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Cyclostationarity : a new signal processing concept for vibration analysis and diagnostic

SYNOPSIS Toothed gearing vibrations are shown to be cyclostationary. An application of this property to the early diagnosis

of a system is presented.
NOTATION

fg = sampling rate.

f. = meshing frequency.

f;; (i=1,2) = rotation frequencies.
R,(t,T) = autocorrelation function.
Sx(f) = power spectrum.

S(,)(L(f) = spectral correlation function.

1 INTRODUCTION

The keeping up of an equipment is both a problem of safety
and of saving money. An early diagnosis of damages in the
machinery can avoid some accidents, some further damages of
the system, or can prevent from stopping the machinery for
long repairs. The object of this paper is to present some new
parameters, based on recent signal processing methods, which
are well-adapted to the characterization of the condition of
toothed-gearings. We first propose a model of the vibrations,
and we then give some details about cyclostationarity and the
way it can be characterized by the spectral correlation
function. By applying this function to the model of the
vibrations we show that they are cyclostationary and
determine their cycle frequencies. At last, we present some
practical results that we obtain on an experiment realised on a
toothed-gearing and we discuss about the parameters which
seem to best characterize the condition of this toothed-gearing
and the future prospects it opens about vibration analysis,
possible industrial applications and automatic diagnosis.

2 TOOTHED-GEARING VIBRATIONS.

2-1 _Model of the vibrations.

Many papers have been written on the subject of modeling of
toothed-gearing vibrations, but one of them, published by
W. Mark (1] in 1978, is very comprehensive. It can be used
to establish a model from which we can predict what kind of
an effect the emergence of a damage on one of the wheels is
going to have on the aspect of the vibrations.

Mark first defines the different parameters which
contribute to the model. The source of the vibrations is the
transmission error. Three main frequencies have to be
defined : both the two rotation frequencies fri and £ of the

wheels, and the meshing frequency which is the one of the
shocks between the teeth, and is equal to
fe = N1.fr1 = N2.fr2, where Nj is the number of teeth of the
wheel number i.

W. Mark shows that the static transmission error, which
generates the vibrations, can be expressed in the following
way :

W u®
*O=3%0* W
where v(t) is periodical at the frequéency f and u(t) is the sum
of three periodical terms, whose frequencies are f for the first
one and respectively fr1 and £ for the other ones, that are tied
to the shape of each of the wheels. W is the total load
transmitted by the system, and we suppose it is constant.

We can reexpress this model so as to use it for signal
processing applications. It then becomes :
x(t) = se(t) . (W + s () + s¢1(0) + 5¢2(1)),
where se() and sy (t) are deterministic periodical signals with
frequency fe and sp1(t) and sp)(t) are periodical with respective
frequencies fr1 and frp, and with random, stationary, centered
amplitudes. Since each of these terms is tied respectively to
the shape of one wheel, and this shape has no reason to be
tied from one wheel to the other, we can suppose that their
random amplitudes are independent random variables. We will
write this more precisely when necessary.

We can try to forecast what is going to happen if a
damage affects the gearing. In the particular case that we have
studied, the defect is a flaking off that appears on one of the
wheels, which means that what will be changed in the
expression of the vibrations is the term related to the shape of
the teeth of this wheel, say s;i(t), where i is the number of
this wheel, since the defect is a new component of the
deviation of the tooth profile from the ideal profile.

2-2 Presentation of the experiment.

The experiment was realised at the C.E.T.L.M.*. It is
composed of two toothed-gearings of respectively 20/21 and
40/42 tecth. The sensors are accelerometers which were placed
s0 as to record the vibrations of the 20/21 toothed-gearing.

* Centre Technique des Industrics Mécaniques.



The experiment lasted thirteen days, and the vibrations were
recorded every day. At the begining, the gearing under study
was in a good condition, and it gradually became damaged.
The sampling rate fg is 20 000 Hz. The meshing frequency
fe is 340 Hz. The rotation frequencies fr{ and f;p are about
the same (since the two wheels have almost the same number
of teeth), and they are equal to 16.7 Hz. Each of the records
lasted about 3 s, which means 50 rotations of the wheels.

One of the problems that we have to cope with is the
closeness of the rotation frequencies. The two modulations,
due respectively to the shape of the two wheels, will appear
on the temporal representation under the shape of a very low-
frequency beat, which is hardly seen on the temporal
representation of the signal. In the following paragraph, we
will show what kind of a structure these modulations generate
on the spectral representation.

