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ABSTRACT: The aim of this work is to enhance the electrical conductivity of PAEK/continuous carbon fiber (CF) composites while 
maintaining their mechanical properties. A conductive sizing was elaborated by mixing polyetherimide (PEI) with silver nanoplates 
(AgNpts) in suspension in dichloromethane. An aqueous PEI formulation was used as insulating sizing reference. The presence of AgNpts 
into the sizing enhances electrical conductivity up to 0.2 S.m−1 for a silver content � 0.2 vol % without any modification of mechanical 
properties. The influence of conductive sizing on PAEK–AgNWs/CF was observed. For low AgNWs content lower (<1 vol %); the conduc-
tive sizing increases the electrical conductivity of the composite by one decade. This result shows that both types of Ag particles participate 
to the conductive path. For higher AgNWs content, electrical conductivity (200 S.m−1) is independent from the AgNpts content: the con-
ductive path is only constituted by AgNWs. Mechanical properties of such composites show that the value of the conservative modulus is 
almost the same, while the dissipative modulus slightly increases. The global mechanical properties of the composite are preserved 
despite the addition of the CF, AgNWs, and AgNpts. 
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the mechanical properties of CF, the deposition of carbon nan-
otubes could be achieved by electrophoresis.2,5 The low tempera-
ture process avoids the degradation of CFs, but it involves a
preliminary functionalization of the CF surface.

Nickel deposition on the surface of CF was reported to enhance the
electrical conductivity of the prepared composites,14,15 but no
mechanical enhancement was reported. Poor compatibility between
the polymer matrix and the nickel-coated fibers suggests a possible
delamination of the composites. The deposition of silver nanowires
on carbon nanofiber was recently reported by An et al.17: the elec-
trical conductivity of such composites presented a conductivity level
increased by 3 decades compared to the reference.

To our knowledge, few works concern the dispersion of conduc-
tive fillers into the polymer matrix prior to fiber impregnation.
Lonjon et al.4 obtained enhanced electrical property for poly-
epoxy/CF composites by dispersing carbon nanotubes, especially
at the interlayer interface of prepreg plies. Liu et al.18 reported an
enhancement of thermal conductivity of poly(ether ether ketone)
(PEEK)/CF composites with graphene filler. Quiroga Cortes
et al.12 dispersed silver nanowires into a Poly(ether ketone ketone)
(PEKK) matrix and then impregnated the CF tapes. Very high

INTRODUCTION

Multifunctional composites have received increasing interest in 
many application fields such as aeronautic, automotive or electronic 
devices. Carbon fiber reinforced polymers (CFRP) for structural 
purposes present high mechanical properties but poor transverse 
electrical conductivity. Multifunctional composites are excellent 
candidates to combine their high mechanical properties and suffi-
cient electrical conductivity. Multifunctional CFRP are generally 
obtained by the introduction of conductive fillers such as carbon 
nanotubes,1–5 graphene,6–11 silver nanowires12 or by metal deposi-
tion on CFs.13–15 Graphene and carbon nanotubes are preferred for 
their mechanical reinforcement,5,9,16 although their introduction as 
filler enables moderate enhancement of conductivity level.

Carbon nanotubes could be directly deposited on the CF1–3,5: 
their growth on the CF bundles is generally achieved by CVD.1,3

Pozegic et al.1 reported an enhancement of electrical properties 
about 400% in presence of carbon nanotubes. However, CVD 
technique is inconvenient and requires high temperature treat-
ments of CF that generally causes thermal degradation of carbon 
fiber, and thus the composites have reduced mechanical proper-
ties compared to the reference samples.1,3 In order to preserve
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electrical conductivity level was obtained (σ ≈ 102 S.m−1) as a
result of a percolation mechanism induced by metallic fillers,
also observed in their previous work on composites matrix/filler
without any CF.19

