions? The numerical
example of Figure 8 shows, to the contrary, that there exist terminal points X at the vertices of a convex
polyhedron, and an admissible loading F such that the associated web is ”completely stuck”. This example was
found by starting with N = 8 terminal nodes at the vertices of a cube, taking an admissible loading F supported
at these points, then moving the terminal points backwards so that for each j = 1, 2, . . . , 8, xj is replaced by
x′j = xj − εjfj , where the εj ≥ 0 are increased until the loading F at the terminals X′ = (x′1,x

′
2, . . . ,x

′
8) is

completely stuck, while keeping the terminals X′ as vertices of a convex polyhedron.
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Figure 8: We start by applying the forces fi, given in Table 1, at the 8 points shown in (a), whose coordinates
are given by xi in Table 1. The points are initially chosen to be the vertices of a cube. Now, move the terminal
points backwards so that for each i = 1, 2, . . . , 8, xi is replaced by x′i = xi− εifi, where the εi ≥ 0 are increased
until the loadings fi at the terminals x′i, provided in Table 1, is completely stuck, while keeping x′i as vertices
of a convex polyhedron. The diagonal lines along the faces in figure (a) are numerical artifacts.

4.2.2 Unstuck loadings

The aim is to prove that, for a given loading F belonging to the interior of the one of admissible loadings A∗X,
there exists a uniloadable web supporting only F (up to a multiplicative constant). First, we need to prove that
the cone A∗X does not have an empty interior (Lemma 3). Then, we need to prove that if we perturb slightly
the positions of the terminal points, the loading is not stuck (Lemma 4) and that there exists a connected web
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i xi x′i fi
1 [-1;-1;-1] [-0.27473;-0.31827;-0.46693] [-0.98151;-0.92259;-0.72140]
2 [-1;1;-1] [-0.94086;0.91949;-0.93330] [-0.46129;0.62796;-0.52022]
3 [-1;-1;1] [-0.12837;-0.23757;0.15689] [-0.74581;-0.65237;0.72140]
4 [-1;1;1] [-0.76226;0.74617;0.78972] [-0.72140;0.77022;0.63807]
5 [1;-1;-1] [0.28777;-0.16187;-0.35258] [0.80474;-0.94700;-0.73151]
6 [1;1;-1] [0.27806;-0.12953;-0.35765] [0.75592;1.1827;-0.67259]
7 [1;-1;1] [-0.01231;-0.28017;0.08708] [0.74581;-0.53033;0.67259]
8 [1;1;1] [0.51981;0.62495;0.51177] [0.60355;0.47140;0.61366]

Table 1: Components of the forces fi applied at the 8 points shown in Figure 8 whose coordinates in the original
configuration are given by xi (Figure 8(a)), and in the final configuration by x′i (Figure 8(b)).

with all the wires under tension which supports F. Finally, we can prove that such a web is a uniloadable web
(Theorem 4.1).

To prove that the coneA∗X does not have an empty interior we need to introduce the spaceRX of infinitesimal
rigid motions on X = (x1, . . . ,xN ) and its orthogonal BX, called the space of balanced loadings on X, defined
by

RX := {U = (u1, . . . ,uN ) ∈ (Rd)N : ∃a ∈ Rd, ∃A antisymmetric such that,∀i ui = a + Axi},

BX := {F = (f1, . . . , fN ) ∈ (Rd)N :

N∑
i=1

fi = 0,

N∑
i=1

(fi ⊗ xi − xi ⊗ fi) = 0}. (45)

There is no loss of generality to assume that
∑N
i=1 xi = 0 so that X also belongs to BX.

Recall that A∗X, the cone of admissible forces F = (f1, . . . , fN ) at the points X = (x1, . . . ,xN ), is the dual
cone of AX := {U ∈ BX : ∀(i, j), (ui − uj) · (xi − xj) ≥ 0} (see Theorem 1.1). The set BX is a subspace of
(Rd)N (with codimension d(d+ 1)/2). The notion of interior we use is relative to this subspace.

