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Abstract 

A generalized model for breakage and coalescence kernels valid for the entire spectrum 

of turbulence is proposed and validated. Most of the available kernels in the literature, 

indeed, assume that in a turbulent liquid-liquid dispersion, the dispersed droplets have 

dimension in the inertial subrange and are affected by eddies with size in the same 

subrange. These kernels are based on the Kolmogorov second-order structure function, 

which is valid only in the inertial subrange. However, in most industrially encountered 

situations, many droplets may have a size in the dissipation range, where the Kolmogorov 

second-order structure function does not apply. Therefore, a more general description of 

the energy transferred between these droplets and the turbulent eddies is needed to 

properly model breakage and coalescence events. 

In this work, the Coulaloglou and Tavlarides breakage and coalescence kernels [1] will 

be modified through the implementation of the second-order structure function proposed 

by Davidson [2], along with the Pope energy spectrum [3]. Turbulent liquid-liquid 
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dispersion experiments at high continuous phase viscosity are performed to test and 

validate the model. The generalized model is able to predict the experimental Sauter mean 

diameters at different viscosities, turbulent conditions and dispersed-phase volume fraction 

without any adjustment of the kernel parameters. 

Keywords: 

Turbulent liquid-liquid dispersion, breakage and coalescence kernel, second-order structure 

function, energy spectrum, Kolmogorov microscale, viscous continuous phase. 

1 Introduction 

Many processes in the chemical, pharmaceutical, oil and food industries are based on 

turbulent liquid-liquid dispersions. These flows are characterized by the presence of a 

continuous phase in which droplets of a second immiscible phase are dispersed. It is the 

case of solvent extraction processes, where high mass-transfer efficient separation requires 

a high interfacial surface. 

In order to describe the change in time of the interfacial area, a Population Balance 

Equation (PBE) [4,5] could be employed. The PBE is an integral-differential equation that 

computes the time-evolution of the number density function (NDF), which represents the 

distribution of the droplet population with regards to some properties, called internal 

variables (size, solute concentration, temperature, etc.). Considering the droplet size as 

internal coordinate, the interfacial area is directly tracked. 

The PBE model includes sub-models in the source terms, called kernels, whose 

formulation allows to physically describe the evolution of the NDF. The number of 

droplets breaking or coalescing per unit time is computed through these kernels. Both the 

breakage and coalescence kernels strongly depend on the physical-chemical properties of 

the liquids and on the flow characteristics. Indeed, on one hand, in the turbulent flow, the 
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breakage and coalescence mechanisms are intrinsically related to the drop-eddy 

interactions [6–9]. Smaller eddies transmit their turbulent kinetic energy to droplets, that 

are hence likely to break [10], whereas bigger ones transport the droplets in the flow, 

increasing their probability to collide and coalesce [11]. The kernels will be therefore 

strongly dependent on the turbulent kinetic energy dissipation rate ε, which represents the 

energy dissipated by the eddies. On the other hand, the droplet breakage and coalescence 

are influenced by the dispersed and continuous phase viscosities and densities, and the 

surface tension. 

For turbulent liquid-liquid dispersions, many studies have dealt with the effect of the 

dispersed phase viscosity on droplet breakage (see e.g.[12–14]). The authors stated that in 

order to achieve breakage, the turbulent dissipation rate must not only be higher than the 

droplet surface energy, but it should also overcome the sum of the latter and the droplet 

viscous energy, which is proportional to the internal viscous stresses that oppose to droplet 

deformation. On the contrary, few studies have considered the effect of the continuous 

phase viscosity on the statistical properties of the turbulent flow that influence droplet 

breakage and coalescence [15–17]. Indeed, most of the kernels presented in the literature 

assume that the droplets have dimension in the inertial subrange of turbulence. According 

to the Kolmogorov second similarity hypothesis [3], in this subrange, the statistical 

properties of the turbulent flow depend on the turbulent dissipation rate ε and are 

independent of the continuous phase viscosity; therefore, this property was not considered 

in the kernel formulation. 

However, in a liquid-liquid dispersion, it is frequent that droplets exhibit dimensions of 

different orders of magnitude (from microns to millimeters). For this reason, a non-

negligible number of droplets is likely to fall outside the inertial subrange, i.e. in the 
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dissipation subrange (Fig. 1). In this case, the statistical properties of the turbulent flow 

depend both on the turbulent dissipation rate and on the continuous phase viscosity. 

Therefore, employing a kernel which assumes the droplets to be in the inertial subrange 

is not valid, since the properties of the turbulent flow, and especially the turbulence kinetic 

energy, can be also affected by the viscosity of the continuous phase. In addition, 

evaluating the turbulent kinetic energy of an eddy in the dissipation subrange using the 

Kolmogorov energy spectrum, valid for the inertial subrange only, leads to an 

overestimation of the eddy energy, since the dampening effect of viscosity is not 

considered. 