The aim of this work is to enhance the electrical conductivity while
maintaining mechanical properties of continuous CFs composites.
The previously cited works generally require the removal of the
commercial sizing deposited onto CF surface. One of the function-
alities of sizing agent is to promote the CF/matrix continuity.20,21

The sizing agent, which promotes load transfer from the polymer
matrix to the CFs, is selected to be miscible with the polymer
matrix. A poly(aryl ether ketone) (PAEK) thermoplastic matrix
was chosen due to their excellent mechanical properties and their
thermal stability. Compatible sizing agents are limited because
of the high processing temperature21 (>350 C): poly(etherimide)
(PEI)11,22 or poly(phthalazinone ether ketone) (PPEK)23 sizing have
been recently developed since they are compatible with the high
processing temperature of PEEK. The electrical functionalization
was established by two methods: (1) the functionalization of the
sizing, that was achieved by dispersing silver nanoplates into the
PEI; and (2) the dispersion of silver nanowires into the matrix with
CF sized with the previously mentioned functionalized sizing. To
our knowledge, silver nanoplates have been only used for their
optical properties,24,25 and in some rare cases as conductive filler,26

but never used in high performance thermoplastic matrices such as
PAEK. Both mechanical and electrical properties of the different
composites have been compared.

MATERIALS AND METHODS

Materials
PAEK Matrix and Silver Nanowires. The low-melting PEEK-like
polymer VICTREX AE™ 250 was kindly supplied by Victrex as
ultra-fine powder. The polymer presents a lower melting temper-
ature than PEEK that facilitates composite processing. The poly-
mer would be designated as PAEK in the following sections.

The silver nanowires (AgNWs) were synthesized by a polyol pro-
cess in the presence of poly(vinyl pyrrolidone) as previously
described.19 Their diameter is approximately 200 nm and their
aspect ratio is ξ = 250 [Figure 1(a)]. Their electrical conductivity

is close to the one of bulk silver. The matrix loading values
ranged from 0.5 to 4.0 vol %. The loading values are always given
in relation with the polymer matrix.

Carbon Fiber and Sizing. Unsized AS4 CF tow of 12 000 mono-
filaments was supplied by Hexcel. Two sizings were used: formu-
lated sizing and functionalized sizing. Formulated sizing was
realized by an emulsion-solvent evaporation method.22,27 The
sizing process was carried out by dip-coating into the sizing solu-
tion. Functionalized sizing was obtained by the dispersion of
large silver nanoplates into dissolved PEI in dichloromethane.
The filler ratio of the functionalized sizing was fixed at 30 vol %
to ensure a maximized electrical conduction. The as obtained
PEI/AgNpts solution was then diluted to adjust PEI concentra-
tion to 0.65 g.L−1. CF was then sized by bath-coating, into the
PEI/AgNpts sizing solution. Filmification of the PEI was effective
after drying fiber at 50 �C. The visual aspect of the sized CF is
shiny and slightly silver-colored.

Large silver nanoplates were obtained by a modified seed-
mediated protocol28–31 that enables us to control their edge
length and size distribution.32 The obtained silver nanoplates are
presented on Figure 1(b).

Carbon Fiber Polymer Composites. Carbon reinforced compos-
ites (Table I) were achieved by a powder impregnation of CF (sized
or unsized). The polymer powder was firstly mixed and sonicated
with ethanol (ratio PAEK / EtOH = 0.092 w/w). The solution was
then incorporated into the CF bundle (length between 8 and
10 cm), under fluid pressure. The impregnated bundle is then
placed into a 360�C hot press system. A mild pressure (�20 MPa)
was applied and maintained for 3 min on the melt polymer. Unidi-
rectional CFRPs with a fiber content around 40 wt% were obtained.

Methods
Scanning Electron Microscopy. Morphology of silver nanoplates
and cryofractured composites were observed with a JEOL 7800F
Prime. Acceleration voltage was set between 5 and 10 kV. Silver
nanoplates and nonconductive composites images were obtained
with a secondary electron detector; while polymer composites
with metallic fillers were observed with back scattered detector.

