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ABSTRACT: Heat transfer properties play an important role in processing of polyetherketoneketone (PEKK)/carbon fiber (CF) composites.
Accordingly, thermal conductivity and diffusivity of PEKK, PEKK/glassy carbon (GC), and PEKK/CF composites have been studied.
Observed increase in conductivity and diffusivity with carbon filler addition was analyzed using the Maxwell-Eucken model.
PEKK/GC composites with low carbon fraction indicated good fitting experimental points of the model, indicating good dispersion
of particles. For PEKK/CF composites, the thermal conductivity and diffusivity increase is a reflection of a decrease in porosity. Results as

observed from the model points to a homogenous dispersion within the PEKK/CF composites as well.
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INTRODUCTION

The use of carbon in polymer composite is recurrent for the
improvement of specific properties.'™* Carbon fibers (CFs) are often
used as mechanical reinforcement for polymer composite.”™®
Polyetherketoneketone (PEKK)/CF composites could be attractive
structural materials if the automation of the processing is possible. The
most promising technology for realizing future parts for aero-nautics
and space is the automated fiber placement technology with laser
heating. A tape of carbon fiber impregnated with PEKK pow-der was

developed to be deposited by a fiber placement robot. Dur-ing this
deposit, it will be important to understand heat transport phenomena
in such complex materials. Thermal conductivity and thermal diffusivity
are widely studied in the field of polymers and their composites.” "
Several works were devoted to the temperature depen-dence of thermal
conductivity and thermal diffusivity of polymer composites.'*™"* In
polymer composites, a decrease in the thermal dif-fusivity and an increase
in thermal conductivity with the increase in temperature were
observed.'**2* The introduction of fillers modifies the thermal
properties of polymers. The composite shows thermal conductivity and
thermal diffusivity higher than for the polymer.'>*

Scant information is available on polyaryletherketone (PAEK) stud-ies;

however, Choy et al. on PEEK/short-fiber composites obtained a
thermal conductivity of 0.02 W.m~".K~" for PEEK at 25 °C and

increase in conductivity as a function of temperature was

observed.”>%® In addition, PEEKs have been reported to show a
decrease in thermal diffusivity with increasing temperature’>?'
(at 25°C, polymers thermal diffusivity is between 0.05 and
0.3 mm? s~'*7"). Within available literature, it appears as if these

parameters may have not been studied in the case of PEKK.

The use of a fixed PEKK volume fraction for manufacturing carbon
fiber-reinforced polymers (CFRPs) makes it difficult to understand the
contribution of carbon on thermal parameters, that is why a compara-
tive study with PEKK and vitreous carbon has been carried out. The
glassy carbon is a highly pure carbon black with spherical morphology
(aspect ratio close to 1). The intrinsic thermal conductivity of glassy
carbon particles’ can be as high as 35 W.m™.K™". An increase in
thermal conductivity was noted with the addition of carbon fillers,
thermal conductivities of about 0.5 W.m™".K™" were measured®>** for
load ratios between 30% and 40% in volume. Several CFRP studies
have shown that the increase in conductivity and thermal diffusivity is
a function of the carbon fiber concentration.”"**** Fujishiro
et al>* showed that the thermal diffusivity is higher in the
direction parallel to the fibers than in the transverse direction.
Diffusivity values of 0.45-0.55 mm’.s~" at 50 °C for epoxy
composites/continuous carbon fibers have been reported.**>¢
Choy et al*' studied the diffusivity of PEEK/short-carbon fiber
composites and obtained values between 0.7 and 1 mm? s™" at
50 °C; this greater diffusivity has been attributed to the random
orientation of the short fibers.
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EXPERIMENTAL

Materials
Polyetherketoneketone. PEKK KEPSTAN (Figure 1) was sup-
plied by ARKEMA France in powder (20 pm).

Physical properties of PEKK are defined by terephtalic/isophtalic
precursor ratio (T/I ratio). PEKK KEPSTAN presents a 70/30 T/I
ratio.

