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Abstract

This paper introduces a new normalized measure for the as-
sessment of a contour-based object pose. This algorithm al-
lows a supervised assessment of recognition and localization of
known objects, the differences between a reference edge map
and a candidate image are quantified by computing a perfor-
mance measure. This measure is normalized and is able deter-
mine the degree to which an object shape differs from a desired
position. Compared to 6 other approaches, experiments on real
images at different sizes/scales exhibit the suitability of the new
method for an object pose or shape matching estimation.

1 Introduction and motivation
The representation of an object shape is particularly useful for
specific industrial inspection tasks. When this shape is aligned
with a reference model, many different manipulations might
arise. An edge-based representation remains a class of meth-
ods and exploits only shape-boundary information. This repre-
sents a supervised evaluation of the shape depiction. This pa-
per presents a new approach for the measurement of a contour-
based object pose. The proposed measurement estimates a su-
pervised normalized score evaluation of the shape representa-
tion based on the weights created by both false positives and
false negatives edge pixels. The normalization is especially
appropriate to interpret an algorithm result. Indeed, normal-
ization represents a technical operator which is able to qualify
when a score is suitable as a function of the desired operation:
if the score becomes close to 1, thus the action is considered as
good, whereas a score close to 0 corresponds to a wrong initia-
tive. The new method uses different strategies in order to nor-
malize and obtain a reliable assessment of the contour-based
object localization. Eventually, compared to 6 other normal-
ized measures, the new approach computes a coherence score,
which qualifies the correct object pose possibility.

2 On existing normalized measures
Various evaluation methods have been proposed in the liter-
ature to assess different shapes of edges using pixel-based
ground truth (see reviews in [1],[2],[3],[4]). Indeed, a super-
vised evaluation criterion computes a dissimilarity measure be-

tween a ground truth (Gt) and a detected contour map (Dc) of
an original image I . In this paper, the closer to 1 the score of
the evaluation is, the more the object localization is qualified
as suitable. On the contrary, a score close to 0 corresponds
to a poor object positioning. To assess a known shape, the
confusion matrix remains a cornerstone in evaluation methods.
Comparing pixel per pixel Gt and Dc, the 1st criterion to be
assessed is the common presence of edge/non-edge points. A
basic evaluation is composed of statistics by combiningGt and
Dc. Afterwards, denoting | · | as the cardinality of a set (e.g.
|Gt| represents the number of edge pixels in Gt), all points are
divided into four sets, as illustrated Fig.1:

• True Positive points (TPs): TP = |Gt ∩Dc|,
• False Positive points (FPs): FP = |¬Gt ∩Dc|,
• False Negative points (FNs): FN = |Gt ∩ ¬Dc|,
• True Negative points (TNs): TN = |¬Gt ∩ ¬Dc|.
Various edge detection evaluations involving confusion ma-

trices have been developed , cf. [3][4]. The Dice measure [10]
is one well known example: Dice(Gt, Dc) = 2·TP

2·TP+FN+FP .
This type of assessment is useful for region segmentation eval-
uation [10], but, a reference-based edge map quality measure
requires that a displaced edge should be penalized in function
of FPs and/or FNs and of the distance from the position where
it should be located [3][4], as illustrated in Fig. 1 with arrows.

(a) Gt, 36×47 (b) Dc, 36×47
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(c) Gt vs. Dc (d) Legend
Figure 1. Example a ground truthGt and a desired contourDc.



Error measure name Formulation Parameters
Pratt’s Figure of Merit
[5] FoM (Gt, Dc) = 1

max (|Gt| , |Dc|)
·
∑
p∈Dc

1
1 + κ · d2

Gt
(p)

κ ∈ ]0; 1]

FoM revisited [6] F (Gt, Dc) = 1
|Gt|+β·FP ·

∑
p∈Gt

1
1 + κ · d2

Dc
(p)

κ ∈ ]0; 1] and β
a real positive

Combination of FoM
and statistics [7] d4 (Gt, Dc) = 1− 1

2 ·

√
(TP −max (|Gt| , |Dc|))2 + FN2 + FP 2

(max (|Gt| , |Dc|))2 + (1− FoM (Gt, Dc))2 κ ∈ ]0; 1]

Edge map quality
measure [8] Dp (Gt, Dc) = 1− 1/2

|I|−|Gt| ·
∑
p∈FP

(
1− 1

1 + κ·d2
Gt

(p)

)
− 1/2
|Gt| ·

∑
p∈FN

(
1− 1

1 + κ·d2
TP(p)

)
κ ∈ ]0; 1]

Edge Mismatch Mea-
sure (EMM ) [9] EMM(Gt, Dc) = TP

TP + ω ·
[∑

p∈FN δDc
(p) + ε ·

∑
p∈FP δGt

(p)
] Mdist, Dmax,

ω and ε are real
positive.

