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ABSTRACT

Context. Mode identification has remained a major obstacle in the interpretation of pulsation spectra in rapidly rotating stars. This
has motivated recent work on calculating realistic multi-colour mode visibilities in this type of star.
Aims. We would like to test mode identification methods and seismic diagnostics in rapidly rotating stars, using oscillation spectra
that are based on these new theoretical predictions.
Methods. We investigate the auto-correlation function and Fourier transform of theoretically calculated frequency spectra, in which
modes are selected according to their visibilities. Given that intrinsic mode amplitudes are determined by non-linear saturation and
cannot currently be theoretically predicted, we experimented with various ad-hoc prescriptions for setting the mode amplitudes,
including using random values. Furthermore, we analyse the ratios between mode amplitudes observed in different photometric bands
to see up to what extent they can identify modes.
Results. When non-random intrinsic mode amplitudes are used, our results show that it is possible to extract a mean value for the
large frequency separation or half its value and, sometimes, twice the rotation rate, from the auto-correlation of the frequency spectra.
Furthermore, the Fourier transforms are mostly sensitive to the large frequency separation or half its value. The combination of the
two methods may therefore measure and distinguish the two types of separations. When the intrinsic mode amplitudes include random
factors, which seems more representative of real stars, the results are far less favourable. It is only when the large separation or half
its value coincides with twice the rotation rate, that it might be possible to detect the signature of a frequency regularity. We also find
that amplitude ratios are a good way of grouping together modes with similar characteristics. By analysing the frequencies of these
groups, it is possible to constrain mode identification, as well as determine the large frequency separation and the rotation rate.

Key words. stars: oscillations – stars: rotation – stars: interiors – stars: variables: δ Scuti

1. Introduction

One of the major obstacles in interpreting the acoustic frequency
spectra of rapidly rotating stars is mode identification, i.e. find-
ing the correspondence between theoretically calculated modes
and observed pulsations. Several reasons make it difficult to
match the two. First and foremost is the lack of simple fre-
quency patterns, as is found in solar-like stars. Indeed, rapid
rotation leads to complex spectra with overlapping classes of
pulsation modes, each with an independent frequency organisa-
tion (Lignières & Georgeot 2008). Next comes the whole prob-
lem of mode amplitudes. Most rapid rotators tend to be massive
or intermediate mass stars where modes are predominantly ex-
cited by the κ mechanism. This leads to non-linear saturation
and coupling between modes, making it nearly impossible to
predict the amplitudes with current theory. Further difficulties
include avoided crossings between modes, and all of the theo-
retical and numerical challenges associated with rapid rotation.
From an observational point of view, the high quality data from

the CoRoT (Baglin et al. 2009; Auvergne et al. 2009) and Kepler
(Borucki et al. 2009) space missions have painted a new pic-
ture of δ Scuti stars through the detection of hundreds of pulsa-
tion modes (Poretti et al. 2009; Balona et al. 2012). In a similar
way, the number of detected modes has also increased for stars
from other classes of rapidly rotating pulsators, and along with
it the complexity of the spectra (e.g. Uytterhoeven et al. 2011).
Consequently, most asteroseismic analyses have focused on in-
terpreting the general characteristics of these spectra rather than
identifying individual modes.

Various strategies have been devised to identify modes. One
can, for instance, search for frequency patterns appropriate for
rapid rotation. The background for this search is the discov-
ery of asymptotically uniform frequency spacings in the nu-
merically computed spectra of uniformly rotating polytropic
models (Lignières et al. 2006; Reese et al. 2008) and differen-
tially rotating realistic self-consistent field (SCF) models (Reese
et al. 2009a). These uniform spacings have also been modelled
through asymptotic semi-analytical formulas (Pasek et al. 2012).
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In observed spectra, recurrent frequency spacings that may cor-
respond to the large separation or half its value have been found
in some stars (García Hernández et al. 2009; García Hernández
et al. 2013; Paparó et al. 2016). Moreover, García Hernández
et al. (2015) show that mean density estimates based on this type
of spacings (obtained via a scaling relation similar to the one in
Reese et al. 2008, but based on SCF models) are compatible with
independent mass and radii measurements obtained for δ Scuti
stars in binary systems. Nonetheless, it is expected that various
effects may contribute to hide these regular frequency patterns.
First, as mentioned before, the full spectrum is a superposition
of sub-spectra corresponding to different classes of modes and
some of the uniform spacings only concern one class. This com-
plicates their detection in the full spectrum. Also, owing to their
asymptotic nature, these spacings might not be relevant to anal-
yse the low to moderate (up to radial order n ∼ 10) frequency
domain, typical of most rapidly rotating pulsators. A third ef-
fect that may come into play is the presence of mixed modes
in evolved stars and/or sharp sound speed gradients since they
can potentially modify the regular spacings. Finally, mode se-
lection effects that are due to the non-linearly determined intrin-
sic mode amplitudes could affect the detectability of the regu-
lar patterns. As a first attempt, Reese et al. (2009b) developed
a strategy to find these frequency spacings but ran into difficul-
ties when including chaotic modes, which come from another
class of modes. Lignières et al. (2010) addressed the same ques-
tion with encouraging results but their analysis was restricted
to the asymptotic regime and relied on simplifying assumptions
regarding the spectrum of chaotic modes and the mode visibili-
ties. In this paper, our first goal is to search for regular frequency
spacings in the most realistic synthetic spectra available, using
relevant frequency ranges and accurate visibility calculations.
While they can provide guidance to a similar search in real data,
we already know that these results must be taken with caution
since the intrinsic mode amplitudes used in this paper are not
realistic, but based on ad-hoc prescriptions.

Another strategy, which avoids this difficulty, is to constrain
the identification through multi-colour photometric or spectro-
scopic observations. Indeed, one can measure the amplitudes and
the phases of a given pulsation mode in different photometric
bands and then compare these by calculating amplitude ratios or
phase differences. The geometry of the modes will then lead to
different characteristic signatures. One important advantage of
this method is that these signatures are independent of the intrin-
sic mode amplitude. In a similar fashion, the oscillatory move-
ments induced by a pulsation mode cause Doppler shifts that
show up as variations in the shape of spectroscopic absorption
lines, known as line profile variations or LPVs. These variations
are then directly related to the geometry of the mode. By compar-
ing theoretical predictions with observations, we can then con-
strain the mode’s identification. In the following, we focus on
multi-colour mode identification.