Following the recent exploratory studies of Karimi and Andersson [15], based on the 

review of turbulence theory development of Solsvik and Jakobsen [16], the objective of 

this work is to formulate a set of coalescence and breakage kernel functions in which the 

effect of the continuous phase viscosity on the turbulence is accounted for. In this aim, a 

general second-order structure function is computed [2], derived from a full eddy energy 

spectrum [3]. The latter energy spectrum accounts not only for the eddy energy distribution 

in both the inertial and the dissipative ranges, but also in the energy containing range, 

where the turbulence is anisotropic. Moreover, experimental measurements are carried out 

in order to test and validate the proposed modifications. 

Regarding breakage and coalescence, the Coulaloglou and Tavlarides models [1], which 

were found appropriate for continuous phases with low viscosity [18], have been kept as 

the basis and modified to account a wider energy spectrum. A 0D PBE model was 

employed in order to reduce the computation time, where the turbulent inhomogeneity in 

the liquid-liquid contactor is considered using the method proposed by Buffo et al. [19] 

and recently adopted with success by Castellano et al. [20] for the prediction of droplet 

size distributions in a mechanically agitated liquid-liquid contactor. This method is based 
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on the computation of volume-average kernels through the volumetric probability density 

function of the turbulent dissipation rate estimated by CFD simulations. 

To test the modified Coulaloglou and Tavlarides kernels, liquid-liquid dispersion 

experiments were performed using different continuous phases with increasing viscosities, 

to mimic the possible variations encountered in extracting systems. Higher continuous 

phase viscosity leads to a wider dissipation subrange, and therefore to a higher probability 

of finding droplets belonging to this viscosity-dependent energy range. 

The experimental values of the Sauter mean diameter were compared with the 

predictions of the Coulaloglou and Tavlarides kernels using i) the “generalized” 

formulation proposed here and ii) assuming that the droplets size belongs to the inertial 

subrange only using the original model, indicated in the text as “initial formulation” 

(model used in [20]).  

2 Model development 

2.1 Improved second-order structure function 

Most of the kernels proposed in literature rely on the Kolmogorov theory [3]. This theory 

assumes local isotropy of turbulence and is based on two similarity hypotheses. The local 

isotropy assumption states that for a very high Reynolds number, the geometrical and 

directional information of the biggest eddies is lost in the cascade process. The first 

similarity hypothesis assumes the statistical properties of the turbulent flow to be 

dependent only on the turbulent dissipation rate,  , and on the continuous phase kinematic 

viscosity, ν, at scales smaller than the characteristic length of the flow (   ). 

Additionally, according to the second similarity hypothesis, for scales much bigger than 

the Kolmogorov microscale (   ), the statistical properties of the turbulent flow depend 

only on  . The Kolmogorov scale represents the smallest size an eddy can have in a 

turbulent flow before being dissipated: 
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The interval in which the local isotropy hypothesis applies (isotropic turbulence) is 

called the universal range. It can be subdivided into two subranges: the inertial and the 

dissipation subranges [2,3]. Both similarity hypotheses apply in the inertial subrange, while 

only the first one is valid in the dissipation subrange. The boundary (   ) between the two 

subranges has been established by Pope [3]: 

       . (2) 

Using dimensional analysis, Kolmogorov expressed the second-order structure function 

valid for the inertial subrange, as: 

              
 
  

 
  (3) 

           represents the square of the average relative velocity between two points at 

distance   in the turbulent flow. This function is of fundamental importance in the 

definition of breakage and coalescence kernels. Indeed, as will be highlighted in Section 

2.2, both the eddy turbulent kinetic energy and the droplets collision frequency will be 

computed considering    . It is important to remark that Eq. (3), established by 

Kolmogorov by applying the two similarity hypotheses, does not involve the continuous 

phase viscosity. 

Most of the kernels proposed in the literature address the coalescence and breakage of 

droplets having dimensions in the same range as the characteristic turbulent eddy size in 

the inertial subrange. This means that the size of the droplets involved in the turbulent 

liquid-liquid dispersion must obey:        (the lower limit of the inertial subrange). 

However, it is possible that a significant number of the dispersed droplets do not have size 

in this subrange, and that the turbulent stresses to which they are subjected depend both on 

  and  . If so, the assumption of a second-order structure function according to Eq. (3) in 
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the breakage definition could lead to erroneous breakage and coalescence rates. Indeed, 

when this function is applied to the dissipation range, it overestimates the eddy energy, 

since this latter tends to zero due to viscosity dissipation effects (Fig. 1). 

