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Abstract 

Modern interfacial science is increasingly multi-disciplinary.  Unique insight into interfacial 

interactions requires new multimodal techniques for interrogating surfaces with simultaneous 

complementary physical and chemical measurements. We describe here the design and testing of 

a microscope that incorporates a miniature Surface Forces Apparatus (μSFA) in sphere vs. flat 

mode for force-distance measurements, while simultaneously acquiring Raman spectra of the 

confined zone. The microscope uses a simple optical setup that isolates independent optical paths 

for (i) the illumination and imaging of Newton’s Rings and (ii) Raman-mode excitation and 

efficient signal collection. We benchmark the methodology by examining Teflon thin films in 

asymmetric (Teflon-water-glass) and symmetric (Teflon-water-Teflon) configurations. Water is 

observed near the Teflon-glass interface with nanometer-scale sensitivity in both the distance and 

Raman signals. We perform chemically-resolved, label-free imaging of confined contact regions 

between Teflon and glass surfaces immersed in water. Remarkably, we estimate that the combined 

approach enables vibrational spectroscopy with single water monolayer sensitivity within minutes. 

Altogether, the Raman-μSFA allows exploration of molecular confinement between surfaces with 

chemical selectivity and correlation with interaction forces. 
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Introduction 

Over the past five decades, the surface forces apparatus (SFA) has become a standard tool 

for measuring interaction forces between extended surfaces. It has been used to gain quantitative 

insights into so-called DLVO forces1 (i.e., the combination of electrostatic double-layer and van 

der Waals forces), solvation forces,2 polymer brush interactions,3,4 friction and lubrication,5,6 

hydrophobic interactions,7,8 biomimetic adhesion,9,10 and protein interactions.11–13 Now, to 

examine a broader range of systems and gain deeper physicochemical insights, it is advantageous 

to couple the SFA with additional measurement probes in situ.  

The SFA has previously been combined with X-Ray diffraction,14,15 electrochemistry,16–19 

fluorescence microscopy,20–22 and Raman spectroscopy.23,24 These efforts are often limited by the 

SFA itself, which is a bulky instrument and requires long working distance (WD) microscope 

objectives to reach the focal plane of the SFA contact zone. High resolution microscopy requires 

high numerical aperture (NA) objective lenses that usually have a small WD, and is therefore 

especially difficult in a standard SFA. The same limitation applies for spectroscopic methods such 

as spontaneous Raman scattering, which generally has a weak signal and requires high NA to gather 

enough light for a measureable signal. Indeed, only one example of combined SFA-Raman 

spectroscopy can be found in the literature, in which Granick and coworkers found different 

degrees of polydimethylsiloxane chain ordering as a function of confinement and shear in a custom 

built confocal Raman-SFA.23,24 Other than SFA,  a tribometer was coupled with total internal 

reflection Raman to observe correlations between film thickness, frictional forces, and Raman 

signal of confined liquids, particles, and oils.25–27 Recently, crystalline ordering of pentadecane was 

observed at the contact line between swollen polydimethylsiloxane and sapphire by combining a 

tribometer with sum frequency generation (SFG).28 In general, previous work has not exploited 
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microspectroscopy, leaving open interesting questions related to confinement-dependent 

morphology changes.20  

To increase the applicability of SFA for such cross-disciplinary multi-modality, 

Israelachvili and coworkers recently developed a miniature version of the SFA, called the μSFA, 

which is designed to be mounted and operated on standard inverted optical microscopes. We and 

others showed that the μSFA is easily coupled with various techniques such as fluorescence 

microscopy, surface plasmon resonance, and Raman spectroscopy.29 For coupling with Raman 

spectroscopy, we implement a sphere-flat configuration (instead of the standard SFA crossed-

cylinder geometry), and image analysis of Newton’s Rings (NR) is used to measure the separation 

distance with sub-nanometer accuracy29 rather than the multiple beam interferometry between 

back-silvered mica surfaces that is used in the standard SFA technique. 

Here, we provide full design and testing details of the Raman-μSFA microscope, as shown 

in Figure 1. The microscope is designed to include independent light paths for illuminating and 

capturing NR images (blue), Raman excitation (green), and Raman signal collection (red), during 

approach of a sphere towards a flat coverslip within the μSFA. Crucially, the Raman excitation is 

focused at the center of the sphere-flat contact zone by a high NA objective, and NR images are 

acquired through the same objective. Therefore, we enable simultaneous acquisition of Raman 

spectra and the inter-surface distance, D. As a test case, we characterize fluoropolymer thin film 

interactions in water, exploiting two different modalities of the combined Raman-μSFA. We first 

discuss a dynamic mode in which we measure the force as a function of D between the thin film 

and glass, and simultaneously obtain distance-dependent Raman spectra of the intervening water 

in the center of the contact region of the sphere-flat geometry. We also describe a static mode 

wherein we perform chemical-specific and label-free imaging of water and the fluoropolymer film 
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with the surfaces in stable contact. The combined Raman-μSFA microscope provides a simple 

method for obtaining surface-sensitive spectroscopy and spatially resolved chemical imaging in all 

three dimensions: x- and y- via scanning microspectroscopy, and z- by correlating the signal 

strength with the separation distance. 