Most of the previous theoretical investigations of amplitude
ratios and phase differences have been based on mode calcu-
lations that approximate the effects of rotation. For instance,
Daszyńska-Daszkiewicz et al. (2002) used a perturbative ap-
proach, whereas Townsend (2003) and Daszynska-Daszkiewicz
et al. (2007) applied the traditional approximation (that is typ-
ically used when calculating gravito-inertial modes). It is only
recently that these predictions have started to fully take into ac-
count the effects of rotation. First, Lignières et al. (2006) and
Lignières & Georgeot (2009) calculated disk-integration fac-
tors for pulsation modes calculated in fully deformed polytropic
models. Given the simplified nature of these calculations, it was

not possible to calculate associated amplitude ratios or phase dif-
ferences. More recently, Reese et al. (2013b, hereafter Paper I)
calculated mode visibilities in realistic models of rapidly rotat-
ing stars. This work relied on a grid of Kurucz atmospheres
to calculate realistic emerging intensities, thereby taking into
account limb and gravity darkening. Paper I took into account
the Lagrangian variations of temperature and effective gravity as
well as the surface distortion from the pulsation modes. The pul-
sation modes were calculated using a 2D approach that takes into
account centrifugal distortion. The main limitation was the adia-
batic approximation, which leads to an unreliable estimate of the
Lagrangian variations of the effective temperature. Nonetheless,
first results were obtained in that work that will hopefully pro-
vide a qualitative insight, both into mode visibilities and multi-
colour amplitude ratios.

In the following two sections, we succinctly recall some of
the main aspects of pulsation modes in rapidly rotating stars,
as well as the basic principles behind the visibility calculations
described in Paper I. We then examine the auto-correlation func-
tions of theoretically calculated spectra that overlap the p- and
g-mode domains. This is followed by a discussion on Fourier
transforms of frequency spectra and how these complement
auto-correlation functions. In Sect. 6, we show how multi-colour
photometric mode identification can be extended to rapidly ro-
tating stars. Finally, a discussion concludes the paper.

2. Pulsation modes

Rapidly rotating models are calculated thanks to the self-
consistent field (SCF) method (Jackson et al. 2005; MacGregor
et al. 2007). The resultant models represent zero age main se-
quence (ZAMS) stars with a cylindrical rotation profile, and
hence a barotropic stellar structure, i.e. a structure where dif-
ferent thermodynamic quantities, such as the density, pressure,
and temperature are constant on isopotential surfaces (deduced
from the sum of the gravitational and centrifugal potentials). The
pulsation modes are calculated using the two-dimensional oscil-
lation program (TOP Reese et al. 2006, 2009a). As described in
Paper I, an improved treatment of the models and a slightly dif-
ferent mechanical boundary condition were necessary to obtain
eigenfunctions appropriate for visibility calculations. Compared
to Paper I, the frequency range has been extended both to higher
and lower frequencies, including g modes although, for the most
part, we focus on p modes.

As was shown in Lignières & Georgeot (2008, 2009), acous-
tic modes subdivide into several classes of modes as the rotation
rate increases. Each class of mode has its own typical geometry
and frequency organisation, whether regular or statistical. This
behaviour stems from the gradual transition of the ray dynamics
system going from being integrable to chaotic – a transition that
causes different regions, associated with the different classes, to
appear in the Poincaré section. Of particular interest are the is-
land modes, the rotating counterpart to low degree modes. These
modes focus around a periodic trajectory and are characterised
by the quantum numbers (ñ, ˜̀, m), where ñ is the number of
nodes along the trajectory, ˜̀ the number of nodes perpendicu-
lar to the trajectory, and m the usual azimuthal order. As illus-
trated in the animation in Reese (2008), it is possible to trans-
form these quantum numbers into the usual spherical quantum
numbers (n, `, m) and inversely, using the following relations
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Odd Even

(n, `, m) = (9, 2, 1) (n, `, m) = (10, 1, 1)
(ñ, ˜̀, m) = (19, 0, 1) (ñ, ˜̀, m) = (20, 0, 1)

Fig. 1. Meridional cross-sections of two island modes with the same
( ˜̀, m) values but opposing parity, as determined from the parity of ñ.
The colours indicate the Eulerian pressure perturbation divided by the
square root of the equilibrium density.

based on what could be described as node conservation:
ñ = 2n + ε,
˜̀ =

`−|m|−ε
2 ,

ε ≡ (` + m) [2],


n = ñ−ε

2 ,

` = 2 ˜̀ + |m| + ε,

ε ≡ ñ [2],
(1)

where ε corresponds to mode parity, i.e. ε = 0 for even modes,
modes that are symmetric with respect to the equator, and ε = 1
for odd modes. We note, in particular, that the parity of ñ corre-
sponds to that of the mode. This simply corresponds to the fact
that the node along the equatorial plane is treated as a pseudo-
radial node in island modes. Closely related to this is the fact
that one set of ( ˜̀, m) values corresponds to two sets of (`, m)
values, depending on the parity of ñ, as illustrated in Fig. 1. At
this point, it is also useful to introduce the large frequency sepa-
ration, ∆ and the semi-large frequency separation, ∆/2:

∆ = ωn+1, `,m − ωn, `,m = ωñ+2, ˜̀,m − ωñ, ˜̀,m, (2)
∆

2
= ωñ+1, ˜̀,m − ωñ, ˜̀,m, (3)

where ω is the frequency, indexed either by the spherical or is-
land mode quantum numbers.