Figure 1. SEM images of (a) silver nanowires (AgNWs) used as conductive filler into the PAEK matrix. (b) Silver nanoplates (AgNPts) used into the con-
ductive sizing solution.



Dynamical Mechanical Analysis. Dynamical mechanical shear
modulus was measured using a rheometer ARES G1 from
Rheometric Scientific. Polymer or composites samples were obtained
by hot-pressing process using a parallelepiped aluminium mold
(35 mm × 10 mm × 250 μm). Strain of 0.1% is applied with an
angular frequency ω=1 rad.s−1. The analysis was carried out in the
temperature range − 135 to 250�C with a heating rate of 3�C.min−1.

Electrical Conductivity. A Keithley 2420 source meter with a four
wires configuration was used as precision ohmmeter. The trans-
verse electrical conductivity σ of the composites was deduced from
the measured transverse resistance R of samples taking into
account the electrode geometry.

σ =
t
R:S

Where R is the electrical resistance, S is the surface of the elec-
trode, and t is the thickness of the sample. The voltage value was
between 2.0 and 20.0 V (automatic calibration mode).

RESULTS AND DISCUSSION

SEM Observations of PAEK/CF Composites
The sizing deposit was controlled during the composite manufactur-
ing process. The weight of the sized fiber bundle was normalized
to the unsized CF. The mean amount of deposited sizing was 4 wt
% for formulated PEI sizing, and 3 wt % for dichloromethane
PEI + AgNpts sizing.

The presence of sizing was examined by scanning electron micros-
copy (Figure 2). The SEM image of cartoon A suggests the deposit

of PEI. To ensure PEI coating, CFs were thermally treated at
360�C during 5 min. The surfactants are thermally removed and
the polymer coating is then possible. On cartoon B, the AgNpts of
the sizing are observed onto the fiber surface. This functionalized
sizing does not require a thermal treatment since the film forming
takes place when the dichloromethane was evaporated.

After the impregnation process, the composites were cryofractured
and the surface was observed by SEM. Low magnification images
validate the impregnation technique: reference samples with unsized
CF shows that the thermoplastic polymer matrix correctly penetrate
the bundle of fiber [Figure 3(a)]. Similar results were obtained for
both nonconducting or conducting sizing, even when silver nano-
wires are introduced into the polymer matrix. Figure 3 (cartoons B,
C, and D) shows the corresponding cryofracture. The last results
are consistent with our previous work.12

A qualitative comparison of the different composites was per-
formed by SEM at higher magnification. Composites with
unsized CF [insert Figure 3(a)] present no matter-continuity at
the matrix–fiber interface. Contrarily, composites with sized fiber
[inset Figure 3(b‑d)], the SEM images show a matter-continuity
between CF and polymeric matrix that suggest the existence of
physical interactions between the polymer matrix and the CF.
This observation is less visible for the conductive sizing because
the PEI film on the CF surface form a very smooth surface [inset
Figure 3(c,d)].

The composites obtained with PEI/AgNpts sizing, revealed the
presence of silver nanoplates, most of them are located at the
matrix–fiber interface [inset Figure 3(c)]. The migration of

Figure 2. Sized carbon fiber with (a) PEI sizing; (b) PEI + AgNpts sizing. The silver nanoplates are observable at the surface of carbon fibers.

Table I. List of the Composites Short Names and Their Full Components Description Used in the Text

Composite short name Composite/component full name Analysis performed

PAEK Low-melting PAEK matrix Mechanical and electrical

PAEK/CF PAEK matrix/unsized carbon fiber Mechanical and electrical

PAEK/CFPEI PAEK matrix/carbon fiber with PEI sizing Mechanical and electrical

PAEK/CFPEI + AgNpts PAEK matrix/carbon fiber with PEI/AgNpts sizing Mechanical & electrical

PAEK + AgNWs/CFPEI PAEK matrix + silver nanowires/carbon fiber with PEI sizing Mechanical & electrical

PAEK + AgNWs/CFPEI + AgNpts PAEK matrix + silver nanowires/carbon fiber with PEI+ AgNpts sizing Mechanical & electrical



nanoplates into polymer matrix was rarely observed. These obser-
vations suggest that the impregnation process is compatible with
functionalized sizing and prevents the migration of silver
nanoplates.