As a result, a refined formulation for the second-order structure function is needed to 

predict correctly the droplet breakage and coalescence. Davidson [2] proposed a second-

order structure function            which is based on the cumulative contribution of the 

turbulent kinetic energy of the eddies of size smaller than   and of the enstrophy of eddies 

of size larger than  : 

                                                           

                                   

The author expressed this function as [2,15,16]: 
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Eq. (4) requires the knowledge of the energy spectrum     , which gives the 

distribution of the turbulent kinetic energy across eddies of different sizes. In this work, the 

model proposed by Pope [3], for the whole energy spectrum, was employed: 
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where the parameters      ,       have been experimentally determined [2,21] and 
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The Pope energy spectrum function accounts for both the energy-containing range, 

where the turbulence is anisotropic, and the universal range (that combines the inertial and 

dissipation subranges). 

2.2 Breakage and Coalescence kernels 

Following the definition of a more general expression for the second-order structure 

function in Sec. 2.1, the Coulaloglou and Tavlarides kernels can be modified computing 

           according to Eq. (4). This means that the mechanism responsible for droplet 

breakage and coalescence is still due to turbulence fluctuations, but the range of the 

interacting eddies now includes eddies of all characteristic sizes. 

The breakage kernel expresses the fraction of droplets with diameter   breaking in a unit 

time: 

      
 

  

         

       
 (7) 

The breakage time tb is proportional to the separation velocity of two lumps of fluid in a 

turbulent flow [22]: 

    
 

           
 (8) 

Coulaloglou and Tavlarides assumed that breakage occurs when a droplet interacts with an 

eddy of smaller or equal size, which has a turbulent kinetic energy higher than the droplet 

surface energy: 
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where: 

                          
  

                        
            

Therefore, the expression of the breakage kernel reads: 
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Coulaloglou and Tavlarides expressed the coalescence kernel as the product of the 

collision frequency of two droplets,        , and the collision efficiency,        . The 

collision frequency is based on the kinetic theory of gases: 
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The collision efficiency, on the other hand, is based on the Shinnar theory [11], which 

considers that coalescence occurs if the contact time between the colliding droplets is long 

enough to drain the thin film trapped in between them: 
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Finally: 

                    
                

 
 

   
 
    

 
    

 
  
   

      
                 

  
 

 

  
 
 
 
   

 
 

 
 
    

 
 

 

 

  

(13) 

As highlighted by Eq. (10) and (13), the breakage and coalescence kernels depend on the 

second-order structure function. As previously mentioned, in this work this function is 

computed according to Eq. (4), in which the adopted energy spectrum expression is the one 

proposed by Pope Eq. (5). It is worth remarking that, as in the original derivation of 

Coulaloglou and Tavlarides, the proposed generalized model presents four constant 

parameters (C1, C2, C3, C4) that are experimentally determined since they include all the 

modeling uncertainties [1,14,18]. 



 10 

3 Materials and methods 

3.1 Materials 

To validate the proposed model, liquid-liquid dispersion experiments were carried out at 

different dispersed phase volume fractions, and, more important, at different continuous 

phase viscosities. The increase in the viscosity leads to a bigger Kolmogorov microscale, 

and therefore, to a wider dissipation range.  

Distilled water was employed as the dispersed phase, while the continuous phase was 

composed of different mixtures of Isane 175 and Marcol 82. Isane 175 is an isoparaffanic 

solvent provided by Total, which assures a high purity of the product, having less than 20 

ppm of aromatic compound and 1 ppm of benzene. Marcol 82 is a mixture of liquid 

saturated hydrocarbons provided by ExxonMobil. Isane 175 and water have similar 

viscosities, whereas Marcol 82 has a much higher viscosity. Therefore, the two oils were 

mixed at different volume fractions in order to achieve various continuous phase 

viscosities (Table 1). 

The experiments were performed in a stirred tank reactor (STR) of 1L volume, 

equipped with a 3-blades Mixel TT impeller, and 4 baffles to avoid vortex formation. The 

baffles have a width of 15mm (T/8) and a thickness of 5mm. The STR has a height, H, of 

120mm, and a diameter of the same size (T = H). The impeller diameter, D, is half of the 

tank one (D = T/2). It is located at H/3 (40mm) from the bottom of the reactor (Fig. 2). 

In order to monitor the time evolution of the droplet size distribution (DSD), a photo-

optical endoscopic probe provided by Sopat® was inserted in the reactor. This device 

generated flashes of light that, due to the different refraction indexes of the two phases, 

allowed to capture images of droplets with a size bigger than 20 μm [23]. The collected 

images were then treated (Fig. 3) and analyzed through the software provided by the 

vendor to obtain the DSD and then the Sauter mean diameter. 
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3.2 Experimental procedure 

The experiments were performed at different oil viscosities (Table 1), dispersed phase 

volume fractions (1-2%), and impeller rotation speeds (600, 700 and 800 rpm). 