Recently, Pasek et al. (2012) found asymptotic expressions
for the profile of island modes in the direction perpendicular to
the periodic trajectory. Apart from a 1/

√
ω scaling, modes with

the same ( ˜̀, m) values have the same transverse profile. This ap-
plies in particular at the stellar surface. Hence, modes with the
same ( ˜̀, m) values have similar surface profiles in one hemi-
sphere. They are either symmetric or antisymmetric with respect
to the equator, depending on the parity of ñ. We note that using
` instead of ˜̀ also enables us to select island modes of the same
equatorial parity. In addition, the weak influence of the Coriolis
force on high-frequency acoustic modes (see Reese et al. 2006)
implies that ±m pairs of mode are nearly identical (with near-
degenerate frequencies in the corotating frame). It follows that
island modes with the same (`, |m|) values will have similar sur-
face profiles. They should then have similar visibilities (as de-
scribed in the next section) and this property will play an im-
portant role in the mode identification methods described in the
following.

3. Mode visibilities

Mode visibilities are obtained by perturbing the expression that
gives the amount of energy radiated by a star to an observing

instrument:

E =
1

2πd2

"
Vis.Surf.

I(µ, geff ,Teff)eobs. · dS, (4)

where d is the distance to the star, µ the cosine of the an-
gle between the outward normal to the stellar surface and the
observer’s direction, “Vis. Surf.” the surface visible to the ob-
server, geff and Teff the effective gravity and temperature, and
I(µ, geff ,Teff) the specific radiation intensity, multiplied by the in-
strument’s and/or filter’s transmission curve and integrated over
the wavelength spectrum. The perturbed expression is

∆E(t) =
1

2πd2<

{"
Vis.Surf.

δI(µ, geff ,Teff , t)eobs. · dS

+

"
Vis.Surf.

I(µ, geff ,Teff)eobs. · δ(dS)
}
, (5)

where δ denotes a Lagrangian perturbation and <{. . . } the real
part. Variations caused by fluctuations to the boundary between
the visible and hidden side of the star lead to second order effects
and are therefore neglected. The Lagrangian perturbation to the
specific intensity, δI, is calculated as follows:

δI = I
(
∂ ln I
∂ ln Teff

δTeff

Teff

+
∂ ln I
∂ ln geff

δgeff

geff

)
+
∂I
∂µ
δµ. (6)

The quantities I, ∂ ln I/∂ ln Teff , ∂ ln I/∂ ln geff , and ∂I/∂µ are
calculated using a grid of Kurucz atmospheres that spans the rel-
evant effective temperature and gravity ranges (see references
and more details in Paper I). This enables us to take into ac-
count both limb and gravity darkening. The quantities δTeff/Teff ,
δgeff/geff and δµ are deduced from the surface profiles of the
pulsation modes as described in Paper I. We note that, since the
pulsation modes are calculated using the adiabatic approxima-
tion, δTeff/Teff is not accessible and is therefore approximated
by δT/T . As has been pointed out in Dupret et al. (2002) and
Dupret et al. (2003), this can lead to poor results, since δT/T is
not reliable in the outer layers when calculated adiabatically. A
full non-adiabatic calculation would remedy this problem but is
beyond the scope of this paper. Finally, the term δ(dS), which
intervenes in the second integral in Eq. (5), is also deduced from
the surface profiles of the eigenmodes, as described in Paper I.
Hence, the geometrical distortions of the stellar surface, induced
by the pulsation modes are fully taken into account. We note that
the centrifugal deformation is also taken into account, both in the
pulsation and visibility calculations.

4. Auto-correlation function of the frequency
spectra

4.1. General description

We first look at the auto-correlation function of the frequency
spectra using mode visibilities in CoRoT’s photometric band to
set the amplitudes. These spectra have been calculated in 2 M�
stellar models with rotation rates ranging from 0.0 to 0.8 ΩC,
where ΩC is the critical rotation rate1, the rotation rate at which

1 The critical rotation rate described here differs from that typically
used by observers. Indeed, it is calculated using geq, the equatorial grav-
ity of the current model, whereas most observers use the equatorial
gravity of the model at breakup, which tends to be smaller owing to
the increased equatorial radius. As such, the values used here convert to
larger values if using the observers’ convention.
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the centrifugal force exactly compensates the equatorial gravity,
geq (e.g. Jackson et al. 2005):

ΩC =

√
geq

r
· (7)

We extract the N most visible modes in the CoRoT photomet-
ric band. The selected frequencies are given the same ampli-
tude and are convolved by a Gaussian profile with a width of
1/15 d−1, after which we calculate the auto-correlation function.
The width of the Gaussian profile had to be carefully selected.
Indeed, a smaller width leads to signatures that are less clear
given the variations of the large frequency separation in the fre-
quency range considered here, whereas a larger width leads to a
loss of accuracy in the position of peaks in the auto-correlation
function.

To select modes according to how visible they are, we not
only need their visibilities (as computed in Sect. 3), but also
their intrinsic amplitudes, since the observed amplitude is pro-
portional to the product of the two. However, determining the
intrinsic amplitude of a mode in a classical pulsator is an un-
solved theoretical problem (Goupil et al. 2005, and references
therein). Accordingly, we experiment with the following ad-hoc
ways of defining the intrinsic amplitude:

– normalisation of the maximal displacement:

(ω + mΩ)2 max
V
‖ξ‖ = constant; (8)

– inclusion of random factors: the mode visibilities from the
previous case are multiplied by random numbers;

– normalisation of the kinetic energy:

(ω + mΩ)3

√∫
V
ρ0‖ξ‖2dV = constant; (9)

– normalisation of the mean surface displacement:

(ω + mΩ)2

√∫
S
‖ξ(R)‖2dS = constant. (10)

In each case, an extra power of (ω+ mΩ) is introduced to have a
near constant amplitude for acoustic modes of the same degree
and increasing frequency (as would be the case in a slowly rotat-
ing solar-like pulsator). In the first three cases, the normalisation
by a volume-related quantity ensures that gravity (or gravito-
inertial) modes have lower surface amplitudes than acoustic
modes. In contrast, gravity modes are not penalised when the
mode amplitudes are determined by the mean surface displace-
ment normalisation. We also try out a case where the intrinsic
mode amplitudes are multiplied by a random factor. This enables
us to test how the auto-correlation function is affected by a dras-
tic reordering of the observed amplitudes (which could occur as
a result of non-linear interactions between modes).