Carbon Fillers. Glassy carbon. The vitreous carbon from Sigma-
Aldrich (Saint Louis, Missouri, USA) is 99.95% pure with spheri-
cal particles averaging 12 pm in diameter. It was made by the
pyrolysis of furfuryl alcohol.’” We thus had model samples with
controlled aspect ratio fillers and variable volume fractions.

Carbon Fiber. Unidirectional carbon fibers Toray’s Torayca T700
were used. Fibers were used unsized. T700 fibers with a carbon
content of 93%,’® possess high mechanical properties, showing a
tensile modulus of 135 GPa.

Composite Preparation. PEKK/glassy carbon composites. PEKK
and GC were dispersed in ethanol by sonication for obtaining
dispersion. After evaporation of the solvent, the powder was
molded at 370 °C. Composites with volume fractions comprised
between 5% and 45% in volume were prepared.

PEKK/CF composites. After impregnation, composites with a
40 vol % of PEKK were obtained. A “reference” PEKK/CF com-
posite was realized by draping and consolidation in autoclave.
Other PEKK/CF composites were prepared by automated place-
ment fibers. After the laser deposit, a PEKK/CF composite was
obtained with a mechanical strength. Porosity could remain
inside composites, which imply an additional consolidation step
after deposit (autoclave/hot press).

Methods

Guarded Hot Plates Method: Thermal Conductivity. The ther-
mal conductivity was measured using the guarded hot plates
method. The main advantage of this technique is that the ther-
mal conductivity is deduced from the Fourier equation: an
accuracy of 5% is obtained. The measure does not involve den-
sity that cannot be determined with a good accuracy in hetero-
geneous materials like composites. A stationary unidirectional
heat flow was created within the sample. All the assembly was
equilibrated by the guard at the temperature of the measure-
ment. The thermal resistance of the sample was determined
using the relation 1:
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where Rgmple is the thermal resistance of the sample, R, is the
thermal resistance of the calorimeter, and F is the calibration fac-
tor of the device. The three temperatures correspond, respec-
tively, to T, (upper plate temperature), T (the lower plate
temperature), and T, (temperature of the material). The thermal
conductivity A is then determined from eq. (2):

€

A= (2)
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where e is the sample thickness. The device used is the DTC
300 thermal conductivity meter from thermal analysis instrument.
The disk-shaped samples have a diameter of 50 mm and a thickness
of 2 mm. In order to optimize the heat transfer through the sample,
it is covered with a thermal paste (silicone/alumina), which
improves the contact with the plates. The measurements were per-
formed during heating by temperature step. A change of standard
must be carried out at 100° C, so it is not possible to carry out con-
tinuous measurements from ambient to high temperatures. The
measurements were performed under air at 25 °C, and then from
140 °C to 230 °C by steps of 10°. The high temperature range was
chosen in order to be as close as possible to the conditions of imple-
mentation of the CFRP. However, the limits of the equipment and
the used thermal paste imposed a maximum temperature of 230 °C.

Laser Flash Method: Thermal Diffusivity. The Laser Flash
method is the only one that allows us to reach thermal diffusivity. The
Laser Flash Analyzer LFA 447 from Netzsch® was used. A hotplate
disposed in the sample holder encouraged measurement at the desired
temperature. A laser pulse is then sent to the lower face of the sample
and the infrared detector located on the upper face transmitted the
temperature signal of the sample as a function of time. The samples
were squares of 10 mm X 2-4 mm thick. The thermal diffusivity mea-
surements were performed on PEKK/glassy carbon and PEKK/CF
composites at a temperature of 50 °C with 20 °C increments up to
270 °C. The measurements were performed under air.

RESULTS AND DISCUSSION

Thermal Conductivity of PEKK/Glassy Carbon Composites
Influence of Glassy Carbon Volume Fraction. Carbon glassy
particles, with an aspect ratio () close to 1, are shown in Figure 2.

The evolution of the thermal conductivity A of PEKK/GC com-
posites is measured at 25°C as a function of carbon volume

Figure 1. Molecular structure of PEKK with para and meta links.