The experimental procedure consists in filling the reactor with the desired fraction of 

the organic mixture and water. Then, stirring is started and the water-in-organic phase 

dispersion is created. After ten minutes of stirring, a first set of images is collected, 

representing the initial distribution of the experiment. Then, other sets of images are 

acquired, at regular time intervals, in order to assess the evolution of the DSD. Each 

acquisition lasted 60 seconds, with an image capturing rate of 5 Hz, for a total of 300 

images. In average, each picture presented 10 droplets. 

Since the interfacial area is the property of interest, the Sauter mean diameter was 

determined for each experimental DSD. The Sauter mean diameter is defined as the ratio 

between the third and the second moment of the distribution: 

    
          
 

 

          
 

 

 (14) 

In a closed stirred tank reactor, the total volume of the droplets is constant (so is the 

third-order moment with respect to droplet size), while the surface changes continuously 

(and so the second-order moment of the distribution). Therefore, the higher the interfacial 

area, the smaller the Sauter mean diameter and vice versa. 

The Sauter mean diameter of the droplet distribution decreases by a few tens of 

micrometers per hour in each experiment. Therefore, during the sixty seconds of the 

acquisition procedure, the droplet size distribution was considered in a quasi-steady state 

and the Sauter mean diameter constant. 

3.3 0D Population Balance Model 

The general expression for the PBE depending on spatial coordinates (also called external) 

x, internal coordinates   and time t is the following [5]: 
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(15) 

In this work, the volume of the droplets   (and hence the size of the droplets) will be the 

only tracked internal coordinate (   ). The r.h.s. term of the equation,         , 

represents the introduction or the loss of droplets due to breakage and coalescence: 

                                     

                    

 

 

                                           

             
 

 
             

 

 

                       

                                
 

 

 

where   and   are the breakage and coalescence kernels.         represents the daughter 

size distribution function (DDF), whose expression gives the probability that a mother 

droplet of volume    breaks in two daughter droplets of volume   and     . According 

to Coulaloglou and Tavlarides, the DDF proposed by Valentas and Amundson [24] has 

been employed. This function predicts the equi-sized breakage by being the most probable 

event, as experimentally confirmed by Andersson and Andersson [25].  

In order to get a simplified 0D model (where the 0D denotes a non-dependency on 

spatial coordinates), the number density function is assumed to be homogeneous in the 

stirred tank reactor and defined as: 
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Substituting Eq. (16) into Eq. (15) and later applying a volume-average procedure, the 

following 0D model is obtained: 

        

  
         

 

 
         
 

 
           

 

 

         
 

 
            
 

 
        

 

 

    

        
 

 
         
 

 

 
 

 
 
 

 
               
 

 

 

 

                      

(17) 

Although the volume-average procedure, the system is still dependent on the spatial 

coordinates, because the turbulent dissipation rate distribution inside the vessel is strongly 

inhomogeneous. Therefore, in this work, volume-average kernels are considered [19]: 

      
 

 
         
 

 

              
 

 

             

         
 

 
            
 

 

                 
 

 

            

where      is the volumetric probability density function (pdf) of the turbulent kinetic 

energy dissipation rate  . This function represents the probability density that an 

infinitesimal volume of the liquid-liquid contactor experiences a turbulent dissipation 

range in the range [ ,     ]. The pdf of   can be obtained running single-phase CFD 

simulations (since the investigated systems are diluted) of the liquid-liquid contactor in 

working conditions [20]. 

The Fixed Pivot Method, proposed by Kumar and Ramkrishna [26], was employed to 

solve the 0D PBE. The size domain is discretized in 40 arithmetic intervals [        . For 

each interval, a characteristic size   , called pivot, is defined (           ). Kumar and 

Ramkrishna postulated that all the droplets lying in the size interval [         have a size 

equal to the pivotal one,   . Based on this assumption, the NDF is expressed as: 
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Substituting Eq. (19) in Eq.(16), Kumar and Ramkrishna derived the following 

expression: 

      

  
     

 

 
      

   

   

                 

                       

                

 

   

      

 

   

        

More details on this method can be found in our previous work [20]. 

       

3.4 Numerical details 

While the consideration of the entire energy spectrum of the turbulence allows a more 

refined description of the physics of the breakage and coalescence events, the volume-

average kernel formulation [19] permits to better account for the turbulent inhomogeneity 

than using a volume-averaged turbulent dissipation rate [20]. The coupling of the two 

methods, therefore, allows to tackle two of the most insidious problems in the PBE model, 

with acceptable computation time. 