4.2. Normalisation of the maximal displacement

Figure 2 shows the auto-correlation functions of a spectrum
spanning seven large frequency separations from (n, `, m) =
(2, 1, 0) to (9, 1, 0), corresponding to a 2 M� stellar model ro-
tating at 0.5 ΩC. Auto-correlation functions have been computed
for four different inclination angles and for various amplitude
thresholds decreasing from N = 10 to 100. We note that for

the pole-on configuration i = 0◦, only axisymmetric modes are
visible. Accordingly, high values of N implicitly lead to the as-
sumption that ` > 3 modes are visible, which may be some-
what optimistic and should be treated with caution (although
some publications suggest that these modes can sometimes be
detected, see, for example, Poretti et al. 2009). Very clear sig-
natures of the large frequency separation, ∆, and half its value
show up for i = 0◦ and i = 30◦. These signatures are caused
by the dominant presence of island modes. We also observe that
the ∆/2 signature disappears at large inclination angles (see the
fourth column in Fig. 2). This is due to the cancellation of anti-
symmetric island modes seen in near equator-on configurations.

Another important feature of the auto-correlation function is
a small peak at twice the rotation rate, which is mostly seen for
high values of i and using large numbers of selected modes. This
is caused by the frequency difference between prograde modes
with m = −1 and their retrograde counterparts, m = 1. Indeed,
as already mentioned, the weak effect of the Coriolis force in-
duces a near-degeneracy of ±m modes in the corotating frame,
regardless of whether they are island or chaotic in nature. This
produces pairs of frequencies separated by 2mΩ in the observed
spectra of a uniformly rotating star. Their visibilities are also
very similar. The 2Ω peak is then due to m = ±1 pairs, the most
visible non-axisymmetric modes.

Figure 3 shows what happens with a model rotating at
0.7 ΩC. This time, the large frequency separation is very sim-
ilar to twice the rotation rate. As a result, the auto-correlation
functions show very strong peaks at both ∆ ' 2Ω and ∆/2 ' Ω,
regardless of the inclination angle. This is not surprising since
the corresponding regularities add up to produce strong peaks.
The pulsation frequencies actually tend to cluster around points
separated by ∆/2 ' Ω. While such regularities are then easier to
spot, it is difficult to disentangle between changing the pseudo-
radial order, ñ, and changing the azimuthal order. A similar co-
incidence occurs around 0.3ΩC, where 2Ω is close to ∆/2. This
also leads to strong peaks in the auto-correlation functions.

It is interesting to observe that the frequency spacing
Ω ' ∆/2 shows up quite strongly in Fig. 3, even in the equator-
on (i = 90◦) configuration. This is somewhat surprising
since antisymmetric modes cancel themselves out, leaving only
even modes that are spaced by ∆ for fixed values of ( ˜̀, m).
Furthermore, prograde and retrograde modes with m = ±1 are
spaced by 2Ω. The explanation lies in the fact that if one con-
siders a so-called multiplet of modes with the same (ñ, ˜̀) val-
ues, at sufficient rotation rates, modes with consecutive m values
are approximately separated by Ω, at least for small values of
|m|. Indeed, the advection term mΩ is much stronger than the
frequency deviations in the corotating frame, which behaves as
m/
√

ñ according to the numerical calculations of Reese et al.
(2009a) and the analytical model of Pasek et al. (2012).

4.3. Inclusion of random factors

Here, we multiplied the mode visibilities from the previous
case by random numbers, before selecting the highest-amplitude
modes and calculating the auto-correlation functions. The ran-
dom numbers are between 1 and 100 and are uniformly dis-
tributed on a logarithmic scale. Figure 4 shows the resultant auto-
correlation functions for a model rotating at 0.7 ΩC. As can be
seen, the signature of regularities are much less evident than pre-
viously. Nevertheless, some peaks still remain, for instance the
peak around ∆ for i = 30◦ with 30 modes and the peak around
∆/2, and to a lesser extent ∆, for i = 60◦ with 200 or 300 modes.
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Fig. 2. Auto-correlation functions of acoustic spectra in a 2 M� stellar model rotating at 0.5 ΩC. The spherical radial orders of the modes, n,
range from 2 to 9, therefore spanning 7 large frequency separations. The 4 columns correspond to 4 different inclinations, i = 0◦ being a pole-on
configuration. Each row corresponds to a different number of included modes. For example, in the top row, only the 10 most visible modes are
included in the frequency spectra before calculating the auto-correlation function. The vertical dotted and dashed green lines give the rotation rate,
Ω, and twice its value. The vertical dashed and continuous red lines indicate the large frequency separation, ∆, and half its value (see Eqs. (2)
and (3)).
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Fig. 3. Same as Fig. 2, except that the model is rotating at 0.7 ΩC.
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Fig. 4. Same as Fig. 2, except that the model is rotating at 0.7 ΩC and the visibilities have been multiplied by random numbers between 1 and 100
(which therefore affects which modes are selected in the frequency spectra).

Similar signatures occur around 0.3ΩC, where 2Ω is close to
∆/2. However, apart from the coincidences between 2Ω and ∆
or ∆/2, the multiplication of the mode amplitude by such a ran-
dom factor makes the characteristic frequency separations much
more difficult to extract.

4.4. Other normalisations

Figure 5 shows how the auto-correlation functions are modi-
fied when using the normalisation based on the kinetic energy.
Qualitatively, this remains the same as Fig. 2. Some of the peaks
stand out better, notably the 2Ω peaks for few modes. In contrast,
the normalisation based on the mean surface displacement (not
shown) gives poor results. The explanation for this is quite sim-
ple: by normalising by the mean surface displacement, gravity
(or gravito-inertial) modes are no longer penalised. Furthermore,
the (ω+mΩ)2 factor in Eq. (10) ends up amplifying them. Hence,
the spectra of selected modes based on this normalisation are
dominated by gravity modes, which do not follow the same pat-
tern, thereby drowning out the ∆, ∆/2, Ω, and 2Ω signatures in
most cases.