Figure 2. SEM image of GC.
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Figure 3. Thermal conductivity of PEKK/GC composite as a function of
carbon volume fraction.

fraction (Figure 3). Carbon volume fractions were chosen
between 0 vol % and 45 vol % to study the thermal behavior
from low-volume fraction to volume fraction as close as possible
to CFs volume fraction of PEKK/CF composite. For PEKK/GC
composite, 45 vol % glassy carbon is the limit. Above this value,
the composite is brittle and cannot be processed for measure-
ments. The measurements are performed three times for each
sample; the values reported in Figure 3 are the average of the
three measurements.

The thermal conductivity of PEKK is 0.178 W.m™".K™'. This
value is consistent with those reported in the literature for

Table I. Thermal Conductivity of PEKK/CF Composite at 25 °C

PEKK/CF PEKK/CFNo PEKK/CF PEKK/CF
Reference consolidation Autoclave Pressed

0.654 0.283 0.490 0.538

AW.m LK)

different polymers: around 0.2 W.m™'.K™' at room tempera-
ture.>"* It should be noted that it is close to PEEK value*
(024 Wm 'K ™).

The introduction of vitreous carbon into the PEKK matrix results
in an increase of thermal conductivity. This complex behavior will
be described by analog models. This analysis will be presented later
in the section on isotherm analog models. For the PEKK/GC com-
posites with the highest content (45 vol % of carbon), a value of
0.716 W.m™".K™" is reached. The increase in thermal conductivity
with the introduction of glassy carbon is low compared to the
values reported in the literature, for a compacted powder of glassy
carbon®* between 4 and 6 W.m™". K.

Thermomechanical History Effect of PEKK/CFs Composites.
The PEKK/CF samples were studied by the guarded hot plate
method at 25 °C. The conductivity values for these samples are
reported in Table I.

A PEKK/CF composite realized by a draping and consolidation
in autoclave was used as reference to evaluate the quality of the
composites produced by laser deposit. For this “reference
PEKK/CF” composite, a value of 0.654 W.m~".K™" is indicated.
This value is considered as the optimum conductivity value
obtainable, according to our data, with this type of PEKK/CF
composite. In Table I, measurements were made on a non-
consolidated sample (after laser deposit) and on a consolidated
sample by hot press. Composites produced by laser deposit have
a lower thermal conductivity than the reference composite,
which implies a better consolidation of the reference composite.
In addition, the thermal conductivity of the composites increases
with the level of consolidation with a conductivity of 0.283 W.m™.
K™' for the nonconsolidated composite and a value of 0.538 W.
m~ 'K~ for the hot-press consolidated composite. This result
implies that the internal connectivity of the material plays a major
role in heat transfer.

Heat flow
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Figure 4. Analog models associated with the evolution of the thermal conduc-
tivity as a function of the carbon volume fraction. Conductivity equations
correspond to model: (a) parallel, (b) Maxwell-Eucken and (c) series.”*® [Color
figure can be viewed at wileyonlinelibrary.com]
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Figure 5. Thermal conductivity A, as a function of carbon volume fraction.
The gray and black continuous lines correspond to the parallel and
Maxwell-Eucken models respectively; the dashed and the dotted lines corre-
sponds to the series 1 and series 2 models, respectively.

Isothermal Analog Model. To better understand the thermal
behavior of the PEKK/GC and PEKK/CF composites, the experi-
mental points were compared to analog models.*” The three
models used, as well as the equation associated with A (or K) for
each model are shown in Figure 4.

Analog models take into account the orientation of the heat flux,
the volume percentage of the two components (v; and v,) and
the thermal conductivity of the components (k; and k,).** The
values k, and v, being associated with the most thermally conduc-
tive constituent, here the carbon filler (GC or CF). For all three
models, the value of k; is 0.178 W.m "K' (measured value for
PEKK) and the value of k, is 4 W.m™*.K™! for GC and 21 W.m™".
K™ for CFs.*!