2-3 Temporal and spectral representation.

Modulations and sidebands.

Fig. 1 shows both a temporal representation and spectrum of
the vibration. We can notice a fast phenomenon which could
be the meshing one, and a slower modulating one that can be
attributed to the rotation of the wheels. It is not posible on
this temporal representation to separate the parts of the
vibrations owing respectively to each of the wheels. On the
last day record, a dramatic change in the shape of the
vibrations appears at the rate of the damaged wheel, but this
happens at a time when the toothed-gearing is already
seriously damaged, and the goal of this study is to investigate
the field of signal processing methods that could help us for
an early diagnosis of the system.

‘The hypothesis of a perodically modulated vibration is
confirmed when observing the spectral representation of the
signal. Indeed, the spectrum presents one series of spectral
lines whose fundamental frequency is the meshing frequency,
and a second series of spectral lines which appears several
times and is located around the gearing harmonics. This
phenomenon is called sidebands. We can forecast, by reffering
to the model, that two different series of sidebands are going
to appear on the spectral representation, since there are two
different modulating terms, owing to the rotation of the two
different wheels. Actually, on the spectrum, we can observe
only one series of sidebands, since the spectral resolution does
not allow us to separate the two rotation frequencies.

In the following paragraph, we are going to define
cyclostationarity, and give the main properties of
cyclostationary signals and the ways (hey can be characterized.

3 CYCLOSTATIONARITY.

3-1 Autocorrelation function. Stationarity. time

dependence [2], [3].

One can compute for any signal the different moments of this
signal, at any order, either in the time domain or in the
frequency domain. These moments are a statisticaly averaged
value of a lag product of the signal. Statistical average means
that we dispose of a set of different realizations of the same
function or signal and that each parameter that we compute
from one or several samples of this function can be averaged

on the whole set of realizations. A lag product is a product of
the values obtained for one function at different times.

For instance, the first and second order moments of a
function x(t) both in time and frequency are given by :

Time Frequency

First order (mean) : E [x(t)]  First order : E [X(H]
Second order (autocorrelation  Second order (spectrum) :
function) : E [X(0).X*(f-o)]

E [x(t).x*(t-1)]

where x(f) is the temporal representation of the signal and X(f)
its frequential representation. The (*) symbolises the
conjugate of the value and E[...] symbolises statistical
averaging.

The time-domain moments and frequency-domain
moments are a pair of Fourier transform (Wiener-Kintchine),
at any order. For instance, second-order moments are related
by a two-dimensional Fourier transform :

E [X(0).X*(f-0)] = TFf,¢ {E [x(0).x*(t-1)]}.

In this paper, we are interested only in second order moments,
which are autocorrelation function and spectral correlation
function. We can see from the previous definitions that both
of them depend on two different variables and should be
represented on a two dimensional diagram. Whereas, when we
usually compute autocorrelation function or spectrum, it only
depends on one variable and can be represented on a lineal
diagram. This comes from the following reason :

We usually suppose that the signal is second order
stationary, which means that its second order temporal
moment does not depend on time, that is to say :

E [x(t).x*(t-1)] = Rx(t) does not depend on the variable t.
Then, the frequency domain second order moment is equal to :
E [X(f).X*(f-o)]

= TF/,r {Rx(D)} = TF/t {Rx(D)} . 8(ov),

where 8(cr) symbolises a Dirac impulsion.

As a consequence, the frequential second order moment E
[X(£).X*(f-0)] is non-zero only for the zero value of the
variable o, so that we compute it for the only value o=0 and
obtain a one-dimensional result Sx(f), depending only on the
variable f and called power spectrum.

Nevertheless, it can be more realistic in some cases
suppose that the signal is non-stationary and to compute the
frequential second-order moments for more than one value of
the variable o which is then called cycle frequency. Actually,
this new way of seeing the signal finds expression in the way
we compute the moments : we will not be able to simply
replace the statistical averaging by a temporal averaging, as
we are used to doing in the case of stationary signals, since
we cannot suppose any more that the signal is ergodic. This
is going to be shown in the following section.

3-2 Statistical averaging time-averaging.

Ergodism, cycloergodism.