5. Fourier transform of the frequency spectrum

5.1. General description

Recently, García Hernández et al. (2009), García Hernández
et al. (2013) and García Hernández et al. (2015) analysed the
Fourier transforms of the frequency spectra of the δ Scuti stars
HD 174936 and HD 174966, observed by CoRoT. They in-
vestigated what happens when the number of selected frequen-
cies varies from a few tens to a few hundreds. Below, we

apply the same procedure, but to our numerically calculated fre-
quency spectra. We select modes according to their visibilities
in CoRoT’s photometric band, then assign the same amplitude
to the selected modes before calculating the Fourier transform of
the resultant spectrum. To facilitate comparisons with the auto-
correlation functions, we apply this technique to the frequency
spectra spanning seven radial orders that were studied in the pre-
vious section (i.e. Figs. 2 and 3).

5.2. Normalisation of the maximal displacement

Figure 6 shows the squared modulus of the Fourier transform
of frequency spectra in the model rotating at 0.5 ΩC, for various
numbers of selected modes and for four different inclinations.
Taking the Fourier transform of a function that depends on fre-
quency yields another function, which depends on time t; it is
plotted here as a function of 1/t to facilitate the identification of
regularities. At low inclinations, peaks appear at ∆/2, with their
forest of harmonics at ∆/4, ∆/6, etc. This is to be expected be-
cause the frequency spectrum behaves like a Dirac comb with a
∆/2 periodicity. At higher inclinations, a peak appears close to
∆ (which is an expected regularity), but is shifted; we also re-
cover some harmonics (especially at ∆/3), but not all of them.
This is probably an effect of rotation that does not necessar-
ily add peaks, but acts as a modulation of the amplitude of the
Fourier transform. Indeed, we notice that rotation does not pro-
duce peaks at 2Ω or Ω. This is because, although there are recur-
rent frequency separations of 2Ω (or actually slightly smaller be-
cause of the Coriolis force), such separations are formed by pairs
of frequencies rather than by a Dirac comb. Nevertheless, when
the frequency spectrum is dominated by two similar subspectra,
with the second one being identical to the first one, but shifted
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Fig. 5. Same as Fig. 2 (i.e. with a model rotating at 0.5ΩC), but where the modes are normalised by the kinetic energy, multiplied by the appropriate
power of (ω + mΩ).

by 2Ω (this is what happens when m = ±1 modes dominate),
the Fourier transform of the full spectrum will be the Fourier
transform of the subspectrum multiplied by cos2(Ωt). This type
of modulation can make some peaks disappear or slightly shift
some broad peaks. In this kind of configuration, it is impossible
to unambiguously detect the correct large separation with the
Fourier transform only.

Figure 7 shows what happens with the model rotating at
0.7 ΩC, where ∆ nearly coincides with 2Ω. In this case, the fre-
quency spectra take on a fairly simple form in which the fre-
quencies cluster around points separated by ∆/2 ' Ω, regardless
of inclination. This leads to strong peaks at ∆/2 and ∆/4 in the
Fourier transforms, regardless of inclination.

5.3. Other normalisations

Figure 8 shows the effects of the alternative normalisations de-
scribed in Sect. 4.1 on the Fourier transform of the spectra of
the Ω = 0.5ΩC and Ω = 0.7ΩC models. The Fourier transforms
continue to detect ∆/2 and its many harmonics in many cases,
even when using random factors or the normalisation based on
the mean surface displacement. However, the tests involving ran-
dom factors benefit from the coincidence between ∆ and 2Ω.
In the absence of this type of coincidence, the ∆/2 signature is
far less visible, except in a few cases where it still shows up.
Overall, these tests confirm the robustness of the large and semi-
large frequency separations, as detected by the Fourier trans-
form, to different non-random normalisations, or when exam-
ining favourable cases where Ω coincides with ∆/2 or ∆.

Overall, the Fourier transforms complement the auto-
correlation functions quite nicely. Indeed, although both detect

the separation ∆/2, only the auto-correlation functions are
sensitive to 2Ω. As explained above, these frequency separa-
tions are produced by pairs of modes rather than by Dirac combs,
thereby escaping detection by Fourier transforms, but not by the
auto-correlation functions. Hence, this provides a simple way to
distinguish between the two and to get a better grasp of the reg-
ularities present in the spectrum.

6. Multi-colour mode identification

6.1. Method

We now turn our attention to multi-colour mode identification.
As emphasised in the introduction, multi-colour mode signa-
tures, such as the ratios between mode amplitudes observed in
different photometric bands, do not depend on intrinsic mode
amplitudes since these factor out. In Paper I, it was shown that
amplitude ratios tend to be similar for island modes with the
same (`, |m|) values, even in the most rapidly rotating models.
This is consistent with the fact that such modes have a similar
surface structure (see Sect. 2). Hence, this raises the question
as to whether we can select modes with similar properties by
picking a reference mode at random in an oscillation spectrum
and searching for the N other modes that produce the most sim-
ilar amplitude ratios. In what follows, we use the following cost
function to evaluate the proximity of a mode’s amplitude ratios
to that of the reference mode:

J =

d∑
i=1

(
Vi − V ref

i

)2
, (11)
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Fig. 6. Fourier transform of frequency spectra in a 2 M� model rotating at 0.5 ΩC. Each row corresponds to a different number of selected modes,
as indicated on the left, and each column to a different inclination, as stated above. The red, continuous and discontinuous, vertical lines correspond
to the large frequency separation, ∆, and various fractions of this value: ∆/4, ∆/3, and ∆/2. The green, dotted and dashed, vertical lines correspond
to Ω and 2Ω, respectively.