 

Figure 1. 3D rendering of the multimodal Raman-µSFA microscope. (left panel) Overview of the setup 

where the Raman imaging parts are highlighted: XYZ heavy-load coarse micrometer stage; the μSFA is 

mounted on the XYZ stage; laser for Raman excitation (Rex); dichroic D1; GM, galvanometric mirror; 

Raman scattered light (Rsl). (right panel) A close-up view of the microscope stage, highlighting the light 

paths of the setup’s three colors: green for Rex, red for Rsl, and blue for the Newton’s Rings (NR); D1, 

red/green dichroic mirror (532-nm shortpass);  D2: blue/green/red dichroic mirror (490-nm longpass). O: 

objective. WL: white light source. BS: 50:50 beam-splitter. The top plate of the microscope stage, 

constructed from anodized aluminum, is here rendered transparent for clarity of presentation. 

 

Experimental 

The optical layout of the multimodal microscope is presented in Figure 1. A 2-dimensional 

diagram of the optical layout is provided in Supporting Information (Fig. S1) along with a detailed 

listing of all the optical components needed to build the setup. The Raman-μSFA microscope has 

been designed to perform simultaneous acquisition of Raman spectroscopy and NR imaging within 

the μSFA. The μSFA (SurForce LLC, i, see Supporting Information Table S1 for a list of the 

components corresponding to the following Roman numerals) is mounted on the confocal Raman 
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microscope, which uses three color pathways without cross-talk between modalities: a 532-nm line 

for Raman microspectroscopy excitation (ii), a 600-nm-centered broadband line for spectroscopy 

detection, and a 488-nm-centered brightfield (iii) imaging in epi-configuration for the NR analysis. 

The Raman confocal microscope is based on a focus raster scanning methodology (as 

opposed to sample raster scanning). Galvanometric mirrors (iv) are used for laser scanning to 

ensure mechanical stability of the SFA stage. The excitation light (v) is spectrally cleaned (ii), 

spatially expanded by a telescope, and steered onto a pair of galvanometric mirrors (vi). The 

midplane between the galvanometric mirrors are imaged, with a 4f telescope, on the back focal 

plane of a high numerical aperture (NA) objective (vii). The Raman inelastically backscattered 

light is collected by the same objective and follows the reverse path of the excitation light up to the 

galvanometric mirrors. In this way, the beam leaving the galvanometric mirrors does not move 

when coupled to a spectrometer, or a pinhole, upon raster-scanning at the image plane of the 

objective. The Raman light is then reflected by a short-pass filter (viii), spectrally cleaned with a 

notch filter (ix) and steered into the spectrometer (x) equipped with a charge-coupled device (CCD) 

camera (xi). 

The source for the NR illumination is a white light lamp. The light is spectrally narrowed 

with an interference filter (iii), steered into the microscope with a long-pass dichroic mirror (xii), 

and focused (xiii) in the back focal plane of the objective. The contact plane is then imaged by the 

same objective via a beam splitter, a lens (xiv) and a complementary metal-oxide-semiconductor 

(CMOS) camera (xv). We magnify the image plane by 0.4, in order to correctly image at least two 

minima of the NR.  

To illustrate the capabilities of the Raman-μSFA microscope, we performed force 

measurements and Raman spectroscopy on films of a commercial fluoropolymer poly[4,5-difluoro-
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2,2-bis(trifluoromethyl)-1,3-dixole-co-tetrafluoro-ethylene], referred to here by its trade name 

Teflon-AF1600 (TAF, purchased from Sigma-Aldrich). The TAF is a copolymer of 

polytetrafluoroethylene (PTFE) and a fluorinated dioxole, the structure of which is shown in Figure 

2A. The presence of the dioxole makes the polymer soluble in fluorinated solvents, and TAF is 

amorphous, yet exhibits many of the same physicochemical properties as PTFE. TAF films were 

prepared on glass coverslips by the following procedure. Coverslips were cleaned with piranha (3/1 

by volume of H2SO4/H2O2), rinsed with copious amounts of Milli-Q water, and stored in Milli-Q 

water until further use. The glass was removed from Milli-Q, rinsed with absolute ethanol (Sigma-

Aldrich), and blown dry with nitrogen. The clean and dry glass surface was then placed into a 

vacuum desiccator with a small vial of 1H,1H,2H,2H-perfluorodecyltriethoxysilane (FDTS, 

Sigma-Aldrich), and the desiccator was put under vacuum for ~30 minutes (~50 Torr). The 

desiccator was then placed in an oven at 60°C for 15 hrs. This procedure deposits a layer of FDTS 

on the glass surface, as evidenced by the high contact angle of a test water droplet (~100°). This 

FDTS acts as an adhesion layer for the spin coating of Teflon described in the next steps.  