Let us define a signal x(t), stationary and ergodic, and come
back to the problem of statistical averaging. It is obvious that
in most of the cases, we don't actually dispose of a set of
different realizations of the studied signal. So, to palliate this



problem, we are used to replacing the statistical averaging by
time averaging. This procedure finds its justification in the
following remark : for one given value of t, the lag-product
can be computed and averaged on all of the realizations of the
signal (Fig. 2). We then suppose that the signal is ergodic,
which means that the different values taken by the lag-
product {x(t).x*(t-7)}j for one definite value of i and t varying
describe the same set as the values taken by this lag-product
for a definite value of t with i varying. This allows us to

replace the statistical mean E [...] by a time averaging j ... dt

oQ

on one of the realizations.

In the case of a non-stationary signal, if we just replace
the statistical averaging by an integration on time, we loose
information about possible variations of the second-order
moment as a function of time t. Let us now consider a signal
x(t) whose temporal second-order moment is not any more a
constant as a function of t, but depends on the time ¢
periodically with frequency o). This means that the statistical
mean of the lag-product of the signal is a periodical function
of frequency o). Fig. 3 illustrates this possibility.

In this case, the statistical averaging is not any more
replaced by a simple time averaging, but by a synchronized
averaging, at a rate equal to the frequency of the moment. It is
to say that E [x(t).x*(t-1)] will be replaced by

x(t + L).x"‘(t -T + L). Such a signal is called
o0 oty
neN

cyclostationary signal of frequency o), and if the statistical
averaging can be replaced by synchronized averaging, it is said
to be cycloergodic. Let us notice that in this case, the
frequency-domain moment, say the spectral correlation
function, given by

S(;J(((f) = E [X(O.X*(f-0)] = TF/ ¢ {E [x(O.x*(t-1)1},

then presents spectral lines as a function of cycle frequency o,
since the temporal moment E [x(t).x*(t-7)] is periodical as a
function of t.

The problem with synchronized averaging is that in order
to perform it on some data, they must have been recorded with
a sampling rate synchronized on the frequency of
cyclostationarity of the signal. Therefore, we are not supposed
to know this frequency before we acquire the data. This is why
we actually do not compute the autocorrelation function of the
data, but two other parameters called cyclic autocorrelation
function and spectral correlation function, that we will define
further.

This was a practical approach of cyclostationnarity and
cycloergodism. We can now give a better definition for
cyclostationary signals and study which of the second-order
representations of the signal best characterize second-order
cyclostationarity.

Stationarity :
A signal is said to be stationary at the nth order if its time-
domain n'l order moment does not depend on time t.

Cyclostationarity :
A signal is said to exhibit cyclostationarity at the ntl order if

its time-domain nth order moment is a periodical function of
time t.

In this paper, we will focuse on second-order moments,
which are the ones that we have applied to the real vibrations.
These are the autocorrelation function and its Fourier
transform, both in t and T (see Fig. 4). Both “cyclic
autocorrelation function” and "spectral correlation function”
have a very peculiar shape when applied to a cyclostationary
signal. These two functions then present spectral lines as
functions of cycle frequency o. Fig. S shows a schematic
representation of the spectral correlation function for a
stationary or cyclostationary signal.

3-3 Estimation of spectral correlation function.

We have chosen, for this study, to use the spectral correlation
function, which shows both the spectral lines in cycle and
spectral frequencies.

We estimate the spectral correlation function, E[X®).X*(f-a)).
by a frequency-smoothed periodogram. This method consists
in computing the lag-product X (). X*(f-o) on the whole set of
data and smoothing it in spectral frequency f with an adequate
smoothing window so as to improve the estimation.

One important remark about the estimation is that by
choosing the width of the smoothing window, we define the
bandwidth of the spectral components whose correlation to
each other we are going to study. It has to be well-adapted to
the characteristics of the signal that we want to point out.
Indeed, the efficiency of spectral correlation function comes
from the fact that it can be well-estimated by smoothing in
spectral frequency, without loosing resolution in cycle
frequency. The resolution in cycle frequency is given by the
total length of the studied signal, that is to say Aa = 1? .
where T is the fotal duration of the recorded signal. Whereas
the resolution in spectral frequency depends on both the length
of the signal and the width of the smoothing window that we
choose so as to estimate the spectral correlation function. It
the chosen smoothing window has a width N (which means N
samples), then the resolution in spectral frequency is equal to

N

Af=¥.

The spectral correlation functions, given by E[X(f).X*(f-o)l.
measures the correlation between the components of the
signal whose respective frequencies are f and f+o. These
components have a bandwidth which is given by the physical
nature of the signal and which must be taken into account
when chosing the width N of the smoothing window. The
width N must be about equal to this bandwidth, so that the
correlation be well-estimated and be not merged with
information concerning other physical components of the
signal.