Physical Properties of PAEK/CF-Sized and PAEK/CF-Unsized
Composites
Mechanical Modulus. The dynamic mechanical modulus of the
different composites was compared to the bulk polymer. The

Figure 3. Cryofracture of (a) PAEK/CF unsized, (b) PAEK/CFPEI; (c) PAEK/CF sized with PEI + AgNpts conductive sizing. (d) PAEK+AgNWs/CF sized with
PEI + AgNpts.

Figure 4. (a) Storage and (b) loss modulus of PAEK/CF composites compared to PAEK reference. Carbon fiber content is fixed at 40 wt % Inset of Figure B
is focussed on local mobility of the polymer and composites. [Color figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com


PAEK storage modulus is � 1.5 GPa on the vitreous plateau
[Figure 4(a)]. The viscoelastic transition is observed around
150�C.33–35 The rubbery plateau is located between 0.05 and
0.1 GPa. Figure 4(b) shows the loss modulus versus temperature
for the PAEK. The main α relaxation is observed at 154�C, which
is consistent with the DSC glass transition.36 Previous work on
PAEK showed that both β and α relaxations are analogous with
the ones of PEEK34,37,38: the β relaxation of PAEK was attributed
to the localized mobility of aromatic rings and the α relaxation to
the delocalized molecular mobility of the main chain.

The storage modulus G’ essentially showed the reinforcing effect of
CF regardless of the sizing. The presence of CF in the composites
increases the storage modulus of the polymer matrix from 400 to
500%. The reinforcing effect is emphasized on the rubbery plateau:
the relative drop of storage modulus (taken between Tα-50 and
Tα + 50) is 12.5, 2.1, and 2.7 for PAEK, PAEK/CF, PAEK/CFsized,
respectively. This comparison indicates that the reinforcing effect of
the CF is the predominant effect. The influence of the sizing on
the viscoelastic transition is more visible on the loss modulus
[Figure 4(b)]. The PAEK thermograms show two anelastic relaxa-
tions. PAEK/CF composites with unsized and sized CF exhibit a
higher modulus on the entire temperature range. Main α relaxation
is observed at 156�C, slightly higher than for the bulk polymer.
PEI-sized CF composites exhibit a supplementary mechanical relax-
ation beyond the main α relaxation. It has been attributed to PEI α
relaxation. Analyses of bulk PEI under the same conditions con-
firmed the presence of the main α PEI relaxation in the vicinity of
220�C. Because of low sizing content in the whole PAEK/CF com-
posite (< 1 wt %), the observation of βPEI and γPEI relaxations of
PEI is not possible. Only the main (and more intense) relaxation is
observed. Furthermore, it is thought that polymer sizing is under
mechanical constraint at the interface between CF and polymer
matrix that enhance PEI relaxation.

Despite the miscibility between PAEK and PEI, the high melt vis-
cosity of PEI and PAEK is responsible for phase segregation
remaining after composite processing. As suggested by SEM
images, PEI remains at the fiber–matrix interface. For coated PEI
sizing, the mechanical relaxation of PEI is not distinguishable,
probably due to the very thin interface between the CF and the
polymeric matrix.

Figure 5 reports the integrated area of the mechanical α relaxation
that could be associated with an amount of dissipated energy. It has
been normalized to the value of the composites with unsized CF.
An increase of the dissipated energy is observed for sized CF, which
suggest a better mechanical coupling. This propensity is enhanced
when silver nanoplates are introduced into the sizing agent. This
increase associated with the silver nanoplates might be due to local
heterogeneities emphasizing the stick–slip phenomenon.