The parallel model corresponds to a succession of polymer layers
and carbon stacked on each other; the measurement is carried
out in the plane of the layers. The series model is also a succes-
sion of polymer and carbon layers, but the measurement is per-
formed in the direction perpendicular to the layers. The
Maxwell-Eucken model corresponds to spherical particles (€ = 1)
dispersion in a matrix. This last model does not take into account
interactions between particles so that it is more suited to low
loading with well-dispersed fillers. The different analog models
predictions, as well as the experimental points of the PEKK/GC
and PEKK/CF composites, are plotted in Figure 5.

The parallel model is well above the experimental points, which is
consistent with measurement along the longitudinal direction of
the oriented layers. This case can be associated with polymer/CF
composites by taking the measurement in the longitudinal direc-
tion of the fiber. In this study, this type of measurement is not fea-
sible with these composites (quasi-iso multiplies); the device
imposes the sampling geometry. The series model is below the
experimental points corresponding to the PEKK/GC composites.
The conductivity values of PEKK/pressed CF composites are close
to the series model, which is consistent with transversal measure-
ment of successive layers: PEKK and continuous carbon fibers.

A (W/mK)

1.0 0%
0.9r AAAAAAA A4 :1;4:
* 22%
0.8 v 33%
07} 4 A 45%
0.6} vvvyvvYyVvyy vy
0.5+ v
04r seeteeyr 22t
°
03k R e0eo0o00e0e o
s mEEmmmE [ |
0.2} -
01 1 1 1 1 1 1 1 1 1 1 1 1
0 20 40 60 80 100 120 140 160 180 200 220 240
T (°C)

Figure 6. Thermal conductivity A of PEKK/GC composites as a function of
temperature. The cartoon indicates the carbon volume fraction.

Two series models were used: the first with k, =4 W.m .K! to
compare the values with the composites PEKK/GC and the second
k, = 21 W.m™".K™" for PEKK/CF composite. The difference between
the two models is weak, which implies that the thermal conductivity
values depend mainly on the thermally insulating phase.

The filler volume fraction of the nonconsolidated PEKK/CF
composite was evaluated at 44 vol %, taking into account the
porosity determined by hydrostatic weighing at 27.3% £ 1%.
Porosity values were also checked by X-ray tomography. By
studying the gray levels, the porosity ratio has been deter-
mined. An overall porosity of 25.7% £ 3% is obtained for
nonconsolidated PEKK/CF composite. This porosity rate is
consistent with the result obtained by hydrostatic weighing
measurement.

Non-consolidated PEKK/CF composite processed by laser deposit
shows a behavior close to the series model, with a thermal con-
ductivity of 0.283 W.m™".K~". The PEKK/CF sample prepared by
laser deposit and hot pressed has a thermal conductivity of
0.538 W.m~".K™" while remaining close to the series model.
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Figure 7. Thermal conductivity A of PEKK/GC composites as a function of
temperature. The solid lines correspond to the fitting.



Table II. Equations Parameters Describing the Behavior of A as a Function
of T

r=aT+b a(x107% b

PEKK 1.68 0.227
PEKK/11% GC 1.70 0.302
PEKK/19% GC 1.74 0.362
PEKK/22% GC 2.08 0.376
PEKK/33% GC 2.29 0.563
PEKK / 45% GC 3.41 0.831

The thermal conductivity is higher for the reference composite
with fiber, Aper = 0.654 W.m™ "K', which corresponds to a
behavior closer to the Maxwell-Eucken model. For this compos-
ite, the porosity is determined by hydrostatic weighing at <1 vol
%. But the higher value of conductivity cannot be explained only
by a better consolidation which slightly increases the conductiv-
ity. In this case, the increase in thermal conductivity has been
associated with a better distribution of the matrix between the
fibers, which corresponds, in a 2D transverse model, to a disk
dispersion in a matrix. Thus, there is an analogy with a disper-
sion of spherical particles, which explains the proximity of the
experimental points to the Maxwell-Eucken model. In the case of
composites developed by laser deposit, the lower thermal conduc-
tivity could be explained by a poor distribution of the matrix in
the fibers which would give rise to differentiated layers of fibers
and polymer (as in the case of the series model). Experimental
points of the PEKK/GC are well described by the Maxwell-
Eucken model, for low carbon volume fraction, which implies a
good dispersion of the particles in the PEKK matrix. The higher
thermal conductivity values for higher carbon content (> 20%)
can be explained by the existence, among carbon particles, of
contacts not taken into account by the model.