A solution of TAF was prepared by vigorous stirring of 1.5 wt% TAF in the fluorinated 

solvent Fluorinert FC-40 (Sigma-Aldrich) at 100 °C for 4 hrs. Using a micropipette, this solution 

was deposited onto the FDTS-functionalized glass and spin coated at 1000 rpm for 1 minute to 

deposit the TAF (Fig. 2A). After spin coating the surface was placed onto a 180°C hot plate for 1 

minute to remove residual solvent and the surface was subsequently stored under vacuum until 

SFA experiments. The resulting TAF surface roughness and film thickness were measured by 

atomic force microscopy in dynamic mode (AFM, NanoSurf CoreAFM, Fig. 2B,C). The film 

thickness was determined by scoring the film with a scalpel and measuring the relative distance 

between the substrate and the film/air interface, as shown in Figure 2B. Figure 2C shows the 
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vertically averaged line profile. The TAF film was furthermore found to be smooth, with root-

mean-squared roughness of 0.3 nm, as shown in the insets of Figure 2C. Such a small roughness 

makes the TAF films particularly suitable for the SFA measurement at nanometric separations, 

despite slight inherent roughness on the underlying glass. 

 

Figure 2. Teflon-AF (TAF) molecular structure and spin coating schematic for a TAF+FC 40 solution, 

forming a thin film. (B) AFM topography scan and (C) the vertically averaged line profile that results. Upper 

inset: a zoom of the upper film region with sub-nanometric roughness. Lower inset: AFM topography scan 

of a 10 × 10 μm2 area on the film shown in (B). The horizontal scale bar is 2 µm and the color scale spans 

2.3 nm.  

 

 For the SFA experiments, the TAF-coated coverslip was glued onto the bottom port of the 

μSFA. In the asymmetric glass vs. Teflon configuration, a freshly piranha-cleaned glass lens (R ≈ 

2 cm, Edmund Optics #63476) was installed as the top surface. For the symmetric Teflon vs. Teflon 

configuration, a lens, coated with TAF following the same procedure as above, was installed as the 

top surface. Phosphate buffered saline (PBS, Sigma-Aldrich) solution was then injected between 

the surfaces. The standard configuration (glass vs. Teflon with PBS) is schematically shown in 
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Figure 3A. The curved surface approached the flat one while images of NR were recorded with the 

CMOS camera. Following the experiment, distances were measured using the NR analysis 

described recently29 and summarized in Figure 3B. Briefly, we acquire images of the NR during 

the force measurement, which are radially-averaged around their symmetry point to obtain the 

radial intensity profile I(r). This intensity profile is then used to reconstruct the surface shape, as is 

similarly done in reflection interference contrast microscopy (RICM).30–32 The radial height profile 

D(r) is calculated from I(r) as shown in Equation 1,32,33 

𝐷(𝑟) =
𝜆

4𝜋𝑛1
cos−1 (

𝐴−𝐼(𝑟)

𝐵
)    , (1) 

where A = (Imax + Imin)/2, and B = (Imax – Imin)/2. Equation 1 is valid within the first intensity 

extrema, and for parallel plate geometry.32 Conveniently, TAF and water are nearly index matched 

(nTAF = 1.31 and nwater = 1.33). We use n1 = 1.33 for all of the measurements presented here. Parallel 

plates are a good approximation for the large radius R ≈ 2 cm; the local slopes are dD/dr ≤ 5 × 10-

3 for all of the images presented here. For r outside of the first intensity extrema, a height increment 

of λm/4n1 is used to calculate D(r) at the extrema, where m is the extrema number. A spherical 

model, corresponding to the lens shape, fits well to D(r) using R = 2.0 cm, and the vertical offset 

provides D(r = 0), the relevant distance for the force measurement.  

The measured I(r) when the surfaces are pushed into Teflon-glass contact indicates that the 

TAF film is about 140 nm in height (for m = 1 as discussed below) as indicated by the NR analysis 

of Figure 3B. Over several independent experimental setups, we find that the height of the film as 

determined by NR lies in the range of 130 nm to 160 nm. Figure 2C shows the height profile of an 

AFM measurement where the thickness is determined with nanometric precision giving a local 

height of 149 ± 1 nm, in quantitative agreement with the measurements by NR. The AFM 



9 

 

measurement therefore gives an external calibration and confirms that m = 1 in the NR analysis. 

The Teflon-glass contact is here defined as D = 0 for the force measurement, i.e., D = Di − D0, 

where Di is the measured distance at each point and D0 is the contact value. D therefore represents 

the thickness of the water film confined between the glass and the TAF (see Fig. 3A). As usual, the 

force is measured by spring deflection to obtain force-distance (F-D) measurements. Important 

aspects of the Raman microscope design, methods for correlating Raman spectra with the F-D 

measurements, and chemical-specific imaging of confined contact zones are described in the 

following sections. 