δDc(p) =
{
dDc

(p), if dDc
(p) < Mdist

Dmax, otherwise
and δGt(p) =

{
dGt

(p), if dGt
(p) < Mdist

Dmax, otherwise.

Mdist= |I|/40,
Dmax=|I|/10,
ω=10/|I|,
ε = 2, see [9].

Table 1. List of normalized dissimilarity measures involving distances, generally: κ = 0.1 or 1/9.

Table 1 reviews the most relevant normalized measures in-
volving distances. Thus, for a pixel p belonging to the candi-
date contour Dc, dGt(p) represents the minimal Euclidian dis-
tance between p andGt. These types of distance measures play
an important role in image matching and may be used to deter-
mine the degree of resemblance between two objects shapes
[1]. To achieve this, if p belongs to Gt, dDc

(p) corresponds to
the minimal distance between p and Dc, Fig. 1 illustrates the
difference between dGt

(p) and dDc
(p). Mathematically, de-

noting (xp, yp) and (xt, yt) the pixel coordinates of two points
p and t respectively, thus dGt(p) and dDc(p) are described by:

for p∈Dc: dGt (p)= Inf
{√

(xp − xt)2 + (yp − yt)2, t∈ Gt
}
,

for p∈Gt: dDc (p)= Inf
{√

(xp − xt)2 + (yp − yt)2, t∈ Dc
}
.

In the domain of shape positioning area, alternative dis-
similarity measures, inspired from the Hausdorff distance
[1], have been proposed in the literature, see [1][2][11][3].
The majority represents non-normalized measures. In [3], a
normalization for the measure of distances is proposed, but
it is not really practical for real images. In edge detection
evaluation, a widely used normalized similarity measure
refers to FoM [5]. The parameter κ plays the role of scale
parameter, the more κ is close to 1, the more FoM tackles FPs
[3]. Nonetheless, the distance of the FNs is not recorded and
are strongly penalized as statistic measures (detailed in [4]):

FoM (Gt, Dc) = 1
max(|Gt|,|Dc|) ·

(
TP +

∑
p∈FP

1
1+κ·d2

Gt
(p)

)
.

Thereby, different shapes have the same interpretation [3].
Further, if FP = 0: FoM (Gt, Dc) = TP/|Gt|. When FN>0
and d2

Gt
(FP ) constant, it behaves like matrix-based error as-

sessments (detailed in [3]). Lastly, for FP>0, FoM penalizes
the over-detection much less than it does under-detection [3].
Several evaluation measures are derived from FoM : F , d4,
Dp and EMM . Firstly, contrary to FoM , the F measure
computes the distances of FNs but not of FPs, thus, FPs
are strongly penalized. On the other hand, d4 measurement
depends particularly on TP , FP , FN and ≈1/4 on FoM ,
but d4 penalizes FNs like the FoM measure. Otherwise, the
right term of the dissimilarity measure Dp [8] computes the
distances of the FNs between the closest correctly detected
edge pixel, i.e., TPs (FNs are huge tackled when TPs are far
from FPs, or when Gt∩Dc = ∅). Also, Dp is more sensitive
to FNs than FPs because of the huge coefficient 1

|I|−|Gt| for the
left term (detailed in [4]). On another note, the Edge Mismatch
Measure (EMM ) depending on TPs and both dDc

and dGt
.

Thus, δDc/Gt
(p) is a threshold distance function penalizing

high distances (exceeding a maximum distance maxdist).
Note that the suggested parameters depend on |I|, the total
number of pixels in I . Moreover, EMM computes a score
different from 0 only if there exists at least one TP.
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Figure 2. Examples of localization metrics behaviors for a translation, rotation and scale alterations. Several parameters forM
are tested: ∆ represents the maximum distance between a pixel in Dc with Gt (usually a pixel of an image corner), whereas D
is the diagonal length of the considered image. Parameters D and ∆ are computed automatically and remark that D > ∆.