Single-phase CFD simulations of the experimental stirred tank reactor were carried out 

for each experimental impeller rotation speed and each continuous phase viscosity. The 

    two-equation turbulence model was employed with an enhanced wall-treatment 

function. More information on the reactor mesh and the adopted discretization schemes 

have been reported in a previous work [20]. Each simulation took averagely 4 to 5 hours 

on an Intel Xeon dual-core machine (3.20 GHz) with 64GB of RAM. From each 

simulation, the probability density function of ε was extracted as a histogram constituted 

by 10000 bins. Each bin represented the probability of having a value of ε in the stirred 

tank reactor between    and     . For each interval [          the average ε was computed 

and employed in Eq. (5), which was later substituted in Eq. (4) to compute the second-

order structure as a function of the droplet diameter. The integral of Eq. (4) was computed 
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through the MATLAB function integral. This operation was repeated for each pivot of the 

PBE discretization (40 intervals) and the computed values were saved for later use in the 

PBE solution (“generalized model”). For each ε, the constants the Pope energy spectrum 

were found by solving the non-linear system of equations Eq. (6) with the MATLAB 

function fsolve, based on the Trust-Region Dogleg method. This first computation was run 

in MATLAB and took 15-20 minutes on an Intel Xeon dual-core machine (3.20 GHz) with 

64GB of RAM. Finally, through the second-order structure functions computed previously, 

the MATLAB routine took approximately 1 minute to solve the PBE for simulating 4 

hours of real time. A schematic representation of the numerical procedure is given in Fig. 

4. 

4 Results and discussions 

As previously mentioned, the four constants of the proposed coalescence and breakage 

kernels need to be found for the system under investigation. Therefore, parameters 

identification was first performed using a numerical optimization procedure, based on a 

given set of experimental data. Then, using these parameters, the “generalized” model has 

been tested using different experiments at increasing viscosity. The model performances 

were compared with the ones obtained with the Coulaloglou and Tavlarides kernels 

employed in a previous work [20] (the “initial” model), that considers the droplets size in 

the inertial subrange. In both cases, the turbulent inhomogeneity in the stirred tank reactor 

was accounted through the volumetric probability density function of the turbulent 

dissipation rate, which allowed the computation of volume-average kernels [19,20]. 

4.1 Parameters identification  

The water-in-Isane experiments with 1% (taken from a previous work, [20]) and 2% 

(Fig. 5) of water volume fraction, and an impeller rotation speed of 600 rpm (red circles), 

were used to identify the parameters.  
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The optimization was performed in MATLAB using the patternsearch function (Global 

Optimization toolbox) to minimize the sum of the square of the differences between the 

experimental and simulated Sauter mean diameters (Fig. 6). The adjusted parameters 

(Table 2) were identified with an average relative error lower than 1% (Table 3). The 

relative errors were computed according to the following expression: 

                      
                                           

                    
 (22) 

4.2 Low continuous phase viscosity 

The generalized model was tested with experiments at low continuous phase viscosity (1.2 

cP), employing pure Isane (continuous phase) and water (dispersed phase, 1-2% volume 

fraction), at different impeller rotation speeds (700 and 800rpm).  

As can be seen in Fig. 7, the “generalized model” is capable of well reproducing the 

time evolution of the Sauter mean diameters both for different stirring conditions (i.e., 

different turbulent conditions) and disperse phase volume fractions. As already evidenced 

in our previous work [20], also the “initial model” can correctly reproduce the 

experimental d32 evolution. Indeed, the two models fit the experimental data with average 

relative errors below 3% (Table 4). 

It is interesting to remark that, in the considered continuous phase viscosity range, the 

boundaries between the inertial and dissipation subranges under moderated turbulent 

dissipation rates are in the order of few millimeters (as reported in Table 5). Therefore, 

even in the system with the lowest value of continuous phase viscosity considered here, a 

large number of droplets is contained in the dissipation range, since the majority of the 

droplets have dimensions below 700 μm (Fig. 8). The reason why the “initial model” is 

however able to predict the experimental behavior could be due to the summation of two 

errors canceling out: on one side, the overestimation of the eddy turbulent kinetic energy 

(as discussed in Sec. 2.1), and, on the other side, the neglecting of the enstrophy 
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contribution. Indeed, the “initial model” is based on the Kolmogorov second-order 

structure function, which only considers the turbulent kinetic energy of eddies with size 

smaller than the droplet diameter, assuming they all belong to the inertial subrange. On the 

other hand, the refined second-order structure function proposed by Davidson [2] depends 

both on the turbulent kinetic energy of eddies with size smaller than the droplet diameter 

and on the enstrophy of the bigger ones. While the two expressions give similar results in 

the low viscosity system considered here, only the second one (i.e. the generalized model) 

is based on correct theoretical basis and gives proper predictions when the viscosity of the 

continuous phase increases, as will be shown in the following section. 