Evolution with Temperature

Fillers Volume Fraction Effect. The effect of the carbon particles
introduction on the thermal conductivity behavior with tempera-
ture was studied on PEKK/GC composites. The measurements were
performed on composites loaded between 0 vol % and 45 vol %, for
temperatures between 25 and 250 °C. Measurements are reproduced
three times and the values shown in Figure 6 are the average of
these three points.

Thermal conductivity increases slightly with temperature for all
PEKK/GC composites. This type of behavior has already been
observed by Choy et al. on PEEK and PEEK/CF composites.*"*’
On polymer matrix and carbon particle composites, Lin et al. and
Hung et al. observed linear behaviors of thermal conductivity with
temperature.*>*> We studied the evolution of thermal conductivity
as a function of the particle ratio with empirical model. An affine
relationship was used to describe our experimental points between
140 and 230 °C (Figure 7).

Equations parameters describing the variation of thermal conduc-
tivity versus temperature are reported in Table II.

The evolution of the thermal conductivity versus temperature is
directly related to the carbon volume fraction. Although there is
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Figure 8. Thermal conductivity A of PEKK/CF reference composites and
PEKK/CF produced by laser deposit, as a function of temperature.

a slight increase, the slope looks to be constant for the first three
volume fraction and increases rapidly with increasing loading.
Therefore, the slope increase could be related to contacts between
spherical particles that favors heat transfer.

Thermodynamic History Effect. The temperature behavior was
studied on PEKK/CF composites. The measurements made on
the PEKK/CF reference composite and the PEKK/CF autoclave
consolidated composite are shown in Figure 8. A porosity of 4%
for both samples was determined by hydrostatic weighing.

A monotonous increase is observed on the PEKK/CF composites
in the studied temperature range. The difference in thermal con-
ductivity between the two composites is due to the porosity of
the PEKK/CF composite consolidated in autoclave and a better
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Figure 9. Thermal diffusivity D of PEKK/GC composite as a function of
carbon volume fraction.



Table III Thermal Diffusivity D of PEKK/CFs Composites at 50 °C

PEKK/CF PEKK/CF PEKK/CF
Reference Autoclave Pressed
D (mm2.s7%) 0.603 0.495 0.517

distribution of the polymer within the fibers in the reference
composite.

Experimental points of the PEKK/CF composite consolidated in
autoclave are described by a straight line with a slope of
5.80 X 10", The straight line describing points corresponding
to the reference PEKK/CF has a slope of 6.39 x 107 It can be
seen that for the same volume content of fibers, the slope increases
slightly with the connectivity variation.

Although the thermal conductivity values obtained for the PEKK/CF
composites are lower than those obtained for the most loaded
PEKK/GC composites, the resulting slopes are higher. This confirms
that the evolution of the conductivity is related to the amount of
carbon in the composite, with a slope that increases with carbon
volume fraction.

Thermal Diffusivity

Filler Volume Fraction Effect. The evolution of thermal diffusivity
as a function of the carbon volume ratio has been studied. D is
determined by the laser flash method for a temperature of 50 °C.
Measurements were carried out in duplicate for each sample, so the
values shown in Figure 9 are the average of the two measurements.

A thermal diffusivity of 0.146 mm*s™" is obtained for PEKK alone.
This value is in agreement with the literature on polymers****";
thermal diffusivity, at ambient temperature, is between 0.15 and
0.2 mm*s™" with a value of 0.2 mm”s™" for PEEK.*' Introduction
of carbon into the PEKK matrix led to an increase in thermal diffu-
sivity. The diffusivity does not follow a linear variation: this complex
behavior will be described later by analog model. The PEKK/GC
composite (45 vol % of carbon) reaches a value of 0.626 mm’s™".