3 A new normalized measure
The main motivation is that there exists no normalized shape-
based measure which considers both FPs and FNs distances ca-
pable of recording a desired evolution of the object localiza-
tion. As detailed in [12], the evaluation of FPs and FNs dis-
tances must not be symmetrical. Clearly, a measure involv-
ing false negative distances remains more accurate than other
techniques. However, using only under-segmentation measure,
when some parts of the candidate image are missing, but de-
tected close to their desired positions, they are not taken into
account (by F for example), the object is not well localized.
Missing edges must be penalized higher than spurious ones be-
cause some isolated points may disturb the shape location, as
the majority of the measures, cf. experiments. To summarize,
a measure must penalize highly FNs compared to FPs, because
the more FNs are present in Dc, the more the shape of the de-
sirable object becomes unrecognizable and thus localizable.

Therefore, inspired by the Relative Distance Error in [13]
and demonstrations in [4, 12], for FN>0 or FP>0, the new
normalized distance measure formula becomes:

M(Gt, Dc) = 1
FP + FN

·

[
FP

|Dc|
·
∑
p∈Dc

1
1 + µFP · d2

Gt
(p)

+ FN

|Gt|
·
∑
p∈Gt

1
1 + µFN · d2

Dc
(p)

]
,

(1)

where (µFP , µFN ) are real positives representing the two scale
parameters and the coefficient 1

FP+FN normalizes theM func-
tion. If FP=FN=0, thenM=1. Thereafter, to become as fair
as possible, FPs and FNs distances are penalized in function of
the relationship between FPs and |Dc| and between FNs and |Gt|
respectively, ensuring an equal distribution of mistakes, with-
out symmetry of penalties. However, when µFP<µFN ,M pe-
nalizes the FNs more, compared to the FPs. Results presented
below show the importance of the weights given for FNs be-
cause some isolated points may disturb the shape location. The
next section illustrates the interest to choose the optimum val-
ues for the parameters (µFP , µFN ) tied to the maximum Eu-
clidian distance between Gt and any pixel in the image.

4 Evaluation and results
Firstly, in order to test different parameters and verify if the
proposed measure has the required properties, several alter-
ations are applied to create synthetic localization results sim-
ulating real ones. Thereby, to quantify the reliability of a mea-
sure of dissimilarity, an edge map of a synthetic shape is af-
fected by various alterations: rotation, translation and scale
change (in Fig.2). Thus, it allows to verify if the evolution
of the provided score obtained by a measure is in line with the
expected behavior: small error for close shapes (score close to
1) and large penalty for shapes that differ (score close to 0).

In the first test, the contour shape is gradually translated by
moving the shape away from its original location along a hor-
izontal straight line. Fig.2(a) reports the scores of FoM , F ,
EMM and M. Scores of Dice and d4 are not reported be-
cause they have obvious discontinuities and are very sensitive

to small displacements (see [12]). Also, FoM and F mea-
sures are weak to small displacements, as M with µFP=0.1
and µFN=0.2; moreover, as EMM , they are not monotonous
(contrary toM with automatic parameters tied to D and ∆).

The second test is performed by rotating the control shape
incrementally. The shape of the curve of the measure scores
is expected to be roughly symmetric around 180◦. Thus,
FoM and F measures are very sensitive to small rotations and
EMM does not penalize enough movements, whereasM con-
sidering ∆ or D parameters obtains consistent scores.

The last experiment concerning synthetic data concerns
scaling up of the object shape with the maximal scale 8 times
the original size. However, the curve tied to EMM has sharp
discontinuities that exhibit its unstable response to scaling, be-
cause its responses are 0 without TP. Once no TP exists,EMM
drops down to 0, with no score evolution for other scales. The
scores of the FoM and F are very sensitive as soon the first
change is applied with scores close to 0.2. Eventually,M with
automatic parameters ∆ or D obtains desirable scores.

