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The inclusion of finite-size effects in the gravitational waveform templates allows one not only to
constrain the internal structure of compact objects, but to test deviations from general relativity. Here, we
address the problem of tidal effects in massless scalar-tensor theories. We introduce the scalar-type tidal
Love numbers that relate the time-varying scalar dipole moment to the induced scalar tidal field. We
compute the leading-order scalar tidal contribution in the conservative dynamics and for the first time in the
wave generation for quasicircular orbits. Importantly, we show that, in a system dominated by dipolar
emission, such tidal effects may be detectable by third generation detectors such as the Einstein Telescope.
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I. INTRODUCTION

The recent detections of gravitational waves by the
LIGO-Virgo observatory have opened a new window to
test the strong regime of gravity [1]. In particular, the first
multimessenger observation of the coalescence of a neutron
star (NS) binary system GW170817 [2] has already con-
strained the NS equation of state [3], which contains most
of the information about the structure of the ultra dense
nuclear matter inside neutron stars. Our ability to put more
stringent constraints with the future space-based interfer-
ometer LISA and third-generation detectors relies on the
modeling of the finite-size effects within the gravitational
waveform templates. In particular, the precise incorporation
of tidal effects requires solving the problem of the influence
of NS nuclear physics on the gravitational signal. This is
already a challenge in general relativity (GR) as the tidal
effects start contributing at 5PN order [4] beyond the
leading order, and add to other parameter effects in the
model, due to the masses, spins, etc.
In a binary system, the external tidal field sourced by the

companion induces a change in the orbital motion and a
quadrupolar oscillation of the other object. In the adiabatic
approximation in GR, this excitation is described by the
ratio λ between the induced quadrupole and the external
tidal field. Finite size effects are expected to be very small
during the inspiral phase of the coalescence, and the effect
of the internal structure of the objects will only affect
significantly the signal during the late inspiral and merger.
However, one can still obtain information on the internal
structure of neutron stars in the inspiral phase, due to our
ability to model these effects in a very simple and clean
manner that depends only on the dimensionless quantity

defined from λ, called the tidal Love number (TLN). The
general relativistic tidal contribution to the waveform was
calculated for the first time in [5,6], and extended to higher
multipole moments [7,8]. The tidal Love numbers are
divided into the electric TLNs that correspond to the mass
multipole moments and the magnetic TLNs linked to the
current multipole moments. These effects are now properly
modeled in GR up to the next-to-leading order (i.e., 6PN)
[9–11], and they have been partially incorporating in the
effective-one-body waveforms up to 7.5PN [12,13].
The current work is part of the ongoing effort on

massless scalar-tensor (ST) theory to build the full gravi-
tational and scalar waveforms at 2PN order beyond the
leading GR order. Adding a single massless scalar field,
minimally coupled to gravity, is one of the simplest ways to
extend general relativity, motivated by cosmological obser-
vations. Currently, the tensor waveform is known at 2PN
order [14], while the scalar waveform and the energy flux
are, respectively, known at 1.5PN and 1PN order [15]. To
have a complete result at 2PN order for all quantities, one
needs to use the dynamics at the higher 3PN order [16,17].
Finally, to complete these results one also has to include the
finite-size effects. Indeed, due to the presence of a scalar
dipole moment, the tidal effects start as early as the 3PN
order, making it more easily accessible by current and
forthcoming gravitational wave observations. Here, we aim
to compute for the first time the scalar tidal effects that arise
due to the presence of a scalar field coupled to gravity. In
ST theories, in addition to the usual mass and current
multipole moments, there are also some scalar multipole
moments. We introduce a new class of TLNs, the scalar
ones, to relate the time-varying scalar dipole moment to the
induced scalar tidal field [18]. In the following, we compute
the leading order scalar tidal contribution to the dyna-
mics and for the first time to the phase in the waveform.*Laura.Bernard@obspm.fr
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Our main result is that, when the binary system is
dominated by dipolar emission, the tidal corrections for
frequencies ∼0.01–1 Hz may contribute by Oð1Þ to the
waveform and by Oð100Þ cycles for frequencies
∼10 − 103 Hz, making their detection reachable by the
future detectors LISA or third generation. While we only
focus on the tidal effects originating in the scalar field, we
leave the inclusion of the quadrupolar tidal effects to future
work as they only start contributing at 5PN order.