4.3 High continuous phase viscosity 

The results obtained with both the “generalized” and the “initial” models were compared 

with the experiments performed at higher continuous phase viscosities (2.4 cP, and 4.1 cP), 

obtained by increasing the proportion of Marcol 82 in the mixture (from 30 to 45%, Table 

1). As it can be seen in Fig. 9 and 10, for these experiments, the observed dynamics of the 

droplet size evolution are slower than in the case of pure Isane (lower viscosity). Indeed, 

the higher the continuous phase viscosity, the wider the dissipation subrange (Table 5), and 

the subsequent reduction of the eddy energy. This lower energy leads to lower pressure and 

velocity fluctuations at the droplet surface, and hence to a decrease of the breakage rate. 

The two models were first compared with the experiments at 1-2% volume fraction of 

the disperse phase (water) in the continuous phase (oil) at 2.4 cP viscosity. As illustrated in 

Fig. 9 and 10, for both concentrations, the “generalized model” correctly reproduces the 

time evolution of the Sauter mean diameter, regardless of the stirring rate (i.e. the turbulent 

conditions). Indeed, the average relative error for each experiment is always below 3% 

(Table 6-7). On the other hand, the “initial model” predicts Sauter mean diameters that are 

always smaller than the experimental ones. For these cases, the average relative errors are 
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almost 20% of the experimental data (Table 6-7). As previously discussed, using the 

Kolmogorov second-order structure function results in an overestimation of the eddy 

turbulent kinetic energy in the dissipation subrange, which leads to higher breakage rates. 

This is consistent with the observed prediction of smaller droplets by the initial model. 

The models were finally tested with the experiments performed using the continuous 

phase with the higher viscosity (4.1 cP). Note that this was the maximum value of viscosity 

in order to achieve turbulent flow [27–30] at the lowest rotational speed experimentally 

investigated (Table 8). Again, the “generalized model” appears very efficient to predict the 

time-evolution of the Sauter mean diameter (see Fig. 11), with average relative errors 

below 2% (Table 9). With the “initial” model the deviation between the measurements and 

the predictions is even larger than at 2.4 cP, since the average relative errors can go up to 

the 29% of the experimental data (Table 9). Indeed, the viscosity dissipative effect in the 

dissipation subrange is more important at 4.1 cP than at 2.4 cP. This confirms the 

improvement provided by the generalized model, that implements a more appropriate and 

accurate calculation of the effective turbulent kinetic energy of eddies, and accounts for the 

effect of viscosity in the dissipation range. 

5 Conclusions 

In this work, we implemented an improved description of the turbulence spectrum in the 

breakage and coalescence kernels formulated by Coulaloglou and Tavlarides [1]. The 

Coulaloglou and Tavlarides kernels, as most of the kernels available in the literature for 

liquid-liquid dispersions, assume that the droplets have dimensions in the same range of 

the characteristic eddy sizes belonging to the inertial subrange of turbulence. This 

assumption is generally not valid in liquid-liquid extractors that work at moderated Re, and 

for which the boundaries between the inertial and the dissipation subrange have 

dimensions of millimeters. This assumption leads to even larger errors as the viscosity of 
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the continuous phase increases. In these cases, the majority of the droplet sizes lies in the 

dissipation range, and the most adopted second-order structure function included in the 

most popular coalescence and breakage kernels, proposed by Kolmogorov for the inertial 

subrange, is not valid.  

In this work, the Pope energy spectrum model [3] has been chosen to compute a 

generalized second-order structure function, valid in the whole turbulent energy spectrum 

[2,15,16]. The formulation proposed by Pope is indeed convenient, since it expresses 3 

contributions, each one being predominant in a given energy range (i.e. the energy-

containing, inertial, and dissipation subranges). Thanks to the inclusion of this generalized 

function, the breakage and coalescence rates of droplets having dimensions in the 

dissipation range can be taken into account, and this is particularly helpful for high 

viscosity systems.  

To prove this last statement, a series of turbulent liquid-liquid dispersion experiments, 

considering increasing viscosity of the continuous phase (1.2, 2.1 and 4.2 cP), were 

performed in order to validate the proposed generalized kernels. The model was observed 

to perfectly reproduce the experimental evolution of the Sauter mean diameter, at low 

dispersed phase volume fraction, in the whole range of investigated viscosities and stirring 

rates. 