24
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Figure 10. Thermal diffusivity D as a function of the carbon volume con-
tent. The gray and black continuous lines correspond to the parallel and

Maxwell-Eucken models respectively; the dashed line corresponds to the
series model.

The increase in the thermal diffusivity by the addition of GC is
rather weak considering the thermal diffusivity of a compacted pow-
der of GC, which is reported in the literature® between 4 and
10 mm?s~". Several PEKK/CF samples (40 vol % of PEKK) were
studied by the laser flash method at 50 °C. The diffusivity results for
these samples are reported in Table IIL.

For the composite “PEKK/CF reference,” a value of 0.603 mm?.s™"

is measured. This value is considered as the optimum diffusivity
value obtainable with this type of PEKK composite. Measurements
were also made on a PEKK/CF composite sample consolidated in
autoclave. The samples produced by laser deposit have a thermal
diffusivity lower than the reference composite, which implies a better
consolidation of the reference composite. Thermal diffusivity, in the
same way that the thermal conductivity, increases with the consolida-
tion level. A diffusivity of 0495 mm”s™" is obtained for the consoli-
dated autoclave composite and a value of 0.603 mm?s™" is obtained
for the reference composite. This implies that the internal connectivity
of the material plays a major role in the speed of phonon diffusion.

Isothermal Analog Model. Analog models used for thermal con-
ductivity were adapted to thermal diffusivity by keeping the vol-
ume percentage of the two constituents (v; and v,) and replacing
the thermal conductivity by the diffusivity (D; and D,). The
values D, and v, being associated with the most thermally con-
ductive constituent; here, the carbon (GC or CF). For all three
models the value of D; is 0.146 mm?.s™" (polymer value) and the
value of D, is 6 mmZs~". The different analog models, as well as
the experimental thermal diffusivity points of the PEKK/GC and

PEKK/CF composites, are shown in Figure 10.

The parallel model is well above our experimental points, as for
thermal conductivity, the measurement is not in the longitudinal
direction of oriented carbon layers. The series model is below the
experimental points corresponding to PEKK/GC composites. The
diffusivity values of PEKKCF hot pressed composites are close to
the series model, which is consistent with transversal measurement
of successive layers of PEKK and continuous carbon fibers. The
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Figure 11. Thermal diffusivity D of PEKK/GC composites as a function of
temperature.



Table IV. Analytical Parameters Describing the Thermal Diffusivity D
Behavior as a Function of Temperature

D=aT+b a(x107% b

PEKK -3.44 0.165
PEKK/11% GC -5.59 0.265
PEKK/22% GC -6.25 0.311
PEKK/33% GC -9.28 0.443
PEKK / 45% GC -14.5 0.702

laser-deposited composite shows a behavior close to the serial model,
with the autoclaved PEKK/CF sample showing a thermal diffusivity
of 0.495 mm”s™" and the hot-pressed PEKK/CF sample showing a
thermal diffusivity of 0.517 mm?s~". The higher thermal diffusivity
for the reference composite with fiber, Ag.s= 0.603 mm?Zs~}, corre-
sponds to a behavior closer to the Maxwell-Eucken model. This
behavior is explained by a better consolidation and also by a better
distribution of the matrix between the fibers which implies an homo-
geneous dispersion of disk (corresponding to carbon fiber seen in
2D). The case of spherical particle dispersion in a matrix can explain
the proximity with the Maxwell-Eucken model. In the case of com-
posites produced by laser deposit, the lower thermal diffusivity is
explained by a poor distribution of the matrix in the fibers, which
would give rise to differentiated layers of fiber and polymer (as in the
case of the series model). The experimental points of the PEKK/GC
are well described by the Maxwell-Eucken model which confirms
that the dispersion of the particles within the PEKK matrix is good.