Experiments on color real images were also performed. In
Figs. 3 (a) and (b), thin edges are extracted using the Canny
edge detector (σ = 1) [14]. Here, by moving the camera, the
aim is to determine when the object is at the desired position in
the image using thin binary edges as features, the scores must
converge to 1. During the movement, each frame may be cor-
rupted by numerous FPs and the candidate object may contain
FNs when the object is well positioned, as illustrated in Figs.
3 (e) and (f). The first video contains 289 frames, whereas the
second video is composed of 116 frames (cf. Fig. 3). The
ground truth corresponds to binary boundaries of the desired
position of the object, represented in blue pixels in Figs. 3
(a) and (b). Green pixels represent TPs, red points are FPs,
whereas blue pixels which are also Gt are tied to FNs. These
features are dilated with a structural element of size 3×3 for a

(a) First image of V1 (b) First image of V2

(c) Gt of V1 at different sizes (d) Gt of V2 at different sizes

(e) Edge accumulation (f) Edge accumulation

Figure 3. First images of videos 1 and 2 (V1 and V2) with their
Gt at different sizes: original size (1280×720), 4×, 16×, 64×
and 256× reduced (640×360, 320×180, 160×90 and 80×45).



better visualization. To test the robustness of the measure nor-
malization, the same experiments are led using the parameters
of Tab.1 and different sizes of the images see Figs.3 (c) and (d).

For the first video V1, object contours are easily extracted,
with spurious undesirable points created by the table border
and the camera rotation. Consequently, only edge points de-
tected out of the candidate shape may disturb the contour-based
localization. The object is moving to its desired position, until
150 frames (creating a bump curve), then it moves away before
coming back to the final positioning, superposing Gt. Scores
of the different measures are reported in Fig. 5 as a function of
the image size. Curves tied to EMM and Dp are not signifi-
cant. Also, Dice, F and d4 scores converge only to 1 when the
candidate object is close to the desired location. Only FoM
andM measures have the intended behavior for this sequence,
even though FoM scores are globally noisy for small images.

The second video V2 is heavily corrupted by a random
noise on the each color plane (SNR≈11dB). These distur-
bances create spurious pixels in the edge detection process, but
especially, the edges of the candidate object are not well local-
ized or not present. Therefore, in Fig. 6, the majority of mea-
sures does not evolve monotonously, but constantly for each
image size. For the FoM , its scores increase at the end of the
video, but scores are stochastic for small videos. The EMM
measure converges rapidly, but, remains constant until the end.

The last experiment presented in Fig. 4 shows the impor-
tance of the parameters choice. FoM , F and d4 measures are
tested with κ= 1

∆2 which is similar to M parameters. Such a
value is totally unsuitable for these approaches in shape detec-
tion: FoM scores are close to 1 or 0 concerning d4. Also, F is
decreasing using this parameter (excepted for the last frames),
which is contrary to the researched assessment. Concerning
M, it behaves as expected, converging to 1 for each scale (Figs.
5 and 6). Eventually, the use of µFP= 1

∆2 and µFN= 1
∆ pa-

rameters (instead of 1
D concerning particular shapes) allows to

obtain µFP<µFN for each scale, penalizing stronger the FNs
compared to FPs in eq. 1, as demonstrated in [12].

5 Conclusion
A new approach for the measurement of a contour-based ob-
ject pose is presented in this paper. This algorithm allows a su-
pervised assessment of recognition and localization of known
objects as a function of FPs and FNs distances. Experiments on
real images exhibit the suitability of the approach for an object
pose or shape matching estimation. Finally, the new measure is
normalized and does not need any tuning parameter; this local-
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Figure 4. Score evolution in V1 and V2 for κ = 1/∆2 .

ization measure may be useful for visual servoing processes.
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Figure 5. Localization metrics behaviors on real experiment concerning video 1 (V1) of 189 frames. The parameter concerning
FoM , F , d4 and Dp is κ = 1/9. ConcerningM, the parameters are µFP=1/∆2 and µFN=1/∆, so µFP < µFN .
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Figure 6. Localization metrics behaviors on real experiment concerning video 2 (V2) of 116 frames. The parameter concerning
FoM , F , d4 and Dp is κ = 1/9. ConcerningM, the parameters are µFP=1/∆2 and µFN=1/∆.