Complementing previous works aimed at improving the description of the turbulent 

spectrum in liquid-liquid breakage kernels (Solsvik et al. [16], Karimi and Andersson 

[15]), these new results show that more accurate models can be derived. They rely on the 

combination of i) a refined description of the turbulence spectrum, using a proper second-

order velocity structure function, and ii) the consideration of turbulent dissipation 

heterogeneity in the apparatus, using the pdf of the turbulent dissipation rate . Improving 

the description of turbulence in coalescence and breakage kernels, at both the droplet and 
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the apparatus scales, is indeed a strong requirement for model-based industrial liquid-liquid 

process development. 
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Notation 

C1,C2   breakage kernel parameters 

C3,C4   coalescence kernel parameters 

C   energy spectrum parameter 

CS   second-order structure function parameter 

d   droplet diameter (m) 

D   stirrer diameter (m) 

Dt   diffusivity of disperse phase (m
2
/s) 

E()   energy distribution of eddies of different scales (m
3
/s

2
) 

f   probability density function  

h(v,v’)  collision frequency  

    turbulent kinetic energy (m
2
/s

2
) 

    characteristic length (m) 

lDI   Inertial/Dissipation subrange boundary (m) 

n(v)   number density function (1/m
6
) 

N   droplet number 

Nr   rotational speed (tr/s) 

pi   pivot of i
th

 cell (m
3
) 

P   pressure (Pa) 

Q(v,v’)  coalescence kernel (1/s) 
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r   relative distance of two points in a turbulent flow (m) 

s(x,v,t)  PBE source term  (1/(m
6
∙s)) 

t   time (s) 

T   stirred tank diameter (m) 

u   velocity of the continuous phase (m/s) 

v   droplet volume (m
3
) 

V   volume of fluid (m
3
) 

x   Cartesian space coordinates  

β   daughter size distribution function 

Γ   breakup kernel (1/s) 

ε   turbulent kinetic energy dissipation rate (m
2
/s

3
) 

   eddy wavelength (1/m) 

   Kolmogorov scale (m) 

λ   collision efficiency 

µ   dynamic viscosity (Pa∙s) 

   kinematic viscosity (m
2
/s) 

ρ   density (kg/m
3
) 

σ   interfacial tension (N/m) 

φ   disperse phase internal coordinates 

ϕ   disperse phase fraction 
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Tables 

Table 1: Properties of Isane 175/Marcol 82 mixtures employed as solvents in the emulsification experiments  

Solvents Physical-chemical properties 

Isane [%] Marcol [%] µ (mPa.s) ρ (kg/m
3
) σ (mN/m) 

100 0 1.219 757.4 38.30 

0 100 12.347 850.8 41.20 

70 30 2.429 783.4 38.21 

55 45 4.102 799.9 39.81 

 

 

 

 

Table 2: Identified parameters for the “generalized” model. Also the parameters for the “initial” model are 

reported [20] 

 Breakup Coalescence 

 C1 C2 C3 C4 

“Generalized” 2.2310
-4

 7.0810
-1

 1.0073 1.6810
18

 

“Initial” 1.2010
-3

 7.1110
-1

 1.9510
-2

 2.0510
14
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Table 3: Relative errors according to Eq. (22) in the determination of the adjusted parameters at an impeller 

rotation speed of 600 rpm: 

 1% water-in-Isane 2% water-in-Isane 

Experimental (μm) 200.5 197.6 193.9 318.2 300.8 285.9 

Optimization (μm) 201.2 196.8 194.4 320.4 299.3 284.4 

Relative error (%) 0.35 0.43 0.25 0.71 0.48 0.53 

Average rel. err. (%) 0.46 

 

Table 4: Relative errors (Eq. (22)) by fitting the 1-2% water-in-Isane experiments through the “generalized” 

and “initial” models: 

 

 1% water-in-Isane 2% water-in-Isane 

 700 rpm 800 rpm 700 rpm 800 rpm 

 “Generalized” model 

Rel err. (%) 2.18 2.42 2.47 0.78 0.07 0.13 0.41 3.57 1.26 0.95 2.43 1.34 

Average (%) 2.36 0.33 1.75 1.57 

 “Initial” model 

Rel err. (%) 1.35 1.92 0.26 0.07 1.18 0.34 2.98 0.19 4.28 0.95 0.98 0.81 

Average (%) 1.18 0.53 2.48 0.91 
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Table 5: Kolmogorov microscale (η) and Inertial/Dissipation subranges boundary (lDI) for the Isane/Marcol 

experiments at different viscosity and turbulent conditions  

Viscosity (cP) 
Turbulence 

scales 

Speed [rpm] / Average ε [m
2
/s

3
] 

600 / 0.62 700 / 1.01 800 / 1.42 

1.2 
η [µm] 50.92 45.07 41.39 

lDI [mm] 3.05 2.70 2.48 

2.4 
η [µm] 82.94 73.89 67.1 

lDI [mm] 4.98 4.43 4.03 

4.1 
η [µm] 120.96 107.76 97.87 

lDI [mm] 7.26 6.47 5.87 

 

