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We study linear perturbations of a rotating black hole solution that has been recently discovered in degenerate

higher-order scalar-tensor (DHOST) theories. We find a parametrization which permits the explicit resolution

of the scalar perturbation while the tensor perturbation is obtained as a Teukolsky equation supplemented by an

effective source term. The effective source term is related to the black hole hair and can be computed exactly

for any value of the black hole spin. We discuss how the perturbations of the geometry and thus the emitted

gravitational waves could be modified in comparison with general relativity.

I. INTRODUCTION

The ability to detect gravitational waves (GW) has opened

an extraordinary new window for cosmology and astro-

physics. It also offers the possibility of testing General Rela-

tivity (GR) directly and in the presence of very strong gravita-

tional fields. From the latter perspective, the ringdown phase

of a black hole merger is particularly interesting. Indeed,

with the next generation of GW interferometers (such as the

Einstein Telescope and LISA) it will be possible to measure

multiple quasi-normal modes (QNM) emitted by the newly

formed black hole and perform what is called black hole spec-

troscopy [1]. This will permit to investigate potential devia-

tions from the well-known QNM in GR [2–5] (see [6–8] for

reviews) and will provide a crucial test for gravity.

To fully exploit this new possibility, it is useful to explore

what type of modifications could be expected from black holes

in various models of modified gravity. Several no-hair the-

orems [9, 10] state that, under certain hypotheses, the only

modification that can be obtained is at the level of perturba-

tions [11], while the black hole solution is indistinguishable

from GR. However, if some of the hypotheses are relaxed, dif-

ferences can enter already at the background level: the black

hole geometry can differ from Kerr [12], or a Kerr metric can

be dressed with some non-trivial field – or “hair”, in which

case we are in presence of the so called “stealth” solutions.

Several works have analysed perturbations and QNM of

spherically symmetric black holes (with and without hair) in

alternative theories of gravity, e.g. [13–18]. However, only

few articles 1 deal with rotating black holes, one of the main

reasons being the mere paucity of non-trivial rotating solu-

tions in theories of modified gravity.

In the present work we consider a stealth rotating black hole

solution obtained very recently [23] in the context of Degen-

erate Higher Order Scalar Tensor (DHOST) theories [24–26],

1 See [19] for Einstein-Maxwell theory, [20] for recent results in f (R) the-

ory and [21, 22] for slowly rotating black holes without hair in Horndeski

theories

which represent the most general class of covariant scalar-

tensor theories with a single scalar degree of freedom (see

[27] for a review). This black hole solution is characterised

by an exact Kerr (or, more generally, Kerr-de Sitter) geome-

try and a non-trivial scalar field which can be identified with

families of geodesics of the spacetime itself 2. For simplicity,

in this paper we restrict ourselves to the solution of [23] with

no effective cosmological constant.

In the present work, we study the linear perturbations about

this hairy black hole solution and obtain the tensor and scalar

perturbation equation in a relatively simple form, so that one

can disentangle the scalar and tensor perturbations. Remark-

ably, the tensor equation differs from the Teukolsky equation

in GR only by the presence of an effective source term that

depends on the “hairy” scalar perturbation, which can be ex-

plicitly solved.

II. PERTURBATIONS OF KERR BLACK HOLES IN GR

Before computing the relevant equations in our theory, it is

useful to recall the main steps for the computation of gravita-

tional perturbations of a Kerr black hole in general relativity.

This problem is far more involved than the case of a spheri-

cally symmetric black hole, due to the complexity of the ge-

ometry. In Boyer-Lindquist coordinates, the Kerr metric reads

ds2 =− ∆

ρ2
(dt − asin2 θ dϕ)2 +ρ2

(

dr2

∆
+ dθ 2

)

+

+
sin2 θ

ρ2

(

adt − (r2 + a2)dϕ
)2

, (1)

where

∆ ≡ r2 + a2 − 2Mr, ρ2 ≡ r2 + a2 cos2 θ . (2)

2 The spherically symmetric versions of [23] were initially found for Horn-

deski theory in [28], whilst their disformed DHOST version and stability

was investigated in [29] and [30]. A recent comprehensive review of hairy

black hole solutions in scalar tensor gravity can be found in [31].

http://arxiv.org/abs/1907.02924v1
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M is the mass and a the angular momentum parameter (a≤M)

of the black hole. Kerr’s solution has an inner (r = rI) and an

outer (r = rH ) event horizon, corresponding to the roots of

∆ = 0.

Taking into account the fact that the background solution is

stationary and axisymmetric, one can decompose the pertur-

bations into modes of the form

ψ(r,θ )e−iωt+imϕ , (3)

where m is an integer and ω is the frequency which turns out

to be complex because of the damping of the modes due to

gravitational radiation; ψ is a function (parametrized by ω
and m) of the radial and angular coordinates.