 

Figure 3. (A) Schematic of the layer structure in the μSFA for the glass-TAF setup (n.b. the scheme is not 

to scale). (B) Radial intensity profile I(r) (yellow points, right axis) and a corresponding height profile D(r) 

(red points, left axis) with a spherical fit (blue line), allowing one to obtain the distance offset, D0. The inset 

shows the NR image for the corresponding intensity profile. 
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Results and Discussion 

Raman-μSFA design considerations 

We first describe important design aspects for achieving surface sensitivity with the 

spontaneous Raman effect. Although it has been demonstrated that Raman imaging has sub-

monolayer-sensitivity in liquid-free environments,34,35 the presence of surrounding bulk materials 

generate a signal which may overwhelm that of the intervening medium (see Sturm et al.36 for a 

related discussion). Even though upon liquid confinement the bulk molecular vibrational response 

is suppressed, care must be taken to use optics that yield low-background signals from solid 

substrates (due to, e.g., spurious fluorescence, luminescence, or Raman). We found that typical 

coatings (e.g. commercially available antireflection coatings) on glass surfaces generated too 

strong background, even rendering Raman measurement of bulk samples (when D ≥ 100’s of nm) 

unfeasible. In our experience, bare glass surfaces yielded the lowest background levels in the 

spectral region >1400 cm-1. Given that glass materials are so widely used, we consider this low-

background result to be one of the principle advantages of our setup. Mica by contrast, often used 

in standard SFA, is birefringent and makes spectroscopic analysis more challenging for two 

reasons: (i) it distorts the point-spread function of the microscope,37 lowering confocal capabilities 

(see below), and (ii) it scrambles the polarization state of the signal.38 Functionalization of glass 

by silane chemistry is furthermore relatively straightforward. The glass surfaces are therefore an 

ideal choice for pairing μSFA with Raman spectroscopy. Standard background subtraction methods 

provided interfacial sensitivity in just a few seconds of integration time, in contrast to minutes in 

previous work.24,26,27  

In addition to limiting the background signal, tight focusing is a second necessary aspect to 

increase surface sensitivity.36 Given the approximate scaling of the interfacial signal S, and the bulk 

signal B, with the focus size ω0 in a confocal geometry (𝑆/𝐵~1/𝜔0
2), reaching tight-focused, 
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diffraction-limited performance can considerably increase sensitivity. However, we found that 

some of the optics used (dichroics, galvanometric mirrors) have low wavefront flatness therefore 

increasing the beam size slightly (i.e., increasing the aberration of the wavefront). Despite the fact 

that we may not achieve diffraction limited performance, we show interfacial sensitivity below and 

anticipate that future improvements can be made by using adaptive optics. 

The NR method for measuring distances is well suited for pairing with the tight focusing 

that is necessary for interfacial sensitivity in the Raman signal. The high NA objective nestles into 

the bottom port of the μSFA (see Fig. 1 and recent work29 for more details), accommodating the 

high NA (1.4) and short WD (~100 μm) necessary for tight focusing. NR imaging is straightforward 

and provides ~0.5 nm distance resolution,29 approaching the angstrom-level resolution of the 

multiple beam interferometry used in standard SFA. These design aspects allow for distance to be 

tightly correlated with the Raman signal as demonstrated below. 

 

TAF thin films 

Teflon is a technologically important polymer, yet the surface forces between Teflon 

surfaces have not been investigated in great detail, perhaps due to difficulties in surface preparation. 

Teflon surface forces have mostly been investigated in the context of low friction and van der 

Waals forces which are weak due to index matching in water or can even be repulsive in solvents 

such as cyclohexane.39–42 Spin coating of TAF on a fluorinated glass surface (Fig. 2) provides a 

stable low energy surface, as exhibited by dewetting of water, ethanol, and even chloroform after 

several hours of immersion in the SFA.  
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TAF was chosen as a test case for the confocal Raman-μSFA for several reasons: it has a 

strong Raman signal, even at nanometer-level thicknesses, and exhibits a smooth interface (Fig. 

2C). Here, we investigate the interactions between glass and TAF, as shown in Figure 3A. A spin 

coated TAF film with thickness ~140 nm mounted within the SFA has an easily resolvable Raman 

spectrum, as shown in Figure 4A. This spectrum is nearly identical to a previously published 

spectrum for TAF.43 The small peak around 1000 cm-1 is a result of the glass background signal, 

which is large in this region and therefore displays an artifact after background subtraction. Water 

between the TAF and glass exhibits a bulk-like Raman signal when the surfaces are far apart (water 

thickness D = 180 nm), as shown in Figure 4B. These measurements demonstrate that Raman 

spectra can be easily measured within the μSFA. 

