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Abstract

The Maximum Balanced Subgraph Problem is the prob-
lem of finding a subgraph of a signed graph that is bal-
anced and maximizes the cardinality of its vertex set. We
are interested in the exact solution of the problem: an
improved version of a branch-and-cut algorithm is pro-
posed. Extensive computational experiments are carried
out on a set of instances from three applications previ-
ously discussed in the literature as well as on a set of
random instances.
Keywords: Balanced signed graph; Branch-and-cut;
Portfolio analysis; Network matrix; Community struc-
ture.

1 Introduction

Let G = (V,E) be an undirected graph where V =
{1, 2, . . . , n} is the set of vertices and E is the set of
edges connecting pairs of vertices. Consider a function
s : E → {+,−} that assigns a sign to each edge in E.
An undirected graph G together with a function s is
called a signed graph. An edge e ∈ E is called negative
if s(e) = − and positive if s(e) = +.

In the last decades, signed graphs have shown to be a
very attractive discrete structure for social network re-
searchers [1, 8, 9, 16, 21] and for researchers in other
scientific areas, including portfolio analysis in risk man-
agement [14, 15], biological systems [7, 15], efficient doc-
ument classification [3], detection of embedded matrix
structures [12] and community structure [17, 20]. The
common element among all these applications is that all
of them are defined in a collaborative vs. conflicting en-
vironment represented over a signed graph. We refer the
reader to [22] for a bibliography of signed graphs. In
this work, we consider the Maximum balanced subgraph
problem (MBSP) defined next.

Let G = (V,E, s) denote a signed graph and let E−
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and E+ denote, respectively, the set of negative and pos-
itive edges in G. Also, for a vertex set S ⊆ V , let E[S] =
{(i, j) ∈ E | i, j ∈ S} denote the subset of edges induced
by S. A signed graph G = (V,E, s) is balanced if its ver-
tex set can be partitioned into sets W (possibly empty)
and V \W in such a way that E[W ] ∪ E[V \W ] = E+.
Given a signed graph G = (V,E, s), the MBSP is the
problem of finding a subgraph H = (V ′, E′, s) of G such
that H is balanced and maximizes the cardinality of V ′.

The MBSP is known to be an NP-hard problem [6] al-
though the problem of detecting balance in signed graphs
can be solved in polynomial time [13]. In the literature,
the MBSP has already been applied in the detection
of embedded matrix structures [10, 11, 12], in portfolio
analysis in risk management [10] and community struc-
ture [10].

The problem of detecting a maximum embedded re-
flected network (DMERN) is reduced to the MBSP
in [12]. Most of the existing solution approaches to
the MBSP were in fact proposed for the solution of
the DMERN problem. The literature proposes various
heuristics for the solution of the DMERN problem (for
references see [12]). Lately, Figueiredo et al. [11] devel-
oped the first exact solution approach for the MBSP: a
branch-and-cut algorithm based on the signed graph re-
formulation from Gulpinar et al. [12] for the DMERN
problem. Computational experiments were carried out
over a set of instances found in the literature as a test
set for the DMERN problem. Almost all these instances
were solved to optimality in a few seconds showing that
they were not appropriate for assessing the quality of a
heuristic approach to the problem. Recently, Figueiredo
et al. [10] introduced applications of the MBSP in other
two different research areas: portfolio analysis in risk
management and community structure. These authors
also provided a new set of benchmark instances of the
MBSP (including a set of difficult instances for the
DMERN problem) and contributed to the efficient solu-
tion of the problem by developing a pre-processing rou-
tine, an efficient GRASP metaheuristic, and improved
versions of a greedy heuristic proposed in [12].

In this work we contribute to the efficient solution



of the MBSP by developing an improved version of
the branch-and-cut algorithm proposed by Figueiredo et
al. [11]. We introduce a new branching rule to the prob-
lem based on the odd negative cycle inequalities. More-
over, we improve the cut generation component of the
branch-and-cut algorithm by implementing new separa-
tion routines and by using a cut pool separation strategy.

The remainder of the paper is structured as follows.
The integer programming formulation and the branch-
and-cut algorithm proposed in [11] to the MBSP are out-
lined in Section 2. The improved version of the branch-
and-cut algorithm is described in Section 3. In Section 4,
computational results are reported for random instances
as well as for instances of the three applications previ-
ously mentioned. In Section 5 we present concluding
remarks.