II. SCALAR TIDAL LOVE NUMBER

To motivate our treatment of the tidal interaction, we
start by looking at the Newtonian theory. In the presence of
a scalar field, ϕ, the tidal field of the companion object
will excite the dipole moment of a star. For a neutron
star, the dipolar oscillation can be described by a tidally
driven harmonic oscillator, with no damping coefficient
(as we neglect the viscosity) [20]. The corresponding
Lagrangian is

LT ¼ 1

2λðsÞω2
1

½ _Qi
ðsÞ _Q

ðsÞ
i − ω2

1Q
i
ðsÞQ

ðsÞ
i � − EðsÞ

i Qi
ðsÞ; ð1Þ

where Qi
ðsÞ is the internal dynamical dipole, EðsÞ

i is the
external dipolar tidal field sourced by the scalar field, ω1 is
the frequency of the l ¼ 1 fundamental oscillating mode of
the neutron star, and λðsÞ is the scalar tidal deformability
parameter. Varying the action with respect to Qi

ðsÞ, we
obtain the equation for a tidally driven harmonic oscillator
Q̈i

ðsÞ þ ω2
1Q

i
ðsÞ ¼ −λðsÞω2

1E
i
ðsÞ. As we are interested in the

limit when the oscillator evolves adiabatically, we consider
the stationary solution Qi

ðsÞ ¼ −λðsÞEi
ðsÞ. By reinjecting it

into the Lagrangian (1), we get the Newtonian correction to
the Lagrangian in the presence of an external tidal field,
LT ¼ 1

2λðsÞ
EðsÞ
i Ei

ðsÞ.
By analogy with the Newtonian case, we now write a

general relativistic theory of tidal interaction in the pres-
ence of a scalar field. The dipole moment induced by the
external scalar tidal field EðsÞ

μ ≡ ∂μϕ is

QðsÞ
μ ¼ −λðsÞE

ðsÞ
μ : ð2Þ

The coefficient of proportionality λðsÞ is the scalar tidal

deformability parameter and has a dimension of ½GλðsÞc2 � ¼
½length�3. Alternatively, one can define a dimensionless
quantity, called the scalar tidal Love number (sTLN),
kðsÞ ≡ c4

G2M3
A
λðsÞ ∼ G

c2R3
A
λðsÞ, where we have used GMA

c2RA
∼ 1,

withMA the mass of body A and RA its radius [21]. Finally,
as already proposed in Ref. [22], the action describing the
finite-size effects is

ΔSðfsÞ ¼ −
X
A

1

2
λðsÞA

Z
dsAcðgμνÞAð∂μϕÞAð∂νϕÞA: ð3Þ

Note that this interaction is absent in general relativity as
the dipole moment created by the Newtonian potential is
zero in the center-of-mass frame.

III. CONTRIBUTION TO THE DYNAMICS

We consider the scalar-tensor action describing a mass-
less scalar field ϕ coupled to the metric gμν [23],

S ¼ c3

16πG

Z
d4x

ffiffiffiffiffiffi
−g

p �
ϕR −

ωðϕÞ
ϕ

∇αϕ∇αϕ

�

þ Spp þ ΔSðfsÞ; ð4Þ

where Spp ¼ −
P

A c
R
dsAmAðϕÞ is the skeletonized action

describing the bodies as point particles. The internal self-
gravity of the compact objects is incorporated through a
scalar-field dependent massmAðϕÞ [27]. We then define the

sensibility of each object sA ≡ d lnmaðϕÞ
d lnϕ j

0
, the subscript

meaning that the scalar field is evaluated at spatial infinity,
ϕ0 ¼ ϕð∞Þ, where it is assumed to be constant in time. It
measures how the internal structure of the body is affected
by the presence of the scalar field. The last term in Eq. (4)
incorporates the finite-size effects and, according to the
previous section, is given by