Fig. 7. Same as Fig. 6, but for a model rotating at 0.7 ΩC.
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Inclusion of random factors (Ω = 0.7ΩC)

Mean surface displacement normalisation (Ω = 0.5ΩC)

Fig. 8. Same as Fig. 6, but where the mode normalisation includes random factors (top panel), or is based on the mean surface displacement
(bottom panel).

where i is an index on the photometric band, d the number of
photometric bands, V ref

i the visibilities of the reference mode and
Vi those of the mode being evaluated. The visibilities have been

normalised using
∑d

i=1 V2
i =

∑d
i=1

(
V ref

i

)2
= 1 to avoid favouring

a particular photometric band. Nonetheless, a small value for J
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Table 1. Overall success rate in finding similar modes via the multi-colour mode identification scheme.

Adiabatic (2 M�) Adiabatic (1.8 M�) Pseudo non-adiabatic (1.8 M�)
Orientation Island Same (`, |m|) Same ( ˜̀, |m|) Island Same (`, |m|) Same ( ˜̀, |m|) Island Same (`, |m|) Same ( ˜̀, |m|)

All 0.564 0.359 0.416 0.554 0.401 0.452 0.469 0.303 0.349
i = 0◦ 0.519 0.241 0.519 0.594 0.256 0.594 0.633 0.256 0.633
i = 30◦ 0.474 0.268 0.375 0.483 0.343 0.430 0.441 0.303 0.357
i = 60◦ 0.643 0.444 0.450 0.600 0.449 0.449 0.485 0.323 0.340
i = 90◦ 0.597 0.402 0.402 0.592 0.462 0.462 0.450 0.275 0.275

implies that the Vis are close to the V ref
i s, and therefore that the

amplitude ratios are similar.
This approach is different to that typically taken in other

works such as Daszyńska-Daszkiewicz et al. (2002). Indeed,
most authors compare observed amplitude ratios directly with
theoretical ones. The approach described here consists in com-
paring observed amplitude ratios between each other. It thus
bypasses limitations in the theoretical predictions. In the follow-
ing, we nevertheless use theoretical amplitude ratios to test its
validity.

6.2. Adiabatic case

We start with the (n, `, m) = (9, 4, 1) mode in the model at
0.6 ΩC as the reference mode and search for the nine other modes
with the most similar amplitude ratios. The mode visibilities are
calculated using the Geneva photometric system, which con-
tains seven photometric bands. Before normalising the visibil-
ities, we filter out modes where the overall visibility is more
than 100 times smaller than that of the reference mode, thereby
excluding most gravity modes. Figure 9 shows the results for
i = 60◦. These results are promising. Apart from the mode at
5.124 ΩK, all of the modes belong to the (`, |m|) = (4, 1) fam-
ily of island modes. This then leads to clear peaks in the auto-
correlation function at 2Ω, ∆, and 2∆, as well as combination
peaks at ∆ − 2Ω, 2∆ − 2Ω, and ∆ + 2Ω. Another example of
highly successful mode selection using the same strategy can be
found in Fig. 4 of Reese et al. (2013a). However, not all cases
work out so well.

To get an overall picture of the mode selection method, we
applied it to all of the identified island modes above a given
threshold frequency in the pulsation spectrum of our 2 M�, 0.6
ΩC stellar model. Then, we quantified the mode selection suc-
cess rate by finding the average number of island modes (exclud-
ing the reference mode), the average number of island modes
with the same (`, |m|) values as the reference mode, and the aver-
age number of island modes with the same ( ˜̀, |m|) values, all of
which are subsequently divided by the total number of selected
modes, i.e. N = 9, to get a success rate between 0 and 1.

Results are given in Cols. 2–4 of Table 1, for a threshold
frequency ωthreshold = 8.0 ΩC. In this case, the total number of
island modes divided by the total number of modes is 0.0115.
Thus, the much higher success rates obtained show that select-
ing modes according to similar amplitude ratios considerably in-
creases the chances of finding island modes, provided the refer-
ence mode is an island mode. When the inclination is high, the
method selects island modes of the same parity. In contrast, in
near pole-on configurations, it will select modes of both equa-
torial symmetries. This property explains the difference in the
(`, m) versus ( ˜̀, m) success rates. Repeating this test for differ-
ent values of the threshold frequency shows that higher success
rates are achieved for higher frequency modes, most probably
because they are further into the asymptotic regime.

Overall, the method appears to be a promising way of choos-
ing modes with similar surface distributions and hence quantum
numbers. Regularities of the sub-spectrum of selected modes
may then help to determine the azimuthal order, thanks to
the frequency separations 2|m|Ω, and constrain the radial or-
der. Nonetheless, we may still wonder if this kind of strategy
will continue to work when non-adiabatic effects are taken into
account. Below, we examine this question by analysing mode
visibilities in which non-adiabatic effects are approximated.

6.3. Pseudo non-adiabatic effects

Non-adiabatic effects strongly modify the effective temperature
variations and, hence, multi-colour photometric signatures of
pulsation modes. One may then wonder if these effects are able
to mask the structural similarities between modes with similar
quantum numbers and thus alter the promising results of the
mode selection method obtained in the adiabatic case. In the ab-
sence of full non-adiabatic pulsation calculations in rapidly ro-
tating δ Scuti stars, we use non-adiabatic calculations in the non-
rotating case to derive approximate non-adiabatic visibilities in
the rotating case.