The introduction of AgNpts into the PEI sizing does not modify
the characteristics of the dynamic mechanical relaxations of
PAEK/CF sized with coated PEI sizing. Thus, the introduction of
conductive silver nanoplates into the PEI sizing allows to main-
tain the integrity of the PAEK matrix.

Transverse Electrical Conductivity. The transverse electrical con-
ductivity of the composites has been compared in Figure 6. The

polymer matrix has a low conductivity around 10−15 S.m−1. The
electrical conductivity of CFRP are in the range of 10−2 to 10−1 S.
m−1, which is consistent with the conductivity of composites
filled with carbonaceous fillers such as carbon nanotubes,39,40

graphene,41,42 or carbon black.43,44 The CF content is about 40 wt
% (�33 vol %) for the elaborated composites. A through thickness
schematic representation of the composites may consider CF as
spheres and matrix as the continuous medium. CF content is far
above the percolation threshold for randomly dispersed spheres
(15 vol %).45 Hence there is a through thickness backbone of con-
ductive carbon filler that is commonly observed.1,2,6,12 The pres-
ence of PEI sizing agent was found to have no influence on the
transverse conductivity of the composites. Composites with both
sizings (formulated or coated) have a conductivity level in the
same range (0.02 to 0.06 S.m−1) than composites with unsized CF.

Composites elaborated with PEI/AgNpts sizing were found to have
higher conductivity level of about 0.2 S.m−1. This conductivity

Figure 5. Normalized α relaxation peak area. The area of unsized carbon
fiber composite was used as reference.

Figure 6. Transverse electrical conductivity of composites. The contribution
of AgNpts sizing is about one decade.



level is about 5 to 10 times the conductivity of other composites,
that is, with unsized or PEI-sized CF. It is important to underline
the relative low mean content of silver (�0.2 vol %) of the whole
composite. According to previous work on composites with silver
nanoplates,32 the silver content is far below the percolation thresh-
old of randomly dispersed nanoplates. The consequence is that
there is no percolative network of metallic particles, but rather, a
CF percolative network assisted by the presence of silver
nanoplates. It is thought that their disposition around the CF is
important to create electrical connections between CF. Bekyarova
et al.2 reported a similar enhancement for a low carbon nanotubes
content in CFRP composites. The hopping conduction mechanism
might be facilitated by the presence of silver nanoplates.

PAEK–Ag NWs/CF with PEI + AgNpts Sizing Composites
Silver nanowires were introduced into the PAEK/CF composites
to enhance the electrical conductivity. The influence of AgNpts
in the sizing of PAEK/AgNWs/CF composites was tested. Both
neat PEI and PEI/AgNpts sizing were compared.

Mechanical Modulus. Figure 7 shows the influence on the com-
posites mechanical behaviour of Ag nanowires (4 vol %) in the
matrix and AgNpts in the sizing.

The major event of the mechanical moduli is the viscoelasticity at
the α relaxation temperature Tα. The introduction of 4 vol %
AgNWs induced an increase of the storage modulus on the entire
temperature range. This mechanical reinforcement is more pro-
nounced on the rubbery plateau that increases from 0.6 to
1.4 GPa. This observation is attributed to the formation of a
physical network by silver nanowires. The value of G’ was taken
at Tα − 50�C and Tα + 50�C for all composites. An increase of
the storage modulus from 2.4 to 3.9 GPa was observed. It is
attributed to the stiffening of the polymer due to the presence of
both fiber bundle and silver nanowires.

The presence of AgNWs does not influence the β sub glass relax-
ation at low silver content; we only noticed a slight increase of

the β relaxation temperature at high silver loading (≥ 3 vol %).
For the α relaxation even with 4 vol % of Ag nanowires, we do
not observe any significant evolution.