 

Figure 4. Raman spectra of the (A) TAF film and (B) the intervening bulk water were obtained within the 

μSFA when the water thickness was D = 180 nm. 

 

Confinement-dependent spectroscopy 

In the following, we establish and demonstrate two modes of operation for correlating 

separation distance with the Raman spectra of the confined contact zone. The dynamic mode allows 
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simultaneous force-distance and spectroscopic measurements, providing powerful force-distance-

spectroscopic correlations in real time. The static mode consists of bringing the surfaces into stable 

contact and correlating the static distance profile D(r) with the Raman signal, allowing for longer 

signal averaging since D(r) is constant when the surfaces are in contact.  

Dynamic mode: force-distance-spectroscopy correlation 

To acquire enough signal for interfacial sensitivity with the setup we described above, 

Raman spectra must be collected over a reasonable exposure time (~1 s). SFA measurements are 

often performed with slow approach/retract speeds of ~1-5 nm/s. The dynamic mode Raman-μSFA 

is thus performed by approaching the surfaces at these small velocities and acquiring Raman 

spectra synchronously with the NR images. As such, the Raman signal is effectively averaged over 

just a few nm, allowing for high sensitivity on both the SFA and Raman. When the surfaces 

encounter a repulsion, this speed effectively decreases and the Raman signal averaging occurs over 

much smaller distances. The laser is focused at the center of the NR, so the Raman spectra are 

measured at the distance of closest approach between the surfaces. 

 We tested the dynamic mode by measuring the interaction forces between TAF and glass 

immersed in PBS buffer, and correlating these interactions with Raman spectroscopic 

measurements of the intervening water. Figure 5 shows the procedure for dynamic correlation of 

the measured distance, force, and Raman signal. In this experiment, Raman spectra are taken 

synchronously with NR images at 1 frame per second while the surfaces are approached and 

separated at ~5 nm/s, and Figure 5A displays the measured spectra for the O-H stretch spectral 

region at different surface separations (the spectra in Fig. 5A have an offset due to a residual 

background). These spectra are averaged over the correlated times and distances, in which the 

colored spectra and numerical labels correspond with the colored and numbered bold lines in Figure 
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5B and 5C. Figure 5B shows the measured distance during the approach measurement and the 

integrated Raman signal (integrated over the spectral region of 3100-3650 cm-1) measured 

simultaneously. The force F = k∆D is then measured as the deviation ∆D from the constant slope 

in the D vs. t plot where k is the spring constant, and the synchronized Raman signal can be 

correlated with the force at each point, as shown in Figure 5C. The O-H stretch intensity decreases 

linearly with decreasing separation distance, because both the vibrational density of states does not 

significantly change with distance, and the distance is always much smaller than the longitudinal 

extension of the 532-nm focus. 

 

Figure 5. Correlating distance with Raman spectra in the μSFA. (A) Raman spectra of the O-H stretch are 

measured at each distance while the surfaces approach each other, and (B) the measured distance (left axis, 

blue curve) can be correlated with the integrated spectra (integrated over the spectral region 3100-3650 cm-

1, right axis, orange curve). The spectra in (A) are averaged over the times/distances indicated in (B), with 

the corresponding colors/numbers. The distance measured in (B) is used to calculate the (C) force vs. 

distance curve (left axis, black points: closed-approach and open-separation), and the correlated signal 

intensity is shown as the orange curve (right axis). The Raman signal and distance measurements are 

acquired synchronously with an acquisition rate of 1 frame per second. 

The blue spectrum (1, Fig. 5A) is averaged from 135 > D > 80 nm (Fig. 5B) and displays 

the bulk O-H stretch signal, similar to the bulk spectra shown in Figure 4B. This is in the linear 

regime of the D vs. t plot (Fig. 3B) where there is zero force. The red spectrum (2, Fig. 5A) is 

averaged from 26 > D > 13 nm and shows intensity that is slightly blue-shifted (higher frequency). 
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The force is weak in this region (Fig. 5C) and significant water remains between the surfaces. The 

yellow spectrum (3, Fig. 5A) is averaged from 7 > D > 5 nm and displays signal just slightly above 

that for the purple spectrum (4, Fig. 5A), which is averaged in the high force regime when the 

surfaces are stationary despite additional applied force (Fig. 5B and 5C). This slight decrease of 

signal for spectrum 4 compared to spectrum 3 is due to the last detectable water being squeezed 

out from between the surfaces.  

At smaller inter-surface separations, e.g. in spectrum 3, we note a small peak of intensity 

around 3600 cm-1. This wave number regime corresponds to the spectral region in which dangling 

hydroxide bonds (OH) can be inferred for water near hydrophobic interfaces.44,45 While we cannot 

definitively claim evidence for such dangling OH bonds as a result of the residual background 

signal (which acts as an additional noise source), the intensity distribution does not exclude 

dangling OH in the TAF-water interfacial region; such an effect may be due to the strong 

hydrophobicity of the TAF surface. We find that the residual background noise, which remains 

even after the background subtraction routine, arises from the FDTS monolayer, and obscures the 

distance-dependent water signal. 