Table 6: Relative errors (Eq. (22)) by fitting the 1% water-in-Isane70%Marcol30% experiments through the 

“generalized” and “initial” models: 

 600 rpm 700 rpm 800 rpm 

 “Generalized” model 

Rel. err. (%) 2.46 0.48 2.46 1.27 2.35 0.65 2.07 1.06 3.00 

Average (%) 1.80 1.42 2.04 

 “Initial” model 

Rel. err. (%) 5.66 17.17 19.12 15.85 25.57 25.52 16.56 20.79 26.67 

Average (%) 13.98 22.31 21.34 

 

 

Table 7: Relative errors (Eq. (22)) by fitting the 2% water-in-Isane70%Marcol30% experiments through the 

“generalized” and “initial” models: 

 600 rpm 700 rpm 800 rpm 

 “Generalized” model 

Rel. err. (%) 1.06 1.32 0.11 2.76 1.38 3.75 0.72 3.53 2.32 

Average (%) 0.83 2.63 2.19 

 “Initial” model 

Rel. err. (%) 13.55 18.76 20.59 11.86 21.40 29.55 10.50 24.16 27.58 

Average (%) 17.63 20.94 20.74 
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Table 8: Impeller Reynolds numbers at different rotational speeds and viscosities 

Rotational speed 

[rpm] 

Reynolds number 

µ = 1.2 cP µ = 2.4 cP µ = 4.1 cP 

600 22368 11611 7020 

700 26096 13546 8190 

800 29824 15481 9360 

 

 

Table 9: Relative errors (Eq. (22)) by fitting the 1% water-in-Isane55%Marcol45% experiments through the 

“generalized” and “initial” models: 

 600 rpm 700 rpm 800 rpm 

 “Generalized” model 

Rel. err. (%) 0.52 0.43 0.25 1.69 2.04 1.23 1.41 1.73 1.12 

Average (%) 0.4 1.65 1.42 

 “Initial” model 

Rel. err. (%) 11.69 15.31 20.67 19.74 32.77 35.84 18.74 26.47 30.89 

Average (%) 15.89 29.45 25.37 
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Figures 

Fig. 1: Energy spectrum representation of the eddies according to their wavelength in the energy-containing 

range and the inertial and dissipation subranges of turbulence. 

 

 

Fig. 2: Details of the geometry of the stirred tank reactor employed in the liquid-liquid dispersion 

experiments 
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Fig. 3: Droplet caption with the SOPAT® probe (left) and detection (right, green circles) 

  

 

 

 

Fig. 4: Main steps and sequence of the numerical procedure 
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Fig. 5: Time-evolution of the droplet Sauter mean diameters for water-in-oil experiments: continuous phase 

viscosity 1.2 cP, water volume fraction of 2%, stirring rate of 600, 700, and 800 rpm. 

 

 

Fig. 6: Parameters identification of the “generalized model” on water-in-Isane experiments (denoted by an 

error bar of 1% the experimental value): continuous phase viscosity 1.2 cP, water volume fraction of 1 (left) 

– 2 (right) %, stirring rate of 600 rpm. 
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Fig. 7: “Generalized model” testing on water-in-Isane experiments (denoted by an error bar of 3% the 

experimental value): continuous phase viscosity 1.2 cP, water volume fraction of 1 (top) – 2 (bottom) %, 

stirring rate of 700 (left) and 800 (right) rpm. 

  

  

 

Fig. 8: Examples of droplet number density function for water-in-Isane experiments: water volume fraction 

of 2%, stirring rate of 600 (green), 700 (red) and 800 (blue) rpm. 
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Fig. 9: “Generalized model” testing on water-in-Isane70%/Marcol30% experiments (denoted by an error bar 

of 3% the experimental value): continuous phase viscosity 2.4 cP, water volume fraction of 1%, stirring rate 

of 600 (top-left), 700 (top-right), and 800 (bottom) rpm. 
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Fig. 10 “Generalized model” testing on water-in-Isane70%/Marcol30% experiments (denoted by an error bar 

of 3% the experimental value): continuous phase viscosity 2.4 cP, water volume fraction of 2%, stirring rate 

of 600 (top-left), 700 (top-right), and 800 (bottom) rpm. 
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Fig. 11 “Generalized model” testing on water-in-Isane55%/Marcol45% experiments (denoted by an error bar 

of 3% the experimental value): continuous phase viscosity 4.1 cP, water volume fraction of 1%, stirring rate 

of 600 (top-left), 700 (top-right), and 800 (bottom) rpm. 

  

 

 