Transverse Electrical Conductivity. The influence of AgNpts on
the electrical properties is strongly dependent on nanowires con-
tent. As a matter of fact, the contribution of silver nanoplates
only occurs when the nanowires content is low. The electrical
conductivity was measured as a function of AgNWs content,
between 0.5 and 4 vol %. As shown in Figure 8, two electrical
behaviors were distinguished depending only on the AgNWs
content. At lower silver content, the electrical conductivity
depends on the filler content while, at higher silver content, the
electrical conductivity becomes independent of the silver content.

The behavior at high silver content (>2 vol %) may be easily
explained. The conductivity reaches a constant level of 200 S.m−1

due to the percolation of the silver nanowires independently from
the presence of nanoplates. This kind of behavior is often
reported in the literature19,32,40–42,46 as classical electrical percola-
tion that is fitted by a power law.47 The observed high electrical
conductivity could be explained by the percolation of metallic
nanowires independently of the fiber bundle presence. We pro-
pose that there is a metallic-filler percolation that govern the con-
ductivity value. As percolation threshold of the silver nanowires
is in the vicinity of 0.6 vol %,19,48 our high values are situated on
the high conductivity plateau that is consistent with the observa-
tions of Quiroga et al.12 for such silver loading.

The influence of the silver nanoplates in the sizing is only seen at
low silver nanowires content. For a nanowires content of 0.75 vol
%, the measured electrical conductivity was increased by one
decade when CFs were treated with PEI + AgNpts sizing. We
suggest that the enhancement of electrical conductivity depends
on all the entities (silver nanowires, silver nanoplates, and CF).
When silver nanoplates are introduced in the sizing, it favors a
connection between all the conductive elements of the composite
(fibers, nanowires, and nanoplates). In that case, there is a perco-
lation phenomenon that involves all conductive entities, which

Figure 7. Loss shear modulus of (○) PAEK/CF sized with PEI, (?)PAEK+
AgNWs/CF sized with PEI, and (◇) PAEK+AgNWs/CF sized with PEI +
AgNpts. [Color figure can be viewed at wileyonlinelibrary.com]

Figure 8. Electrical conductivity of composites with matrix containing
AgNWs.

http://wileyonlinelibrary.com


explains its dependency regarding the AgNpts content. Such
behavior has been previously described for carbonaceous fillers.49

It is important to note that the increase can be seen because we
remain below the percolation threshold. From the composite
point of view, the total silver loading may vary from 0.75 vol %
(AgNWs) to 0.95 vol % (AgNWs + AgNpts). When the amount
of AgNWs is above the percolation threshold, the increase of
conductivity of PAEK+AgNWs/CFPEI + AgNpts composites is not
observed.

CONCLUSIONS

The main objective of this work was to enhance the electrical
conductivity of PAEK/continuous CF composites while maintaining
their mechanical properties. Our study focused on the elaboration
of an electrically conductive sizing, constituted of PolyEtherImide
(PEI) and silver nanoplates (AgNpts), as suspension in dic-
hloromethane prior the deposition on the CF. An aqueous PEI for-
mulation was used as insulating sizing reference. According to SEM
observations on the composites cryofractures, both sizing presented
a continuity of matter at the fiber/matrix interface.

The presence of AgNpts into the sizing enhances electrical con-
ductivity up to 0.2 S.m−1 for a silver content �0.2 vol % without
any modification of mechanical properties. The influence of con-
ductive sizing on PAEK+ AgNWs/CF was also observed. For
AgNWs content lower than 1 vol %; conductive sizing increases
the electrical conductivity of the composite by one decade. In that
case, both types of Ag particles participate to the conductive path.
For higher AgNWs contents, electrical conductivity (� 102 S.
m−1) is independent from the AgNpts content: the conductive
path is only constituted by AgNWs.

The introduction of Ag particles in the matrix and the sizing of
PAEK/CF composites looks very promising for promoting electri-
cal conductivity while maintaining mechanical performances.
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