ΔSðfsÞ ¼ −
X
A

1

2
λðsÞA

Z
dsAcðgμνÞAð∂μφÞAð∂νφÞA; ð5Þ

where we have defined φ≡ ϕ
ϕ0
. Similarly to the mass of

point-particles in ST theories, the scalar tidal Love numbers
should be viewed as a function of the scalar field. However,
as we are interested only in the main contribution, we

consider λðsÞA as being the zeroth order in an expansion in
the scalar field, and thus constant. In order to compute the
leading order tidal contribution to the dynamics of the
system, we implement the post-Newtonian formalism [28].
After deriving the Euler-Lagrange equations from
the total action (4), we solve the scalar and gravitational
equations of motion for the metric iteratively at each PN
order [16]. The equations of motion for the particles
are then obtained from the geodesic equations. The
Newtonian dynamics is the same as in GR, but with an

effective coupling constant G̃α, where G̃ ¼ Gð4þ2ω0Þ
ϕ0ð3þ2ω0Þ and

α¼1−ζþζð1−2s1Þð1−2s2Þ, with ζ ¼ 1
4þ2ω0

and ω0 is the

value of ωðϕÞ at infinity. At higher orders, new parameters

have to be introduced, i.e., δ̄A≡ζð1−ζÞ
2α2

ð1−2sAÞ2 and γ̄ ≡
− 2ζ

α ð1 − 2s1Þð1 − 2s2Þ [16].
As we are interested in the finite size contributions, we

only have to compute the corrections to the Newtonian
dynamics due to the dipolar tidal coupling. In particular,
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the scalar field equation is modified with two new source
terms,

□gϕ ¼ 1

3þ 2ω

�
8πG
c4ϕ0

ðT þ ΔTÞ

−
16πG
c4

ϕ

�∂T
∂ϕþ ΔS

�
− ω0∇λϕ∇λϕ

�
; ð6Þ

where a prime indicates derivation with respect to ϕ, and

ΔTμν ¼ 2ffiffiffiffi−gp δΔSðfsÞ
δgμν

, T ≡ gμνTμν ¼ 2gμνffiffiffiffi−gp δSðppÞ
δgμν

, ΔT ≡ gμνΔTμν,

and ΔS ¼ 1ffiffiffiffi−gp δΔSðfsÞ
δϕ . Similarly the geodesic equations

can now be written in the form ∇νðTμν þ ΔTμνÞ ¼
ð∂T∂ϕ þ ΔSÞ∇μϕ. Note that we should be careful when
treating this equation as all the terms have to be taken
in the sense of distributions. Their contribution to the
relative acceleration a≡ a1 − a2 is given by

ΔaðfsÞ ¼−
G̃αm
r3

x ·
−16ζ
1−ζ

�
m2

m1

δ̄1λ
ðsÞ
1 þm1

m2

δ̄2λ
ðsÞ
2

�
G̃α
c2r3

; ð7Þ

where x¼y1−y2 is the relative position and m≡m1 þm2

is the total mass of the system. From this expression

and using the sTLN kðsÞA ≡ λðsÞA
G̃α
c2R3

A
, we see that the tidal

correction to the equations of motion are of 3PN order.

Then, as we also have G̃αMA
c2RA

∼ 1 for compact objects in ST

theories, the relative acceleration scales as the third power
of the radius RA. It implies that the impact on the dynamics
may be enhanced for a less compact star compared to the
naive 3PN expectation. Note that for a neutron-star black
hole system, the tidal correction is zero, as black holes have
zero scalar charge and are expected to have a vanishing
scalar Love number [19].
Performing a Legendre transform from the Lagrangian,

we get the tidal contributions to the conserved energy,

ΔEðfsÞðxÞ ¼ −
1

2
mνc2x ·

−16ζ
3ð1 − ζÞ

�
m2

m1

δ̄1λ
ðsÞ
1

þm1

m2

δ̄2λ
ðsÞ
2

�
G̃α
c2r3

; ð8Þ

where we have introduced the symmetric mass ratio
ν≡ m1m2

m2 , the PN parameter x≡ ðG̃αmc3 Þ2=3, and r on the
right-hand side has to be understood as a function of x, i.e.,
r ¼ rN ¼ G̃αm

c2x . This is consistent with the early result on
finite-size effect in scalar-tensor theories obtained in [22].