We next give some notations and definitions to be used
throughout the paper. For an edge set B ⊆ E, let G[B]
denote the subgraph of G induced by B. A set K ⊆ V
is called a clique if each pair of vertices in K is joined by
an edge. A set I ⊆ V is called a stable set if no pair of
vertices in I is joined by an edge. We represent a cycle
by its vertex set C ⊆ V . In this text, a signed graph
is allowed to have parallel edges but no loops. Also, we
assume that parallel edges have always opposite signs.

2 Integer programming formula-
tion and branch-and-cut

The integer programming formulation and the branch-
and-cut algorithm introduced in [11] are described next.

2.1 Integer programming formulation

It is well known that a signed graph is balanced if and
only if it does not contain a parallel edge or a cycle with
an odd number of negative edges [5, 12, 22]. Let Co(E)
be the set of all odd negative cycles in G, i.e., cycles
with no parallel edges and with an odd number of neg-
ative edges. Throughout this text, a cycle C ∈ Co(E) is
called an odd negative cycle. The formulation uses binary
decision variables y ∈ {0, 1}|V | defined in the following
way. For all i ∈ V , yi is equal to 1 if vertex i ∈ V belongs
to the balanced subgraph, and is equal to 0 otherwise.
We use the vector notation y = (yi), i ∈ V , and the
notation y(V ′) =

∑
i∈V ′ yi for V

′ ⊆ V . The formulation
follows.

Maximize y(V ) (1)

subject to yi + yj ≤ 1, ∀ (i, j) ∈ E− ∩E+, (2)

y(C) ≤ |C| − 1, ∀ C ∈ Co(E), (3)

yi ∈ {0, 1}, ∀ i ∈ V. (4)

Consider a parallel edge (i, j) ∈ E− ∩ E+. Con-
straints (2) ensure vertices i and j cannot belong to-
gether to the balanced subgraph. Constraints (3), called
odd negative cycle inequalities, forbid cycles with an odd
number of negative edges in the subgraph described by

variables y. These constraints force variables y to define
a balanced subgraph. Finally, the objective function (1)
looks for a maximum balanced subgraph. The formula-
tion has n variables and, due to constraints (3), might
have an exponential number of constraints. Let us refer
to this formulation as Y (G, s). By changing the integral-
ity constraints (4) in formulation Y (G, s) by the set of
trivial inequalities 0 ≤ yi ≤ 1, i ∈ V , we obtain a linear
relaxation to the MBSP.

2.2 A branch-and-cut algorithm

The branch-and-cut algorithm developed in [11] is based
on formulation Y (G, s), uses a standard 0–1 branching
rule and has three basic components: the initial formu-
lation, the cut generation and the primal heuristic.

Initial formulation The initial formulation is defined
as

maximize y(V )

subject to y(K) ≤ 1, ∀ K ∈ L, (5)

y(C) ≤ |C| − 1, ∀ C ∈ M ⊆ Co(E), (6)

y(K) ≤ 2, ∀ K ∈ N, (7)

0 ≤ yi ≤ 1, ∀ i ∈ V, (8)

where (5) are clique inequalities from the stable set prob-
lem [19] defined over a set of cliques L in G[E+ ∩ E−];
(6) is a subset of inequalities (3) defined over a set of
odd negative cycles M ; (7) is a subset of inequalities
from a family of negative clique inequalities introduced
in [11] for the MBSP and defined over a set of cliques
N in G[E−]; (8) is the set of trivial inequalities. Greedy
procedures described in [11] are used to generate sets L,
M and N .

Cut generation After an LP has been solved in the
branch-and-cut tree, the algorithm check if the solution
is integer feasible. If this is not the case, the cut genera-
tion procedure is called and a set of separation routines
is executed (a limit of 100 cuts per iteration is set). If
no violated inequality is found or if a limit of 10 cut
generations rounds is reached, the algorithm enter in
the branching phase. The cut generation component de-
scribed in [11] has two separation procedures. An exact
separation procedure is used to generate violated odd
negative cycle inequalities (3). This separation routine is
based on a polynomial algorithm described in [4] to solve
the separation problem for cut inequalities. A heuristic
separation procedure defined in [11] is used to generate
violated clique inequalities also introduced in [11].

Primal heuristic and branching rule A rounding
primal heuristic is executed in [11] every time a fractional
solution is found. Moreover, a standard 0–1 branching
rule is used with the same branching priority assigned to
each variable and the branch-and-cut tree is investigated
with the best-bound-first strategy.
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3 An improved branch-and-cut
code

In this work, the following new routines were added to
the branch-and-cut algorithm described in Section 2.

3.1 Branching on the odd negative cycle
inequalities

Our branching rule is based on the odd negative cycle
inequalities (3). The intuition behind this cycle based
branching is the attempt to generate more balanced enu-
merative trees. The standard 0–1 branching rule can
be very asymmetrical producing unbalanced enumera-
tive trees.