Lemma 3. The cone A∗X is a subset of BX with non empty interior.

Proof. We have already noticed, as a consequence of Theorem 2.1, that there is no loss of generality in assuming
that the points (x1, . . .xN ) span the space Rd. There is no loss of generality either in assuming that it is the
first points (x1, . . .xd+1) which span it.

Assume now, by contradiction, that the set A∗X has empty interior. As it is convex, this means that it is
contained in a lower dimension subspace: there exists U = (u1, . . . ,uN ) 6= 0 ∈ BX such that F · U = 0 for
all F ∈ A∗X. As (x1, . . .xd+1) span Rd, and there exists a unique affine function u such that u(xi) = ui for
1 ≤ i ≤ d+ 1.

Clearly, for any (i, j) ∈ {1, . . . , N}, the particular loading F(i,j) = (f1, . . . , fN ), defined by fi = xi − xj ,
fj = xj − xi and fk = 0 whenever k 6= i and k 6= j, belongs to A∗X (indeed a simple wire linking xi to xj is an
admissible web for this particular loading). Hence U satisfies (ui − uj) · (xi − xj) = 0 for any pair (i, j). This
condition applied to all pairs with i ≤ d+ 1 and j ≤ d+ 1 implies that u is a rigid motion. The same condition
applied to all pairs (i, j) with i ≤ d+ 1 and j > d+ 1 implies that uj = u(xj) too. Then U is a non vanishing
rigid motion and this contradicts the definition of BX.

Let us now prove that all loadings in the interior of A∗X are unstuck. More precisely,

Lemma 4. Let F be in the interior of A∗X. Then, for ε > 0 small enough, F also belongs to the interior of
A∗X−εF.

Proof. We first remark that, for any ε ∈ R, F belongs to BX−εF. Indeed, for any antisymmetric matrix A we

have
∑N
i=1 fi · (A(xi − εfi)) = −ε

∑N
i=1 fi · (Afi) = 0.

Let now U be any vector in AX−εF with ‖U‖ = 1. For any pair (i, j), it fulfills

(ui − uj) · ((xi − εfi)− (xj − εfj)) ≥ 0, (46)

which implies
(ui − uj) · (xi − xj) ≥ ε(ui − uj) · (fi − fj) ≥ −4ε‖F‖. (47)

Let δ := mini 6=j |xi−xj | be the smallest distance between the points xi and γ := 4‖F‖
δ2 . The vector W := U+εγX

satisfies
(wi −wj) · (xi − xj) = (ui − uj) · (xi − xj) + εγ(xi − xj) · (xi − xj) ≥ 0. (48)

Therefore its projection W on BX, which satisfies the same inequalities, belongs to AX.
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The cone A∗X is the set of all F satisfying ∀U ∈ AX, F ·U ≥ 0. As F belongs to the interior of A∗X, the
function V → F ·V must be strictly positive on the compact intersection of AX with the unit sphere. Let us
call α > 0 its minimum. By homogeneity, we have for any V in AX, F ·V ≥ α‖V‖. When applied to W, this
inequality gives

F ·W = F ·W = F ·U + εγF ·X ≥ α‖W‖ = α‖U + εγX‖ ≥ α(1− εγ‖X‖). (49)

Hence we have
F ·U ≥ α(1− εγ‖X‖)− εγF ·X ≥ α− εγ‖X‖(α+ ‖F‖). (50)

For ε smaller than α
2γ‖X‖(α+‖F‖) , we get F·U ≥ α

2 ‖U‖. This inequality, valid for any U ∈ AX−εF with ‖U‖ = 1,

remains true on the whole cone AX−εF by homogeneity. So the lemma is proven.

Lemma 5. If F is in the interior of A∗X then there exists a connected web supporting F at X with a strictly
positive stress state.