In non-rotating stars, the relative effective temperature fluc-
tuations are typically proportional to the radial displacement
δTeff

Teff

=
ξr

R?
fT exp(iφT ), (12)

where R? is the radius of the non-rotating model. The quan-
tity fT exp(iφT ) represents the non-adiabatic effects and gen-
erally depends on the degree ` and frequency ω/ΩK of the
mode, as well as on the effective temperature and surface grav-
ity. However, as illustrated in Fig. 10, it actually depends little on
the harmonic degree for acoustic modes (i.e. at sufficiently high
frequencies). We also note that, when described as a function
of ω/ΩK, fT exp(iφT ) is only slightly affected by the effective
gravity, except at high frequencies, where the effect is some-
what stronger. This can be seen by comparing the two mod-
els in Fig. 10. In a rotating star, the effective temperature and
the surface gravity vary from pole to equator. Hence, to esti-
mate non-adiabatic effects, we calculated, using the MAD code
(Dupret 2001), fT exp(iψT )/R? for a set of non-rotating mod-
els along four evolutionary sequences, which span the effective
temperature and surface gravity ranges of our rotating models,
and for a set of modes spanning the relevant frequency range.
We smoothed out the small differences in degree and interpo-
lated according to frequency, effective temperature, and effective
gravity, to have a value for fT exp(iφT )/R? at each co-latitude for
each frequency. The function | fT |/R? is shown in Fig. 11. This
was subsequently multiplied by R(θ), the radius of the rotating
model, which depends on the co-latitude, θ, and then applied at
the corotating pulsation frequency, (ω + mΩ)/ΩK, to estimate
the effective temperature variations arising in our pulsating ro-
tating models. A quick look at the function | fT |/R? shows that it
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Fig. 9. Amplitude ratios, frequency spectrum and ranks, associated auto-correlation function, and meridional cross-sections of the reference mode
(n, `, m) = (9, 4, 1) and the 9 other most similar modes, for an inclination of i = 60◦. In the first row, the left panel shows the amplitude ratios,
the dashed line corresponding to the reference mode (we note that this line is hardly visible because it is mostly covered up by the solid lines
from the other modes), the middle panel gives the frequencies, where a higher rank indicates a higher resemblance with the reference mode, 10
corresponding to the reference mode, and the right panel displays the auto-correlation function of the sub-spectrum of the selected frequencies.
The second and third rows show the meridional cross-sections of the selected modes. Beneath each mode, the values of (n, `, m) are indicated
when the mode corresponds to an ˜̀ < 2 island mode. Otherwise, only the azimuthal order, m, is provided.

Fig. 10. Quantities fT and φT in two non-rotating models with masses
1.8 M� and 2.0 M�. The two models have virtually the same tempera-
ture (8143.9 K and 8137.3 K, respectively), but different log (g) values
(4.1249 dex and 3.9593 dex, respectively). The different line styles cor-
respond to different ` values, and the overlapping vertical dotted lines
(which are hard to distinguish) indicate the position of the fundamental
modes of both models.

cannot simply be expressed as the product of a function that de-
pends on θ alone and another function that depends on frequency
alone, i.e. it is non-separable in terms of these two variables.

Fig. 11. Quantity | fT |/R? as a function of co-latitude and frequency, for
the 1.8 M� rotating model.

Accordingly, this distorts the θ dependence of δTeff/Teff as the
frequency changes, thereby leading to increased scatter in the
photometric signatures of a given (`, |m|) family of island modes.

As in the previous section, the method to find similar modes
is applied to all of the island modes above a frequency threshold
of 8.0 ΩC and its efficiency is quantified by computing an overall
success rate. In Table 1, the adiabatic results for a rotating model,
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M = 1.8 M�, Ω = 0.6 ΩC, (see Cols. 5–7) are compared with the
pseudo non-adiabatic ones (Cols. 8–10). In the present case, the
number of island modes divided by the total number of modes
is 0.0330. Table 1 shows that pseudo non-adiabatic success rates
are worse than adiabatic ones, but the method remains efficient in
selecting island modes when island modes are used as reference
modes.

There are a number of cases where pseudo non-adiabatic cal-
culations lead to similar or even better results than the adiabatic
calculations, such as the case illustrated in Fig. 12. In the adia-
batic case, five of the selected modes are not island modes, even
though the reference mode is an island mode. In the pseudo non-
adiabatic case, only one of the selected modes is not an island
mode, and there is also one island mode with a different value of
|m|. The remaining modes correspond to pairs of (`, |m|) = (2, 1)
island modes. This gives rise to strong signatures at 2Ω, ∆, and
2∆, as well as some combination peaks in the auto-correlation
function.

Hence the technique appears to remain viable in the non-
adiabatic case. Furthermore, phase differences (e.g. Balona &
Evers 1999; Dupret et al. 2005) could also be exploited and
may lead to higher success rates by providing supplementary
constraints. This can, however, only be tested when full non-
adiabatic pulsation calculations are available in rapidly rotating
δ Scuti stars, since it is only in such conditions that phase differ-
ences can be obtained with a reasonable accuracy.

7. Conclusion

In this paper, we investigated different ways of applying the vis-
ibility calculations of Reese et al. (2013b) to the interpretation
of pulsation spectra in rapidly rotating stars. Given the lack of a
comprehensive theory on non-linear mode saturation in δ Scuti
stars, we tested various ad hoc assumptions to determine intrin-
sic mode amplitudes. As such, these results must be taken with
caution but represent a first step towards interpreting pulsation
spectra in these stars using realistic mode visibilities.

We first looked at the auto-correlation functions of frequency
spectra in much the same way as was done in Lignières et al.
(2010), but using the newer more realistic visibilities, applied
to spectra of acoustic modes calculated in a self-consistent way
(rather than having the non-axisymmetric modes estimated from
the axisymmetric ones). Our results confirm those of Lignières
et al. (2010) in the sense that it is possible to observe peaks cor-
responding to a mean value of the large frequency separation,
∆, half its value, ∆/2, the rotation rate, Ω, and twice the rota-
tion rate, 2Ω, when conditions are favourable. These conditions
are achieved when the frequencies span a large enough range to
reinforce recurrent spacings, and when not too many modes are
included. The orientation of the star is important since it will
favour either ∆/2 for low inclinations (i.e. close to pole-on), or
∆ and 2Ω for high inclinations. The Ω spacing is visible ow-
ing to the usual multiplet structure at small rotation rates, then
it disappears and becomes visible again at high rotation rates
when a new of type multiplet forms. Of particular interest are the
situations where 2Ω coincides with either ∆/2 or ∆, which oc-
curs for models rotating at 0.3 ΩC or 0.7 ΩC, respectively. These
types of situations lead to a very strong signature in the auto-
correlation function owing to a simplification of the spectrum in
which modes tend to cluster together. Although this is ideal for
detecting these frequency separations, it also makes it more diffi-
cult to disentangle the two. Finally, we experimented with mul-
tiplying the intrinsic amplitudes by random numbers between
1 and 100, uniformly spread out on a logarithmic scale. This

is used as a poor substitute for the effects of non-linear satura-
tion and mode coupling on the amplitudes in such stars. Despite
this, a weak signature of the frequency separations remained
in the favourable case, where ∆ coincided with 2Ω. This gives
us hope that it may be possible to detect, at least in favourable
cases, these characteristic separations, and might explain the re-
cent detection of recurrent spacings in δ Scuti stars (Mantegazza
et al. 2012; Suárez et al. 2014; García Hernández et al. 2009;
García Hernández et al. 2013; García Hernández et al. 2015).