IV. EFFECT ON THE GRAVITATIONAL
WAVE SIGNAL

We now use the previous results to express the waveform
in terms of the orbital phase ψ and frequency ω. The time
derivative of the energy is computed from the energy flux
through the balance equation, dES

dt ¼ −F , and is given by
the formula [15]

dES

dt
¼ −

Gϕ0ð3þ 2ω0Þ
3c3

̈IðsÞi
̈IiðsÞ; ð9Þ

where dotted quantities are derived with respect to time.
The scalar dipole moment has to be corrected by tidal
effects, IiðsÞðtÞ ¼ IiðsÞ;N þ IiðsÞ;fs, with [16]

IiðsÞ;N ¼ 2mνðs1 − s2Þ
ϕ0ð3þ 2ω0Þ

xi;

IiðsÞ;fs ¼ −
4G

c2ϕ2
0ð3þ 2ω0Þ2

½m2ð1 − 2s1ÞλðsÞ1 ð10aÞ

þm1ð1 − 2s2ÞλðsÞ2 � x
i

r3
: ð10bÞ

Incorporating the dipole moment into the formula (9),
we get

dES

dt

����
ðfsÞ

¼ −
4ν2

3G̃α

ζðs1 − s2Þ2
α

c5x4 ·
�
−

16ζ

3ð1 − ζÞ
�
m1

m2

δ̄1

�
R2

r

�
3

kðsÞ2 þm2

m1

δ̄2

�
R1

r

�
3

kðsÞ1

�

− 8
ζ

α

��
1þm1

m2

�
δ̄1 þ γ̄ð2þγ̄Þ

4

δ̄1 þ δ̄2 þ γ̄ð2þγ̄Þ
2

�
R2

r

�
3

kðsÞ2 þ
�
1þm2

m1

�
δ̄2 þ γ̄ð2þγ̄Þ

4

δ̄1 þ δ̄2 þ γ̄ð2þγ̄Þ
2

�
R1

r

�
3

kðsÞ1

��
; ð11Þ

where again r has to be understood as rN ¼ G̃αm
c2x and we

have factorized the leading contribution. Then, using the
definition of the PN parameter x ¼ ðG̃αmω

c3 Þ2=3 and the

relation _ψ ¼ ω, we get the formula dψ
dx ¼ ðc2xÞ3=2

G̃αm
dE=dx
dE=dt. In

order to obtain the leading order tidal correction to the
phase, we reexpand dψ

dx in x and integrate term by term. This

procedure corresponds to the TaylorT2 approximant
method that gives an analytic result [29].
Before going further, we should look carefully at the

expansions we are performing. Indeed, the scalar-tensor
parameters are already strongly constrained by solar-
system and pulsar observations, resulting in a correction
smaller than expected [30]. To study the balance between
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the orbital parameters and the ST ones, we compute
the ratio between the dipolar and quadrupolar energy
fluxes [31],

F dip

F quad
¼ 5ζðs1 − s2Þ2

24ð1 − ζ þ ζ
6
ð1 − s1 − s2ÞÞx

: ð12Þ

We see that at low frequency or for systems with asym-
metric large scalar charges, for example that undergo
dynamical scalarization, the dipolar emission could domi-
nate. However as was outlined in [31], most of the systems
that could be seen by the current detectors LIGO and Virgo,

or by the space-based one LISA, will be dominated by the
quadrupolar emission. Following [31], we now separate the
dipole-driven (DD) regime from the quadrupole-driven
(QD) one. In the former case the energy flux is dominated
by the dipolar term F dip, while in the latter case the
Newtonian term F quad dominates due to the smallness of
the scalar-tensor parameters compared to the GW frequency.