Proof. We first check that there exists a web W supporting F at X = (x1, . . . ,xN ) such that all wires with non
vanishing tension make a connected set. The set D of loadings F for which there exists a set I strictly included
in {1, . . . , N} such that

∑
i∈I fi = 0 is a union of subspaces (of codimension d) of the space BX of balanced

loading. We want to avoid the case where F is supported by two or more disconnected webs and clearly this
may only happen if F ∈ D. In that case we use the following trick: as the interior of D is empty we can find
G ∈ BX such that F + G and F−G belong to A∗X \ D. Let W+ and W− be two webs supporting respectively
F + G and F −G and let S+ and S− be the associated stress measures. The measure S := (S+ + S−)/2
satisfies

∇ ·S + F = ∇ ·S+/2 +∇ ·S−/2 + F = −(F + G)/2− (F − G)/2 + F = 0.

Its support is the union of the supports of S+ and S− which both are connected sets containing all the terminal
nodes where the applied forces are non vanishing. Thus we get a finite connected web W with a strictly positive
stress state σ that supports the loading F = (f1, . . . , fN ) at points X = (x1, . . . ,xN ).

Corollary 4.1. If F is in the interior of A∗X then there exists is a connected web supporting F at X with a
strictly positive stress state and only one wire joining each terminal node.

Proof. Lemma 4 provides an ε > 0 small enough for F to belong to the interior of A∗X−εF. Lemma 5 then
provides a connected web W supporting F at X− εF with a strictly positive stress state σ. Adding to W , for
those i ∈ {1, . . . , N} such that fi 6= 0, the wires [xi,xi+εfi] and fixing the tension to ‖fi‖ in each of these wires,
makes a new web supporting F at X with a strictly positive stress state. Clearly, as W is connected, the new
one is connected too.

We can finally state the theorem regarding the existence of a uniloadable web for an unstuck loading.

Theorem 4.1. Existence of uniloadable webs
For any F in the interior of the admissible loading cone A∗X, there exists a finite web W such that CWX = {λF :
λ ≥ 0}.

Proof. Corollary 4.1 states that there exists a finite connected web W with a strictly positive stress state σ
that supports the loading F = (f1, . . . , fN ) at points X = (x1, . . . ,xN ) and such that only one wire is attached

to each terminal node. This web is then modified (according to Lemma 4) into a new web W̃ having the extra
property that all the internal nodes have in two dimensions at most three coplanar wires meeting it, and in
three dimensions at most four noncoplanar wires, or three coplanar wires, meeting it. This ensures that W̃
supports only the loadings λF for λ ≥ 0. Indeed, as F is an admissible loading for W̃ at points X, the unique
wire attached to x1 has direction f1. Let F̃ = (f̃1, . . . , f̃N ) be another admissible loading for W̃ at X. Balance

of forces at x1 imposes f̃1 = λf1. As the wire attached to x1 is under tension for both loadings, we have λ ≥ 0.
Now at each node of the web, once the (positive) tension in one of the joining wires is fixed, the balance of
forces fixes the tension in all other joining wires. As the web is connected, from node to node, the tensions of
all wires are fixed : F̃ is uniquely determined and clearly F̃ = λF.

4.3 Possible loading cones

Here we seek answer to the question: given a convex cone C ⊂ A∗X can one find a web W such that CWX = C?
To proceed, as sketched in Figure 4 of [13], one approximates the convex cone C by a cone, that we will

denote with CWj

X , having a finite number j of extreme rays F(j)m, m = 1, 2, . . . , j, each strictly in the interior of
C and hence strictly in the interior of the admissible loading cone A∗X. As we are free to make arbitrary small

perturbations of the extreme rays F(j)m, we can assume that these are chosen so that at each terminal i, f
(j)m
i
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is not collinear with f
(j)`
i for any m, ` with ` 6= m. Associated with F(j)m is then a uniloadable web W (j)m