Evolution with Temperature

Filler Content Effect. The effect of carbon particles on the PEKK
thermal diffusivity was studied on the PEKK/GC composites as a
function of temperature. The measurements were performed on
composites loaded between 0 vol % and 45 vol %of carbon, for
temperatures between 50 and 270 °C. Measurements were carried
out in duplicate and the values reported in Figures 11 are the aver-
age of these two sets of data.

Thermal diffusivity slowly decreases with temperature for all samples.
A quasi-linear decrease in thermal diffusivity with temperature has
already been observed for PEEK/carbon particle composites.'”* The
increase in temperature induces a greater thermal agitation which cau-
ses a greater number of collisions between phonons. The concomitant
decrease of the average free path results in a decrease of D. The slope
increases gradually with the volume fraction of carbon used; to study
this evolution an affine relationship was used. Analytical parameters
describing the behavior of thermal diffusivity are reported in Table IV.

An increase in the absolute value of the slope is observed when
increasing the amount of glassy carbon in the composite, which
implies a stronger decrease of D with T. The increase in the
amount of particles causes an increase in the number of inter-
faces which limits the average free path of the phonons: a faster
decrease in the thermal diffusivity is thus easily explained.

Thermomechanical History Effect. The thermal diffusivity of
consolidated PEKK/CF consolidated in autoclave and reference
PEKK/CF composite were studied versus the temperature for three
samples. Figure 12 shows the averages obtained for three samples.

D (mm?/s)
06 | ® PEKK/CF Reference
! m PEKK/CF Autoclave
0.5
0.4 -
0.3 -
0.2 -
01 n 1 n 1 n 1 n 1 n 1 n 1 n 1
0 50 100 150 200 250 300 350

T (°C)
Figure 12. Thermal diffusivity D of PEKK/CF composites as a function of
temperature.

The diffusivity values obtained for PEKK/CF (between 0.5 and
06 mm?> s~ at 50°C) are very close to those reported for
epoxy/continuous CF composites (0.45-0.55 mm? s~ at 50 °C).**7°
It is also interesting to note that the diffusivity values for PEKK/CF
are slightly lower than the values obtained with PEEK/short-carbon
fiber composites (0.7-1 mm* s~ at 50 °C).*' This difference has
been attributed to the random orientation of the short fibers. As for
spherical carbon particles, a monotonic decrease is observed on
PEKK/CF composites in the temperature range studied. The experi-
mental points of PEKK/CF composite consolidated in autoclave and
the reference PEKK/CF are described by a affine equation with a
slope of —9.15 x 10™* and — 8.15 X 10™% respectively.

Thermal diffusivity values, as well as the slope values, obtained
for the PEKK/CF composites are lower than those obtained for
the highest loading PEKK/GC composites. The lower diffusivity
values are related to the transverse configuration of the fibers
compared to measurement orientation. As for the slope values,
they could be related to the interfacial resistances less important
with the fibers than for the spherical particles.

CONCLUSION

In this study, the physical parameters associated with heat transfer
have been studied for PEKK, PEKK/GC, and PEKK/CF compos-
ites. In PEKK/GC composites, thermal conductivity and diffusivity
show an increase with the addition of carbon fillers. For low car-
bon ratio, the Maxwell-Eucken model indicates from experimental
data that particles are well dispersed. For higher carbon ratio,
experimental data are no more consistent with the Maxwell-
Eucken model. This discrepancy might be explained by contacts
between carbon particles, which are not taken into account by the
model. The effect of porosity on conductivity and thermal diffusiv-
ity is strongly marked on PEKK/CF composites. The decrease in
porosity causes an increase in thermal parameters: this evolution is
due to an increase in the internal connectivity of the composite. The
increase in A and D implies other parameters than porosity. The



reference PEKK/CF composite approaches the theoretical model of
Maxwell-Eucken, which implies in a 2D transverse section, a homo-
geneous dispersion of disks in PEKK. Accordingly, it is important to
emphasize that the thermal conductivity and diffusivity are depen-
dent on the dispersion of fibers in PEKK/CF composites.
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