(i) Dipolar-driven regime. In the dipolar-driven regime,
the energy flux is expanded around the dipolar
flux, FDD ¼ F dip þ ΔF jðfsÞ. The calculations are
straightforward and we obtain the differential equa-
tion for the phase ψ ,

dψ
dx

����
DD

¼ 3α

8νζðs1 − s2Þ2
x−5=2 ·

�
1 −

48ζ

3ð1 − ζÞ
�
m1

m2

δ̄1

�
R2

r

�
3

kðsÞ2 þm2

m1

δ̄2

�
R1

r

�
3

kðsÞ1

�

þ 8ζ

α

��
1þm1

m2

�
δ̄1 þ γ̄ð2þγ̄Þ

4

δ̄1 þ δ̄2 þ γ̄ð2þγ̄Þ
2

�
R2

r

�
3

kðsÞ2 þ
�
1þm2

m1

�
δ̄2 þ γ̄ð2þγ̄Þ

4

δ̄1 þ δ̄2 þ γ̄ð2þγ̄Þ
2

�
R1

r

�
3

kðsÞ1

��
; ð13Þ

that we then integrate term by term to get the phase as a function of the frequency x. In order to put our result in a
form that could be used to constrain the theory with the current and future GW detectors, we present the phase in the
Fourier domain. Using the stationary phase approximation [32], the waveform can be written as AeiΨ. The phase in
Fourier domain is Ψl;mðfÞ ¼ mðψðvÞ − 1

Gmα v
3tðvÞÞ, where v ¼ x1=2 is to be evaluated at the GW frequency f and

vf ¼ ðπG̃αmfÞ1=3. The tidal correction to the Fourier domain phase is then

ΔΨl;mðfÞjDD¼
α

8νζðs1−s2Þ2
�
c
v

�
3

·

�
96ζ

3ð1−ζÞ
�
m1

m2

δ̄1

�
R2

r

�
3

kðsÞ2 þm2

m1

δ̄2

�
R1

r

�
3

kðsÞ1

�

−
16ζ

α

��
1þm1

m2

�
δ̄1þ γ̄ð2þγ̄Þ

4

δ̄1þ δ̄2þ γ̄ð2þγ̄Þ
2

�
R2

r

�
3

kðsÞ2 þ
�
1þm2

m1

�
δ̄2þ γ̄ð2þγ̄Þ

4

δ̄1þ δ̄2þ γ̄ð2þγ̄Þ
2

�
R1

r

�
3

kðsÞ1

���
1−3ln

�
v
c

��
;

ð14Þ

where v ¼ vf ¼ ðπG̃αmfÞ1=3.
(ii) Quadrupolar-driven regime. In the quadrupolar-driven regime, taking the prescription introduced in [31], we split

the flux in the nondipolar and the dipolar parts by defining

F nd ≡ lim
s1−s2→0

FQD; ð15aÞ

F dd ≡ FQD − F nd; ð15bÞ

and expand the flux around the leading nondipolar term. Using the same decomposition for the other quantities, the
differential equations for the phase are