supporting, and only supporting, at the terminals X, the loadings λF(j)m, λ ≥ 0. By adjusting the positions
of the interior nodes of the different uniloadable webs W (j)m now indexed by j = 1, 2, . . . ,m we can ensure
that the webs W (j)m do not have overlapping interior nodes, nor overlapping collinear wires. By superimposing
these uniloadable webs, for m = 1, 2, . . . , j one obtains the web Wj having the desired loading cone. It may
happen that some wire pairs cross when we superimpose the webs, generating an additional interior node at
the crossing point. This is still okay, as balance of forces at the crossing point ensures that the tension in the
wire remains the same on opposite sides of the crossing point. If more than two wires cross at the same point,
then we can perturb the uniloadable webs to avoid this.

Taking the limit j →∞ allows us to approximate C arbitrarily closely, so that CWj

X → C.

5 Conclusions

In this paper we provide full answer to the question as to whether, given a set of forces applied to specific points,
called terminal points, there exists a web that supports such forces with all the wires under tension. Specifically,
we provide a necessary and sufficient condition on the loading forces which guarantees the existence of such
a web, see Theorem 1.1. Such a condition corresponds to a finite dimensional linear programming problem:
if this has solution, then a web exists which is formed by the wires connecting pairwise the terminal points.
Conversely, any web under tension supporting the given loading can be replaced by the web provided by the
linear programming problem.

The conditions related to the linear programming problem are inequalities expressed in terms of the displace-
ments of the terminal points: they form a cone in the displacement space and the edges of the cone correspond
to those displacements that satisfy the conditions as equalities. In case the terminal points form the vertices of
a convex polygon, these extreme edges correspond precisely (up to an infinitesimal rigid body motion) to clam-
shell movements and do not include any other movements. By clam-shell movements we denote a displacement
field that arises when one breaks the convex polygon connecting the terminal points into two non-overlapping
subpolygons connected at one vertex and fixes one subpolygon and infinitesimally rotates the other one, so
the clam opens slightly. In the case there is at least one terminal point that lies inside the convex hull of the
terminal points, the extreme rays of the cone of admissible displacements correspond to types of displacements
that are not simply clam-shell movements.

In practical situations one would like to have uniloadable webs, that is webs that support only one loading
and all positive multiples of it: such webs allow one to channel stresses in desired ways and the superposition of
them allows one to get a desired convex loading cone. To construct a uniloadable web in two-dimensions, one
has to replace each closed minimal loop, that is any polygon formed by the intersection of wires that cannot
be divided into subpolygons, by an open web (not containing any closed loop). This is always possible if the
terminal points are positioned at the vertices of a convex polygon. If that is not the case, then there will still
be minimal closed loops in a number equal to that of the terminal points which lie inside the convex hull of the
terminal points.

In general, to construct uniloadable webs, one has to reduce the number of wires meeting at either a terminal
point or at an internal node. The first step is to modify the web so that only one wire is attached to each terminal
point. We proved that this is possible only when the given loading lies inside the cone formed by the inequality
conditions associated with the dual linear programming problem. If, instead, the loading corresponds to one
of the extreme rays of such a cone, then we have that for some webs this modification is impossible and we
say that such webs have stuck loadings. We provided two examples of webs of this type in two dimensions, see
Examples 4.1 and 4.2. Since in two dimensions we know that a web with terminal points that are vertices of
a convex polygon can always be replaced by an open web, we have that such webs are never completely stuck:
indeed, in both Example 4.1 and 4.2 the terminal points are not vertices of a convex polygon. This does not
hold in the three-dimensional case for which one can find a web with stuck loadings which have the terminal
points forming a convex polyhedron (see Figure 8). On the other hand, if the loading belongs to the interior
of the cone formed by the inequalities regarding the loadings in the dual linear programming problem, then we
provide a general procedure to reduce the number of wires meeting at each internal node where initially 5 or
more wires meet.
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