We also looked at Fourier transforms of the frequency spec-
tra. Although these also detected ∆/2 as a recurrent spacing, 2Ω
escaped detection. This is because the latter is not formed by a
Dirac comb, but rather by isolated pairs of frequencies. This dif-
ference between the two approaches is quite useful since it helps
us distinguish between the two types of separations. Hence, we
hope to interpret observed spectra by combining the two ap-
proaches and correctly identifying ∆/2 and 2Ω. Further tests
based on different mode normalisations confirmed the robustness
of both the auto-correlation functions and the Fourier transforms
at detecting these characteristic frequency separations, as long
as gravito-inertial modes were excluded from the analysis.

Finally, we turned our attention to multi-colour mode identi-
fication. A key advantage of multi-colour mode signatures, such
as amplitude ratios, is that the intrinsic amplitudes factor out,
thereby leaving a signature that is only sensitive to the geo-
metric structure of the mode. Previous investigations into the
matter had concluded that, due to the dependence of ampli-
tude ratios on inclination and azimuthal order, it would be very
difficult to identify modes in rapidly rotating stars from multi-
colour photometry alone (e.g. Daszyńska-Daszkiewicz et al.
2002; Townsend 2003). In contrast, we present more promising
results. To achieve this, we apply a strategy that is different from
the non-rotating case, a strategy which involves choosing a refer-
ence mode and searching for other modes with the most similar
amplitude ratios. By repeating this procedure for different ref-
erence modes, we can group modes together into families with
similar amplitude ratios. It turns out that these families have sim-
ilar azimuthal orders and degrees, and their frequencies follow
patterns that help to constrain the identification of these modes,
as well as the rotation rate and the large frequency separation.
Furthermore, by comparing modes between each other rather
than with theoretical predictions, we bypass the current limita-
tions with our theory such as the lack of full 2D non-adiabatic
pulsation calculations, or the difficulties in modelling the inter-
actions between such modes and convection. Nonetheless, we
investigated, in an approximate way, non-adiabatic effects on
multi-colour mode amplitudes. We found that non-adiabatic ef-
fects do tend to increase the scatter between the multi-colour
photometric signatures of similar modes owing to its distortion
of δTeff/Teff as a function of frequency. This makes the above
mode identification strategy more difficult to apply although
some of the results still remain promising. Even if it turned out
to be too penalising for mode identification, it would still be pos-
sible to extract recurrent spacings, such as the rotation rate, and
possibly the large frequency separation.

Of course, for multi-colour mode identification to work
well, high-quality multi-colour photometric observations of
stars with numerous pulsation modes, such as δ Scuti stars,
are needed. In this regard, the constellation of nano-satellites,
BRITE (Kuschnig et al. 2009), is a promising source of this type
of data, given that it observes in red and blue photometric bands.
The PLATO mission, scheduled for launch in 2025, will contain
a platform of 26 telescopes, two of which will include broadband
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Fig. 12. Same as Fig. 9, but for the reference mode (n, `, m) = (4, 2, 1) (and for both the adiabatic and pseudo non-adiabatic case).
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filters and the remaining 24 will operate in white light (Catala
et al. 2011; Rauer et al. 2014).
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Daszyńska-Daszkiewicz, J., Dziembowski, W. A., Pamyatnykh, A. A., & Goupil,

M.-J. 2002, A&A, 392, 151
Daszynska-Daszkiewicz, J., Dziembowski, W. A., & Pamyatnykh, A. A. 2007,

Acta Astron., 57, 11
Dupret, M. A. 2001, A&A, 366, 166
Dupret, M., De Ridder, J., Neuforge, C., Aerts, C., & Scuflaire, R. 2002, A&A,

385, 563
Dupret, M.-A., De Ridder, J., De Cat, P., et al. 2003, A&A, 398, 677
Dupret, M.-A., Grigahcène, A., Garrido, R., et al. 2005, MNRAS, 361, 476
García Hernández, A., Moya, A., Michel, E., et al. 2009, A&A, 506, 79
García Hernández, A., Moya, A., Michel, E., et al. 2013, A&A, 559, A63

García Hernández, A., Martín-Ruiz, S., Monteiro, M. J. P. F. G., et al. 2015, ApJ,
811, L29

Goupil, M.-J., Dupret, M. A., Samadi, R., et al. 2005, JApA, 26, 249
Jackson, S., MacGregor, K. B., & Skumanich, A. 2005, ApJS, 156, 245
Kuschnig, R., Weiss, W. W., Moffat, A., & Kudelka, O. 2009, in Solar-Stellar

Dynamos as Revealed by Helio- and Asteroseismology: GONG 2008/SOHO
21, eds. M. Dikpati, T. Arentoft, I. González Hernández, C. Lindsey, & F. Hill,
ASP Conf. Ser., 416, 587

Lignières, F., & Georgeot, B. 2008, Phys. Rev. E, 78, 016215
Lignières, F., & Georgeot, B. 2009, A&A, 500, 1173
Lignières, F., Rieutord, M., & Reese, D. 2006, A&A, 455, 607
Lignières, F., Georgeot, B., & Ballot, J. 2010, Astron. Nachr., 331, 1053
MacGregor, K. B., Jackson, S., Skumanich, A., & Metcalfe, T. S. 2007, ApJ,

663, 560
Mantegazza, L., Poretti, E., Michel, E., et al. 2012, A&A, 542, A24
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