2-4 Normalisation. Spectral coherence,

In the case where the signal comprises spectral components of
various level of energy, it is interesting to normalise spectral
correlation by the energy of the components whoss
correlation we measure, so as to be able to detect ths
correlation between components of very weak energy. This is
why we have chosen to compute spectral coherence, which i<
spectral correlation normalised by the energy of thz
components in the spectrum.

The value of spectral coherence for the spectral and cvcls
frequencies (f,o) is given by (its symetrical form, that w2
use):



SO

cSm =

Sx(F+)| | Sx(E5)

Then if two weak energy components X(f+%) and X(f—%) of

the signal are strongly correlated, this correlation will be
better pointed out by spectral coherence than by spectral
correlation.

4 CYCLOSTATIONARITY OF THE TOOTHED-
GEARING VIBRATIONS.

4-1 Frequential components of the vibrations.

Let us come back to the model of the vibrations and show
that they are cyclostationary. This mode! is given by :
x(1) = se(t) . (W + s (0) + sp1(0) + sp2(1)),
where we have seen that W is a constant, se(t) and sy (t) are
both definite periodical functions of frequency fe, (the
meshing frequency), and spi(t) and spp(t) are periodical
functions, whose frequencies are the rotation frequencies of the
wheels, modulated by a random signal. These two last terms
the can be written in the following way :
Ni

sri(t) = ari(L). 2 e2mnfrit+®n

n=-Ni
where 1 (=1 or 2) characterizes one of the two wheels, N;j is
the number of harmonics of the corresponding periodical
modulating signal, and ag(t) is the real, random amplitude of
this periodical component.

The autocorrelation function, which is given
by Ry (t,7) = E [x(t).x*(t-1)] comprises two kinds of terms :
those that come from the deterministeic components of the
vibration, in which we are not interested, and Lhe ones
produced by the random components of the signal, that are
worth being detailed.

Among these terms, some are equal to zero, due to the fact
that the amplitudes ay(t) are zero mean and ag;(t) and arj(0) are
independent when izj. Two of them are non-zero and are given
by :
se(t).se*(t-1) . Elari(0).ar*(t-1)] -

Ni

Ni
2 e2mj(ni-mi)fri t+mifri T+(Pni-Pmi)
ni=-Ni
mi=-Ni
fori=1,2.

Since the signals agj(t) are supposed to be random and
stationnary, their autocorrelation function Rgari(t) =
Elari(0).ari*(t-7)] depends only on T, so that the expression
given by (4) is periodical as a function of t with frequency (n;-
m;j).frj, and does not present any peculiar periodicity as a
function of T, since its shape, in this last case, depends on the
shape of Rari(t). The multiplicative term sg(t).se™*(t-T) just
introduces a series of translations, both in spectral and cycle
frequencies, since it is periodical with frequency fe as a

function of each of these. Anyway, due to the proportionality
between this frequency and the two frequencies of
cyclostationarity, the spectral lines will still appear at
positions harmonic of f;1 and ;).

We can see from the previous remark that several spectral
lines are going to appear in the spectral correlation function in
cycle frequency. Their fundamental frequencies are respectively
the rotation frequencies of the two wheels. These two series of
spectral lines characterize the existence of two cyclostationary
components in the vibrations. We are going to see how these
two frequencies of cyclostationarity can be used so as to
separate the modulations due to the wheels and to diagnose the
toothed-gearing.

The fig. 6 illustrates these results by showing a schematic
representation of the spectral correlation function of the
vibrations. This function can take any shape as a function of
spectral frequency f but is discrete as a function of cycle
frequency d.

4-2 Application of spectral correlation to the

vibrations.

Here it is necessary to give some details about the figures that
are going 10 be shown. We would like to be able to separate
the two modulation phenomena, which means that we need
the cycle frequency resolution Ac to be lower than the
difference between the two rotation frequencies, that is to say
A0<16.7.(1-20/21) = 0.79 Hz. Since the sampling rate is
equal to 20 kHz, we need to use an amount of 25150 samples
at least to be able to separate these frequebcies. We decide to
use the whole set of samples (60000 samples).