In the case of spherical symmetry, the perturbation equa-

tions, after decomposition into spherical harmonics, reduce to

ordinary differential equations along the radial direction. By

contrast, in the Kerr case one ends up with partial differential

equations that depend on both r and θ . Remarkably, as shown

by Teukoslky [2] upon using the Newman-Penrose formalism

[32], the perturbation equations can be expressed in a separa-

ble form. Indeed, they are of the form

O(ω ,m)ψ = 0, (4)

where the second order differential operator O(ω ,m) can be

written as

O(ω ,m) = Or(ω ,m)+Oθ (ω ,m) , (5)

where Or and Oθ are second order differential operators in-

volving respectively the variables r and θ only. As a con-

sequence ψ can be written as a (sum of) products ψ(r,θ ) =
R(r)S(θ ) where R and S satisfy separately ordinary differen-

tial equations. The details and the explicit equations can be

found in the original Teukolsky paper [2].

The separability property renders the calculation of quasi-

normal modes much more tractable. In this paper, we show

that the equations for the tensor perturbations in DHOST the-

ories that are known to admit a hairy Kerr solution remain

separable. More precisely, these equations are exactly given

by the classical equation (4) where now an effective “source”

term appears and depends on the scalar perturbation, thus

on the hair of the black hole solution. Remarkably, we find

a parametrization of the modified scalar-tensor perturbations

which allow us to compute the source term.

III. DHOST THEORIES AND STEALTH KERR SOLUTION

Let us now consider DHOST theories, which represent the

most general family of covariant scalar-tensor theories propa-

gating a single scalar degree of freedom. We restrict our dis-

cussion to a subclass of DHOST theories which are shift and

reflection symmetric (φ → φ + c, φ →−φ) and whose tensor

perturbations propagate at the speed of light [33–36]. Their

Lagrangian can be written in the form

L = K(X)+G(X)R+A3(X)L3 +A4(X)L4 +A5(X)L5 ,

(6)

where G, K and AI are functions of X ≡ φµφ µ , and the La-

grangians LI are defined by

L3 ≡ φ µφν φµν�φ , L4 ≡ φ µ φµρ φνφνρ , L5 ≡ (φ µ φν φµν)
2 .

In our simplified notation, upper or lower indices on φ corre-

spond to (covariant) derivatives, e.g. φ µ = ∇µφ and φµν =
∇µ∇ν φ . Due to the degeneracy conditions, which guarantee

the presence of a single scalar degree of freedom, A4 and A5

are not free but depend on G and A3 as follows [24]

A4 =−A3 +
1

8G

(

48G2
X + 8A3GX X −A2

3X2
)

, (7)

A5 =
A3

2G
(4GX +A3X) . (8)

Furthermore, without loss of generality, since for our purposes

we can consider the theory in vacuum, we can set G = 1 by

means of an X-dependent conformal transformation [25, 37].

In this subclass of theories, it is possible to construct stealth

rotating black hole solutions, where the geometry is exactly

Kerr (or Kerr-de Sitter if one adds an effective cosmological

constant) and the scalar field φ is non-trivial [23]. These solu-

tions are characterised by a constant value of the kinetic term3

X = X0 = −µ2, and require that the following conditions are

satisfied for the two independent functions A3 and K in the

Lagrangian (6) (while G = 1):

A3(X0) = 0 , K(X0) = 0 , KX (X0) = 0 . (9)

Note that this implies, according to the degeneracy conditions

(7-8), that A4(X0) = 0 and A5(X0) = 0 as well.

The scalar field φ can be obtained by exploiting the analogy

with families of Kerr geodesics [38] and reads

φ(t,r) =−µ t + εµ

∫

√

R(r)

∆(r)
dr , (10)

where

R(r)≡ 2Mr(r2 + a2) , (11)

and ε can take the values ±1, corresponding to the two

branches of the square root4 in (10).

IV. EQUATIONS FOR THE PERTURBATIONS

We now expand the equations of motion for the scalar field

and the metric to first order in perturbations, using

gµν = gµν + δgµν , φ = φ + δφ , (12)

3 Here we take φ µ to be timelike, should a spacelike φ µ be required, substi-

tute µ2 →−µ2 in what follows.
4 Notice that, in absence of an effective cosmological constant (i.e. Kerr and

not Kerr-dS metric), it is impossible to realise the merging of branches that

characterises the solutions in [23] and that provides a finite scalar field at

both the event and cosmological horizons. We leave the study of perturba-

tions around such solutions for future work.
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where barred quantities refer to the background whereas δgµν

and δφ are perturbations. Interestingly, the leading order

terms in the expansion of the equations of motion simplify

drastically, and one obtains, after straightforward calculations,

the equations

∇µ

(

Ξφ
µ

δX
)