Nonetheless, the changes measured in the Raman signal over the repulsive region of the 

force curve, i.e. D < 30 nm, are clearly measurable and indicate interfacial sensitivity in this region 

for the OH stretch signal with 1 second of integration time per point. Significant water signal 

remains at D ≈ 30 nm, and the repulsion sets in around this distance (Fig. 3C). Over several 

independent experiments, this repulsive force was found to be approximately exponential with 

decay length between 7-9 nm. Electrostatic forces are vanishingly small at these distances (Debye 

length of PBS ≈ 0.8 nm), so nanoscale roughness at the TAF surface and/or small asperities on the 

glass likely lead to this repulsion. In any case, the amount of detectable water vanishes to zero 
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around D ≈ 5 nm. This observation is notably different from our previous work with glass surfaces, 

for which a significant Raman signal in the contact region of glass-water-glass could be detected 

even at large compressive loads.29 At this distance (D ≈ 5 nm), the force increases steeply and is 

likely due to compression of the TAF film by the glass lens. 

The combined Raman-μSFA approach can lead to unique insights that cannot be gained 

from either technique alone. For example, the local absolute distance at contact is difficult to 

measure accurately with the NR, especially when compared with the classic SFA technique, which 

directly gives the absolute distance. However, combining μSFA with the Raman allows for 

measurement of the “true” gap size at contact. Here, we benchmark this methodology with a 

measurement of glass vs. glass in water, because this system exhibits much weaker residual 

background noise compared to TAF films. We assume that the signal scales linearly with separation 

distance (as measured in Fig. 5C) such that the Raman signal intensity Io is some constant C times 

the distance Do, 

𝐼𝑜 = 𝐶𝐷𝑜    ,  (2) 

and the intensity after changing the distance by ∆x is  

𝐼𝑖 = 𝐶(∆𝑥𝑖 + 𝐷𝑜)   .  (3) 

 Taking the ratio Ro/i = Io/Ii and rearranging, we have 

∆𝑥𝑖 = 𝐷𝑜 (
1

𝑅𝑜/𝑖
− 1)   .  (4) 

As such, we combine one measurement from each technique that has high confidence: the relative 

distance measurement from the NR (which is accurate to within 0.5 nm29) and the relative OH 

stretch integrated intensity from the Raman, allowing us to estimate the absolute separation 
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distance at contact Do. We performed a regression analysis using Equation 4 on the measured 

values of ∆x and Ro/i over the full distance regime between glass-glass immersed in 10 mM KCl, 

as shown in Figure 6. The fitted value of Do = 6.1 nm is slightly smaller than the measured value 

by NR of ~12 nm, but is likely closer to the actual value. Optical aberrations and slight increases 

in NR background intensity, as well as a slight mismatch in the optical indices of refraction, could 

lead to the slightly larger value from NR analysis. We attempted to perform this regression analysis 

on the TAF-glass system, but the level of residual background noise gave rise to physically 

unrealistic fitting parameters. Future work will focus on using different monolayer preparation to 

obtain smaller background signals. 

 

Figure 6. Regression analysis for a glass-glass system correlating the measured relative distance from NR 

analysis with the measured relative Raman intensity to find Do according to the analysis described in the 

text. Blue points are the data and the red line is the best fit value to Equation 4 with Do = 6.1 nm. 

 

It is instructive to estimate the limits of detection for the combined approach. Assuming a 

shot-noise-limited detection, the signal-to-noise (SNR) of the O-H stretch Iw is given by  

𝑆𝑁𝑅 ≈
𝐼𝑤

√𝐼𝐵
    ,  (5) 

where IB is the background intensity. Based on the accurate values measured for glass-glass at large 

distance, we obtain a photon flux of 5 photons/monolayer/s (assuming a 3 Å monolayer thickness), 

which leads to a 10 photons/s upon contact of the two hydrated surfaces. Based on the background 
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photon flux we consistently obtained (IB=2x103 photons/s), a 30 s integration time would lead to 

SNR > 1, thus allowing to detect the spectrum of the two surface monolayers with finite acquisition 

time (note that this estimate considers a spectral pixel, not the integral as shown in Fig. 5B). This 

order of magnitude estimation shows that interfacial sensitivity is readily obtainable with the 

combined Raman-SFA approach, opening the possibility for microspectroscopy of aqueous 

interfaces under confinement. 

 

Static-mode: label-free chemical imaging of confined TAF and water 

In static mode, a full range from bulk to confined Raman spectra is enabled by the SFA 

geometry: a single snapshot of the surfaces in sphere-flat contact provides distances from contact 

to bulk separations.21 Thus, Raman signals can be acquired for much longer times while the 

surfaces are in stable contact, and distance-dependent spectroscopic insights can be obtained 

without moving the surfaces. Indeed, the interfacial sensitivity observed here is a result of the 

geometry of the confined sphere-flat contact, providing a well-defined contact area that is 

considerably larger than the laser spot.  