In order to reduce the time of computation, we can use our
knowledge of the vibrations. Let us remember that the two
rotation frequencies appear in the spectrum as sidebands,
which means they appear around each of the harmonics of
meshing frequency. If a defect appears on one of the wheels,
for instance on one or two teeth, then it is going to make the
shape of the corresponding modulation less smooth, which
will produce on the spectrum of the modulation an
enlargement of the bandwidth. This means that what we need
to detect is the coming out of high order harmonics of the
modaulation corresponding to the damaged wheel, that is to
say, harmonics of the corresponding sideband distant from the
center meshing harmonic.

So, before applying spectral correlation to the vibrations,
we first filter them around one harmonic of the meshing
frequency and undersample it as much as we can. We have
chosen to perform this filtering around the second meshing
harmonic because it is the tallest one and the associated
sidebands are of great energy. We can by this way reduce the
amount of samples to 4096, which is much easier to process
than the first 60000 samples. The practical results of this
study are presented in the following section.

3-4 Practical results. Diagnosis.

Fig. 7 shows the spectrum and spectral coherence
computed on the second day recording. On fig. 6, lines are
drawn at the places where we expect to see some lines in cycle
frequency. Indeed, we can notice that at these places on fig. 7
appear some discrete phenomena whose amplitude is close to
one, as expected. Some artefacts appear at other places, that



we cannot really explain, but they are of lower amplitude.
They would probably disappear if we could chose a wider
smoothing window and improve the estimation, but the width
of this smoothing window is limited by the fact that we don't
want to merge the information concernig two successive
harmonics of a same family of sidebands, so that this width
must be lower than 16.7 Hertz.

Having performed a detailed study of the shape and
amplitude of these spectral lines for each day of the
experiment, we have decided to concentrate our attention on
the second harmonic of both the two rotation frequencies, for
these are the ones which appear with the best stability on each
computed spectral coherence. Each of the figures that we are
going to show from now will be a cut at one of these two
cycle frequencies o=2.f; and 0=2.f5.

Spectrum (Fig. 8)

The greatest peak that appears on the spectrum is the meshing
frequency around which the signal has been filtered. On each
side of this central harmonic appears a series of sidebands.
Actually, two series of sidebands are known to be present in
the spectrum but the spectral resolution in spectral frequency
being lowered by the estimation smoothing, these two series
of sidebands are merged.

Spectral correlation (Fig. 8)
The peaks which appear on the two other curves, obtained for
non-zero values of the cycle frequency, correspond for each of
the curves to one of the wheels only. Let us explain how to
interpretate them. For instance, on the curve corresponding to
the twenty one toothed wheel, the central peak measures the
degree of correlation between the first harmonics (on both left
and right side of the meshing harmonic) of the corresponding
sidebands, that is to say between the components at
frequencies fe+f,p; and fo-fp. Indeed, f+% = fotfag, f-% = fe-

fio1, f="fe, and o= 2.fi5;.

Diagnosis

At last, fig. 9 shows the value of spectral coherence for each
of the chosen values of cycle frequency (a;=2.f,7; and
00=2.f;p0), for each day of the experiment. We can notice
that, for the twenty toothed wheel, spectral coherence detects
the coming out of higher order harmonics of the
corresponding sidebands, (far from the center meshing
harmonic), after the 9th day of the experiment, which reveals
the coming out of a damage on the same wheel, according to
our model.

5 CONCLUSION

We have pointed out that toothed gearing vibrations are
second order cyclostationary. Let us point out that the widely
used synchronous averaging is a first order cyclostationary
study of the signal. This second order cyclostationary study
allows to separate from each other the phenomena tied
respectively to the rotation of the two wheels, and we show
that this can be used for an early diagnosis of the toothed-
gearing. We show how spectral correlation function performs
this separation by keeping the best resolution in cycle
frequency while improving the estimation in spectral
frequency. The main improvement of the second order study,
compared to synchronous averaging, is that it does not require
a synchronous acquisition of the signal. It is temptating to
compare this method to some other second order methods,
such as time and frequency representations. The main

difference between these methods and the cyclostationary study
is that time and frequency representations are mainly used on
deterministic signals, to point out local non stationarity
properties, whereas spectral correlation function is used to
detect statistical properties which are spread on the whole
duration of the signal.

Computing the spectral correlation function for all
possible cycle frequencies takes much time but once
determined the frequencies of cyclostationarity of the gearing,
and once elaborated a strategy of comparison to previously
stocked values, it has to be computed for only a set of discrete
values of the cycle frequency. So, the use of spectral
correlation so as to perform an automatic diagnosis of such a
device can be envisaged.
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