Let ȳ ∈ R be the optimal fractional solution of a node
in the search tree. Let C ′ ⊆ Co(E) be the subset of odd
negative cycles such that each cycle C ∈ C ′ satisfy the
following conditions:

� constraint (3) defined by C ′ is a binding one in the
current formulation,

� there exists a vertex i ∈ C ′ such that ȳi is fractional.

The standard 0–1 branching rule is used whenever C ′

is an empty set. If it is not the case, let C̄ be the smallest
cycle in C ′. Split C̄ into the sets C̄1 and C̄2 such that
C̄ = C̄1 ∪ C̄2, C̄1 ∩ C̄2 = ∅ and y(C̄1) is fractional. We
create three branches in the search tree:

(i) y(C̄1) ≤ |C̄1| − 1 and y(C̄2) = |C̄2|;

(ii) y(C̄1) = |C̄1| and y(C̄2) ≤ |C̄2| − 1;

(iii) y(C̄1) ≤ |C̄1| − 1 and y(C̄2) ≤ |C̄2| − 1.

3.2 Separation routines

In this work, we introduce two new separation proce-
dures to the cut generation component of the branch-
and-cut algorithm described in Section 2.

The authors in [11] proved that lifted odd hole in-
equalities (from the stable set problem) defined over the
set of parallel edges E+ ∩ E− are valid inequalities for
the MBSP. They have also proved that, if the support
graph of these inequalities satisfy certain conditions they
are facet defining inequalities to the problem. We imple-
mented a separation procedure described in [18] to the
lifted odd hole inequalities. Also, the authors indicated
in [11] that a very similar lifting procedure could be ap-
plied to strengthen constraints (3). We implemented this
lifting procedure to the odd negative cycle inequalities
satisfying |C| ≤ 20. In both cases, a very small instance
of the MBSP must be solved at each iteration of the
lifting procedures. In our implementation, these small
problems were solved by simple enumerative algorithms.

Moreover, we added a cut pool to the branch-and-cut
code: any violated inequality included to the active for-
mulation of a node in the branch-and-cut tree is also

included in the cut pool. As we have mentioned in Sec-
tion 2, after an LP has been solved in the branch-and-cut
tree, we check if the solution is integer feasible. If this is
not the case, the cut generation procedure is then called.
Before running any separation routine from our cut gen-
eration procedure, we check if there are violated cuts
in the cut pool. In positive case, no separation routine
is called and the violated cuts (limited to 100 cuts) are
immediately added to the active formulation.

4 Computational experiments

We implemented and compared five versions of the
branch-and-cut algorithm; each one of them uses the ini-
tial formulation defined by (5)-(8).

� BC: Branch-and-cut algorithm described in Sec-
tion 2.

� BC+Cut: BC with the additional separation rou-
tines described in Section 3.2.

� BC+Cycle: BC with the cycle branching rule de-
scribed in Section 3.1.

� BC+Cut+Cycle: BC with the additional proce-
dures described in Sections 3.2 and 3.1.

� BC+Balas: BC with a branching rule proposed
in [2] and successfully applied to solve the stable
set problem.

Each version of the branch-and-cut algorithm was im-
plemented in C++ running on a Intel(R) Pentium(R)
4 CPU 3.06 GHz, equipped with 3 GB of RAM. We
use Xpress-Optimizer 20.00.21 to implement the compo-
nents of these enumerative algorithms. The maximum
running time per instance was set at 3600 seconds. The
instance classes reported in [10] were tested here to al-
low for a better comparison of the performances of the
branch-and-cut algorithms implemented. The class Ran-
dom consists of 216 randomized instances divided into
two groups: Group 1 without parallel edges and Group
2 with parallel edges. The class UNGA is composed of 63
instances derived from the community structure of net-
works representing voting on resolutions in the United
Nations General Assembly. The class new DMERN con-
sists of 316 signed graphs coming from a set of gen-
eral mixed integer programs. Finally, the class Portifo-
lio is composed by 850 instances generated from market
graphs. The entire benchmark is available for download
in www.ic.uff.br/~yuri/mbsp.html.
We first investigate the behavior of the Random in-