= 0 , (13)

δGµν = δTµν ≡ 1

2
Ξφ µφ νδX , (14)

where δGµν is the linearised Einstein tensor, δTµν is the ef-

fective source term associated with the scalar field and δX is

the first order perturbation of the kinetic term. We have also

introduced the notation

Ξ ≡ A3X(X0)E3 − 2KXX(X0), (15)

with

E3 ≡ (�φ )2 − (φ µν )
2 . (16)

When one replaces the background metric by the Kerr so-

lution (1) and the background scalar field by the expression

(10), the function Ξ becomes

Ξ = 2Mµ2a2 3cos2 θ + 1

ρ6
A3X(X0)− 2KXX(X0) . (17)

At this stage, let us make two comments. First, the equa-

tions for the perturbations do not involve the Lagrangians L4

and L5 in (6). Indeed, since the functions A3,A4 and A5 vanish

on the background, the quadratic expansion of the last three

terms in the Lagrangian (6) is given by

δX [A3X(X0)δL3 +A4X(X0)δL4 +A5X(X0)δL5] , (18)

where δLI is the first order perturbation of Lagrangian LI . The

latter can be easily rewritten as

L3 =
1

2
�φφ µ ∂µX , L4 =

1

4
∂µX∂ µX , L5 =

1

4
(φφ µ ∂µ X)2 ,

hence, we see immediately that δL4 = δL5 = 0 at linear order.

As a consequence, the quadratic Lagrangian (18) reduces to

1

4
A3X(X0)�φ φ

µ
∂µ(δX2). (19)

Second, we see that using the variable δX , which is related

to the original perturbations (12) through the equation

δX = 2φ
µ

∂µ(δφ)−φ
µ

φ
ν
δgµν , (20)

considerably simplifies the dynamics. Indeed, δX is totally

decoupled from the Einstein tensor perturbations and, as we

are going to see in the next section, its equation can be solved

explicitly. As a consequence, the equations for the tensor per-

turbations reduce to the linearized Einstein equations supple-

mented with a source term which depends on δX . Therefore,

the Teukolsky equations (4) for the Newman-Penrose coef-

ficients ψ is exactly the same as in general relativity with a

source term that can be explicitly computed.

V. SOLUTION FOR THE SCALAR KINETIC DENSITY

PERTURBATION δX

We now solve equation (13) for δX . This equation is first

order in δX and therefore can be easily integrated.

First, we write it as follows

∂µ

(√−gΞφ µ δX
)

= 0 , (21)

where Ξ is given by (17), and the determinant of the metric g

and the non-vanishing components of φ µ are given by

√−g = ρ2 sinθ , (22)

φ t =
µ

∆ρ2

[

(r2 + a2)2 − a2∆sin2 θ
]

, (23)

φ r = εµ

√
R

ρ2
, φϕ = 2Maµ

r

∆ρ2
. (24)

As φ does not depend on θ (in the Kerr geometry), the com-

ponent φθ = gθθ φθ vanishes. Substituting these expressions

into (21) leads to the very simple form

ε∆∂r(
√

Rχ)+
[

(r2 + a2)2 − a2∆sin2 θ
]

∂t χ + 2Mar∂ϕ χ = 0 ,

where we have introduced the variable χ ≡ ΞδX for simplic-

ity. We decompose the solution into modes

χ = ∑
m

∫

dω χm,ω(r,θ )e
−iωt+imϕ , (25)

and we easily obtain the general solution for each mode

χm,ω (r,θ ) = (26)

Cm,ω (θ )
√

R(r)
exp

[

iε
(

−ωI(r)−ω sin2 θJ(r)+mK(r)
)]

,

where Cm,ω is, at this stage, an arbitrary function of θ
(parametrized by ω and m) and

I(r)≡−
∫

dr
(r2 + a2)2

∆(r)
√

R(r)
, (27)

J(r)≡
∫

dr
a2

√

R(r)
, (28)

K(r)≡−
∫

dr
2Mar

∆(r)
√

R(r)
. (29)

Thus, the components δXm,ω of the perturbation δX are im-

mediately given by δXm,ω = χm,ω/Ξ.