dψ
dx

����
nd

¼ 5α

64νð1 − ζ þ ζ
6
ð1 − s1 − s2ÞÞ

x−7=2 ·

�
1 −

64ζ

3ð1 − ζÞ
�
m1

m2

δ̄1

�
R2

r

�
3

kðsÞ2 þm2

m1

δ̄2

�
R1

r

�
3

kðsÞ1

��
; ð16aÞ

dψ
dx

����
dd

¼ −
25αζðs1 − s2Þ2

1536νð1 − ζ þ ζ
6
ð1 − s1 − s2ÞÞ2

x−9=2 ·

�
1 −

16ζ

3ð1 − ζÞ
�
m1

m2

δ̄1

�
R2

r

�
3

kðsÞ2 þm2

m1

δ̄2

�
R1

r

�
3

kðsÞ1

�

−
8ζ

α

��
1þm1

m2

�
δ̄1 þ γ̄ð2þγ̄Þ

4

δ̄1 þ δ̄2 þ γ̄ð2þγ̄Þ
2

�
R2

r

�
3

kðsÞ2 þ
�
1þm2

m1

�
δ̄2 þ γ̄ð2þγ̄Þ

4

δ̄1 þ δ̄2 þ γ̄ð2þγ̄Þ
2

�
R1

r

�
3

kðsÞ1

��
: ð16bÞ
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As for the dipolar-driven regime, we compute the phase in the Fourier domain using the SPA and get the phase in the
quadrupolar-driven regime,

ΔΨl;mðfÞjnd ¼ −
3α

256νð1 − ζ þ ζ
6
ð1 − s1 − s2ÞÞ

�
c
v

�
5

·

�
1280ζ

3ð1 − ζÞ
�
m1

m2

δ̄1

�
R2

r

�
3

kðsÞ2 þm2

m1

δ̄2

�
R1

r

�
3

kðsÞ1

��
; ð17aÞ

ΔΨl;mðfÞjdd ¼
5αζðs1 − s2Þ2

3584νð1− ζþ ζ
6
ð1− s1 − s2ÞÞ2

�
c
v

�
7

·

�
−

280ζ

3ð1− ζÞ
�
m1

m2

δ̄1

�
R2

r

�
3

kðsÞ2 þm2

m1

δ̄2

�
R1

r

�
3

kðsÞ1

�

−
140ζ

α

��
1þm1

m2

�
δ̄1 þ γ̄ð2þγ̄Þ

4

δ̄1 þ δ̄2 þ γ̄ð2þγ̄Þ
2

�
R2

r

�
3

kðsÞ2 þ
�
1þm2

m1

�
δ̄2 þ γ̄ð2þγ̄Þ

4

δ̄1 þ δ̄2 þ γ̄ð2þγ̄Þ
2

�
R1

r

�
3

kðsÞ1

��
; ð17bÞ

where v ¼ vf ¼ ðπG̃αmfÞ1=3.

V. DISCUSSION

Considering the current bound on the ST parameters
[31], we can determine the order of magnitude estimate of
the tidal corrections to the phase, Eqs. (14) and (17). As it
also requires the computation of the scalar TLNs for
specific NS equations of state, which is beyond the goal
of this paper, we take them as being of order ∼0.1, similar
to the highest relativistic TLNs computed for GR [33]. In
the quadrupolar driven regime, the scalar tidal effect is
negligible and well below LISA or third generation
detectors detectability range. On the contrary, when the
binary system is dominated by dipolar emission, the tidal
corrections for frequencies in the LISA band, ∼0.01–1 Hz,
may contribute byOð1Þ to the waveform, comparable to the
1PN relative scalar-tensor correction. In the Earth-based
detectors frequency band, ∼10 − 103 Hz, the tidal contri-
bution may be even higher, of order Oð100Þ, for a binary
neutron star system. This shows that while the correction to
the phase due to tidal effect is formally at 3PN order, the
effect may be larger than the naive 3PN expectation due to
the scaling in ðRA=mÞ3 ¼ ðRA=MAÞ3 × ðMA=mÞ3, which
can be of order 102 for neutron stars [35]. It means that a
larger star will have a stronger scalar tidal effect on the
waveform, that may be as strong as the point-particle 1PN

effect. Moreover as it does not behave as the leading-order
GR or the 1PN ST contribution, it may be even easier to
detect. This makes the detection of scalar tidal effects
reachable by the forthcoming third generation detectors and
LISA. All these features make very promising the use of
tidal effects to put further constraints on scalar-tensor
theories. We emphasize that it is crucial to incorporate
them in the future scalar-tensor waveform templates that
will be used in LISA and third generation GW detectors as
the Einstein Telescope. They should also be taken into
consideration when devising tests of gravity and of the
cosmological models with the GW observations [36].
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