stances, the results obtained by the five methods are
summarized in Table 2. This table exhibits, for both
groups, average times per |V |, and average percentage
gaps per |V |, d (density of the graph) and the rates
| E− | / | E+ | and | E+∩E− |. Multicolumn Time, gives
us average times (in seconds) spent to solve instances to
optimality; the values in brackets show the number of
instances solved to optimality (“-” means no instance
was solved within the time limit). Multicolumn %Gap
presents the average of percentage gaps calculated over
the set of unsolved instances. The percentage gap of each
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instance is calculated between the best integer solution
found and the final upper bound. For each group of in-
stances, each line presents the results obtained with each
one of the branch-and-cut algorithms implemented (in
the same order they were described above). For Group 1,
results obtained with version BC+Cut+Cycle are better.
Compared with the original version BC, two more in-
stances were solved to optimality, both percentage gaps
and time were reduced. For Group 2, results obtained
with version BC+Cut are slightly better. The version
BC+Balas solved instances with 150 and 200 vertices
not solved by any other version. However, this version
got the worst results for instances in Group 1 and the
highest gaps for unsolved instances in both groups.

In the second experiment, we analyze the performance
of the algorithms on Portifolio instances. Table 3 reports
the results obtained on instances with under 330 vertices.
The first two columns give the number of vertices and
a threshold value t used to generate the instances [10].
The next multicolumns give us, for each version imple-
mented, averages for time, percentage gap (as defined in
Table 2) and number of evaluated nodes in the search
tree calculated for instances with a same value of |V |
and t. The last two lines reports the total number of in-
stances solved to optimality, the average gap calculated
for all instances and the maximum gap (in brackets).
Version BC+Cut+Cycle solved more instances to opti-
mality (227 out of 850 while the original BC managed to
solve only 218 instances) and small gaps. The average
(maximum) gaps for the original BC over the set of all
unsolved instances is 22.12% (76.94%), while the same
value for the improved version BC+Cut+Cycle is 12.27%
(67.82%). Figure 1 reports gaps obtained with versions
BC and BC+Cut+Cycle on each instance with under 270
vertices (instances with less than 270 vertices are easy
instances solved to optimality in less than 1 minute).
The x-axis exhibits the instances ordered primarily by
number of vertices and secondly by the threshold value
t. We can see that BC+Cut+Cycle presents tighter gaps
for almost the entire set of Portifolio instances. We can
also conclude these instances become more difficult as
the number of vertices increases and the threshold value
t decreases.

In the third experiment, we investigate the behavior
of the UNGA instances. We notice that these instances
are extremely easy to solve. No matter the number of
vertices or the parameters used to compose the instance,
all versions were able to solve all of them in a few seconds
and in the root of the search tree. Hence, we could not
draw any conclusion from this class of instance.

In our last experiment, all versions were applied to
each one of the 316 new DMERN instances. Both, the
number of vertices and edges, vary arbitrarily on the
instances in this set (see [10]) which makes difficult to
group them by similarity. Table 1 shows average re-
sults calculated over the 316 instances. The notations
in this table are the same as in the previous ones. From
this set of instances, we can extract 25 instances not
solved to optimality by the original BC code with av-

Table 1: Results obtained on New DMERN instances.
Time %Gap(max) Nodes

BC 69.85(291) 30.80(274.67) 91.33
BC+Cut 80.24(291) 31.20(318.39) 90.26
BC+Cycle 85.68(296) 16.21( 85.43) 91.33
BC+Cut+Cycle 86.67(296) 16.22( 85.43) 133.74
BC+Balas 70.06(289) 19.75(171.66) 521.78

erage (maximum) gap of 30.80% (274.67%) while ver-
sion BC+Cut+Cycle could not solve 20 instances with
a tighter average (maximum) gap of 16.22% (85.43%).
One can also notice that the implementation of the new
separation routines and the cycle branching rule used in
BC+Cut+Cycle led to a better performance and a high
number of evaluated nodes within the time limit.

5 Final remarks

In this work, we proposed an improved branch-and-cut
algorithm based on the integer programming formula-
tion and the BC algorithm proposed in [11], together
with a new branching rule based on the odd negative
cycle inequalities and improved cutting plane routines
and strategies. The instance classes described in [10]
were used to compare the performances of five varia-
tions of the branch-and-cut algorithm proposed in [11].
The results obtained by the version containing all im-
provements proposed in this work were superior to those
given by the previously existing branch-and-cut. The
improved version BC+Cut+Cycle solved 1100 out of
1445 instances within 1 hour of processing time, while
the original algorithm managed to solve 1082 instances.
Moreover, as we saw in Section 4, considering the set of
unsolved instances, for most part of the cases, the av-
erage and maximum gaps obtained with this improved
BC was smaller than the average and maximum gaps ob-
tained with the original BC from [11]. The optimal val-
ues and bounds obtained by this improved version were
used in [10] to evaluate the quality of heuristic results.
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