VI. BEHAVIOUR OF THE SOLUTION AT THE

BOUNDARIES

Now, let us study the regularity of this solution. We start an-

alyzing the behavior of the modes (26) when r approches the

horizon rH , where ∆ vanishes. In this limit, one finds a diver-

gence in the integrals I and K. However, the Boyer-Lindquist

coordinates also become singular at the horizon and one must

use, instead, well-behaved coordinates such as the ingoing
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Eddington-Finkelstein-like coordinates for Kerr, which we de-

note {v,r,θ , ϕ̃}. The coordinate transformation is given by

v ≡ t +

∫

dr
r2 + a2

∆(r)
, ϕ̃ ≡ ϕ + a

∫

dr

∆(r)
. (30)

As a consequence, the combination (t + εI) which appears in

(25) can be rewritten as

t + εI = v−
∫

dr
ρ3

0

(

ερ0 +
√

2Mr
)

√
2Mr(ρ0 −

√
2Mr)(ρ0 +

√
2Mr)

(31)

with ρ0(r) ≡ (r2 + a2)1/2, which shows that the singularity

disappears for the branch ε =−1. Similarly, we have

ϕ + εK = ϕ̃ − a

∫

dr

√
2Mr

(

ε
√

2Mr+ρ0

)

(ρ0 −
√

2Mr)(ρ0 +
√

2Mr)
(32)

and the singularity also disappears when ε = −1. This is in

complete accord with the background solution as ε =−1 cor-

responds to the branch where the scalar field is regular at the

event horizon.

One can also examine the behavior of the modes (26) at

large distances. Clearly, the functions J and K converge

when r tends to infinity, whereas I diverges according to

I(r) ∼ −r3/2. Taking into account that the frequency ω con-

tains an imaginary part, which depends on the typical damp-

ing time, Im(ω)≡ −1/τ < 0, one finds that the mode is sup-

pressed at large distances in the branch ε = −1 (whereas it

diverges for ε = 1).

In summary, the explicit solution for δX that we have ob-

tained appear well-behaved both at the horizon and at spatial

infinity in the branch ε =−1. Note that the solution for each

mode depends on an arbitrary function Cm,ω of the angular

variable θ , which is in principle determined by the initial con-

ditions.

VII. DISCUSSION

In this work, we have studied the perturbations of a stealth

rotating black hole solution in a subclass of DHOST theo-

ries. The background solution is characterized by a constant

value of the scalar field kinetic term X and its perturbation

δX fully describes how the tensor modes are modified in this

model. Indeed we have found that the equations of motion

for the perturbations of the geometry can be reformulated as

linearized Einstein’s equation with a source term proportional

to δX φ̄µ φ̄ν , in contrast with the GR result. In parallel, the

quantity δX obeys an equation that does not involve the ten-

sor modes and can thus be solved independently. We have

written the general solution of this equation as a superposition

of modes and studied their behaviour at the black hole horizon

and at spatial infinity, finding that they are well-behaved only

for one branch of the background solutions.

Given a solution for δX , one can then compute the source

term in the Teukolsky equation for the Newman-Penrose vari-

ables ψ . Contrary to general relativity, the equation for ψ is

no longer homogeneous. The situation thus appears analogous

to the simpler case of a vibrating string obeying a dissipative

wave equation with a source term, i.e. of the form

∂ 2ψ

∂x2
− ∂ 2ψ

∂ t2
− 2

τ

∂ψ

∂ t
= S(x, t). (33)

Assuming the boundary conditions ψ(0, t) = ψ(L, t) = 0 (and

for the source as well), ψ can be decomposed as

ψ(x, t) = ∑
n

An sin(nπx/L) e−iωnt , (34)

where the complex frequencies ωn, are given by

ωnτ ≡−i±
√

n2
π2τ2

L2
− 1 . (35)

These discrete ωn’s are analogous to the black hole QNM. In

the absence of source, the full solution is given by (34) where

the coefficients An are fixed by the initial conditions at t = 0.

When a source term is present, it is convenient to rewrite it

in the form

S(x, t) = ∑
n

∫

dω sin(nπx/L)e−iωt Ŝ(n,ω), (36)

then, the solution of the wave equation is formally given by

ψ(x, t) =−∑
n

∫

dω
Ŝ(n,ω)sin(nπx/L)e−iωt

n2π2/L2 −ω2 − 2iω/τ
. (37)

Such an analysis for the QNMs of a GR Kerr black hole in

presence of a source term due to some matter around the black

hole, can be found in [39].

In the specific case of the stealth black hole, one could pro-

ceed along the same lines. This would however require a more

precise description of the source term, i.e. identify which of

the solutions for δX are physically relevant and how they can

be generated in some physical process, analysis which goes

beyond the scope of the present work.

To conclude, our analysis is a first direct attempt to tackle

perturbations of non trivial hairy rotating black holes. It is still

not clear whether this model can be seen as a viable alternative

to GR or needs to be further restricted. There could also be

some issues concerning the validity of hairy stealth solutions

from an effective field theory point of view (see e.g. discus-

sions in [30] and very recently [40]). These aspects should be

explored further in the future (see for example [41]).
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