To exploit the static mode, we brought the glass surface into contact with the TAF and 

performed chemically resolved imaging of TAF and confined water. Remarkably, we demonstrate 

chemical imaging with interfacial sensitivity of the confined liquid in just a few seconds of spectral 

acquisition. Figure 7 presents chemical maps of the contact region for the TAF (Fig. 7A) and water 

(Fig. 7B) vibrational response. The TAF image (Fig. 7A) is relatively featureless and shows that 

the TAF thin film is homogeneous and macroscopically flat over the contact area in the center of 

the image (~60 m2); a small slope over the field of view indicates that there is a small thickness 
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change of the TAF film (~20%) that is common for spin-coated films over tens to hundreds of 

μm.46 

 

Figure 7. Chemical maps via Raman microspectroscopy within the μSFA of (A) TAF (signal integrated 

from 1220 to 1390 cm-1, see Fig. 4A) and (B) water (signal integrated from 3100 to 3650 cm-1, see Fig. 4B) 

during contact between TAF and glass in PBS. The O-H stretch intensity (left scale) can be mapped to the 

distance (right scale) as described in the text. The (C) bright field NR image corresponds with the water 

chemical map of (B). The (D) height profile (red points, left axis) is fitted to a spherical shape (blue line, 

left axis) and measured from the intensity profile (yellow line, right axis) generated from the NR bright field 

image. All scale bars = 20 μm. (A) was acquired with 50 ms pixel dwell time and (B) was acquired with 

500 ms pixel dwell time. 

 

Conversely, the O-H stretch integrated image (Fig. 7B) shows the expected spherical profile 

reminiscent of the lens shape. Figure 7C shows a bright field image that corresponds with the 

Raman signal of Figure 7B. By correlating the distance measured radially by the NR in Figure 7C, 

we can re-scale the intensity of Figure 7B to the separation distance. The correlated radial profile 
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D(r), corresponding spherical fit, and measured intensity profile I(r) are shown in Figure 7D to a 

radial distance of r = 80 μm, which is approximately the maximum radial value displayed in Figures 

7B and 7C. The intensity of the water signal scales linearly with D, as we showed in Figure 5C. 

Therefore the color intensity scale (left scale bar, Fig. 7B) can be directly mapped to the separation 

distance (right scale bar, Fig. 7B) according to D(r) (Fig. 7D). These data indicate that a well-

calibrated Raman signal can actually be used as a precise distance measurement, and the Raman 

intensity profile of water has been measured in all three spatial dimensions. 

Finally, we examined the symmetric TAF-TAF configuration. Approaching the two TAF 

surfaces in degassed water results in a hydrophobic attraction between the two surfaces, which 

occurs from a large distance and results in nucleation of vapor at the contact zone. Such attractive 

forces and vapor nucleation were observed previously for fluorocarbon surfaces.47 Vapor nucleates 

in the contact region and one can observe the surfaces jumping into contact, as well as water 

escaping from the hydrophobic contact. This attraction is likely due to nucleated vapor bubbles at 

defects in the TAF film, but the nucleation is too fast to observe the NR accurately. We attempted 

to obtain Raman microspectroscopy images of both the water and TAF after the dewetting process, 

but we observed laser damage in the film upon attempting to do so. No laser damage was observed 

over long exposure times in the Teflon-glass configuration discussed above. 

Therefore, we examined the TAF-TAF configuration in air. First, we imaged a flat TAF 

surface with the TAF-coated sphere placed far away; similar to Figure 7A above, this image of 

TAF is relatively featureless, as shown in Supporting Information (Fig. S2). We then brought the 

two TAF into contact and separated them. Upon separation, we observed wrinkling of the film in 

the bright field microscope. We obtained a chemical-specific image of the film morphology, as 

shown in Figure 8. By comparing the chemical-specific image (Fig. 8, left panel) with the bright 
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field image (Fig. 8, right panel), we observe that the TAF is clumped or lifted off the surface in 

areas of higher intensity and exhibits holes or depleted zones in areas of low intensity. Thus, we 

can induce microscopic morphological changes via contact and separation cycles, and observe such 

changes with chemical specificity, which greatly complements insights from bright field imaging. 

These examples of label-free chemical mapping point towards in situ chemical monitoring of 

physical and chemical surface morphology in interacting systems under confinement, including in 

tribology and wear studies, chemical-mechanical polishing, reactive or corrosive interfaces, and 

lipid domain morphology. 

 

Figure 8. Chemical map of TAF, Raman signal intensity integrated from 1220 to 1390 cm-1, after 

morphological changes due to contact with another TAF surface, which has been separated for taking the 

image. The chemical map (left panel) exhibits morphological features that correspond well with the bright 

field microscope image (right panel). The chemical image was acquired with 250 ms pixel dwell time, and 

the scale bar is 20 m. 

 

As designed here, the Raman and μSFA techniques are suitably compatible with each other 

and provide unique capabilities for simultaneous physical measurement and chemical 

identification. The simple geometry provides the opportunity to spectroscopically probe distances 

from contact to bulk by scanning a single line across the center of the contact. 3-dimensional 

chemical morphologies and the effects of confinement can be investigated. Chemical identification 

during confinement is an important advantage, for example in monitoring molecular species such 

as impurities or during interfacial chemical reactions. The simple optical setup used here is also a 
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considerable practical advantage, compared to e.g. SFG, which requires expensive lasers and much 

more complex optical setups. 

 

Conclusions 

 Here we presented a microscope and methodology for correlating surface forces studies 

with simultaneous in situ Raman spectroscopy. In dynamic mode Raman-μSFA, repulsive 

interactions between TAF films and glass across water were observed, and simultaneous Raman 

spectra reveal signal decreases for the water as the separation distance decreases. Signal averaging 

of the Raman shows slight modification of spectral features as the gap between TAF and glass 

decreases, potentially indicating that the population of water is modified in TAF-glass confinement, 

and these spectra correlate with the measured force. With static mode Raman-μSFA, chemical 

mapping of the TAF-water contact zone shows expected features: a mostly flat and featureless film 

for TAF, and an increase in signal with radial distance for the water, corresponding to the amount 

of water confined in the sphere-flat contact. Correlating this signal with the distance (z direction) 

and 2D imaging (x-y) allows for resolution of Raman spectra of confined geometries in 3D. 

Nanometer-level sensitivity is obtained for the water signal in less than 1 second of integration 

time. TAF-TAF interactions are attractive in water, resulting in vapor nucleation at the contact 

zone. A wear zone and resulting nanoscale features in the TAF film were chemically mapped. 

 The combined Raman-μSFA is a simple and relatively inexpensive method to obtain 

interface-sensitive spectroscopy and simultaneous insights into the physical interactions between 

surfaces. Indeed it is difficult to envision another combination of techniques that could provide 

similar multimodal insights. SFG has interface specificity and therefore interrogates purely the 

interface; there is no bulk signal and distance dependence would not be straightforward. The 



23 

 

footprint of an AFM tip is too small to obtain a strong Raman signal dominated by the contact zone 

between the tip or colloid and a surface. Tip-enhanced Raman is limited to metallic contacts and 

provides a localized (surface) effect, and therefore cannot obtain long-range distance dependence. 

The current method will find broad uses in colloid and interface science, for example in correlating 

electrostatic double layer forces with hydrated ion spectroscopic signatures, observing structural 

or phase transitions of polymer brushes or melts upon applied force, chemical monitoring of 

corrosion under load, or observing lipid phase morphologies upon membrane fusion, to name a 

few. 

Supporting information: 2D optical layout, list of optical components, movie of air nucleation 

between TAF-TAF in water, image of TAF in air. 
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Supporting Information 

Design details of Raman-μSFA 

We provide below more details on the setup and construction of the Raman-μSFA. A top view and 

side view of the optical layout is shown in Figure S1 to complement the 3-dimensional rendering 

shown in the text, and a list of the required optical components is shown in Table S1. 

 

Figure S1. 2D optical layout of the Raman-μSFA. The abbreviations correspond with those in 

Figure 1 of the main text. 

 

Table S1. List of optical components used in the construction of the Raman-uSFA 

item description manufacturer specification 

i μSFA SurForce LLC  

ii optical filter; Raman excitation, 532/YY 

(center/width) 

Thorlabs FLH05532-4 

iii optical filter; Newton’s rings, 488 nm Thorlabs FL488-10 

iv galvanometric mirrors Thorlabs GVS012/M 

v Raman excitation source, 532 nm Oxxius LCX-532 

vi galvanometric mirrors Thorlabs GVS012/M 

vii objective, 60X, NA=1.4 (oil) Nikon  

viii short-pass filter Thorlabs DMSP550R 

ix notch filter Thorlabs NF533-17 

x spectrometer Andor Shamrock 303i 

xi CCD camera Andor iXon Ultra 

xii long pass dichroic, 490 nm Thorlabs DMLP490 

xiii lens, f = 150 mm Thorlabs AC254-150-

AB-ML 
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Chemical mapping of TAF in air 

Figure S2 shows a chemical map of the TAF film in air, before it was contacted with another TAF 

film. The film is observed to be uniform and featureless. After contacting with another TAF film 

and removing the contact, the morphology shown in Figure 8 of the main text was observed. 

 

Figure S2. Chemical map of pristine TAF film in air. Color scale is the integrated intensity of the 

TAF spectrum from 1220-1390 cm-1. 

xiv lens, f = 80 mm Thorlabs AC508-080-

AB-ML 

xv CMOS camera Edmund EO1312M 


