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Le système le plus souvent utilisé pour réduire les vibrations des structures est l'étouffeur de vibration. Cependant, l'efficacité de ces systèmes est limitée à une bande fréquentielle relativement étroite, et des pics supplémentaires apparaissent autour de la fréquence à atténuer. Cette caractéristique pose problème notamment quand la fréquence d'excitation, ou la fréquence propre de la structure à atténuer n'est pas connue précisément. Dans des études récentes, il a été démontré que des systèmes composés d'un Oscillateur Linéaire (OL) couplé à un Oscillateur Non Linéaire (ONL) sont capables, sous l'effet d'un chargement transitoire, de transférer l'énergie de manière irréversible de l'OL vers l'ONL [START_REF] Gourdon | Nonlinear energy pumping under transient forcing with strongly nonlinear coupling : Theoretical and experimental results[END_REF][START_REF] Kerschen | Irreversible passive energy transfer in coupled oscillators with essential nonlinearity[END_REF]. Le principe à la source du transfert irréversible de l'énergie (aussi appelé pompage énergétique) est la capture de la résonance 1 : 1 [START_REF] Gendelman | Energy pumping in nonlinear mechanical oscillators : Part i-dynamics of the underlying hamiltonian systems[END_REF]. Le pompage énergétique en régime instationnaire a également été vérifié expérimentalement [START_REF] Gourdon | Nonlinear energy pumping under transient forcing with strongly nonlinear coupling : Theoretical and experimental results[END_REF][START_REF] Mcfarland | Experimental study of non-linear energy pumping occurring at a single fast frequency[END_REF].

Les résultats intéressants en transitoire ont motivées l'étude de ce phénomène en régime établi [START_REF] Berlioz | Bifurcation in a nonlinear autoparametric system using experimental and numerical investigations[END_REF][START_REF] Alexander | Exploring the performance of a nonlinear tuned mass damper[END_REF][START_REF] Jiang | Steady state passive nonlinear energy pumping in coupled oscillators : Theoretical and experimental results[END_REF]. Il a été démontré qu'au voisinage de la résonance principale, l'ONL peut répondre de manière quasipériodique [START_REF] Gendelman | Quasiperiodic energy pumping in coupled oscillators under periodic forcing[END_REF]. Ce type de réponse conduit à des échanges d'énergie entre l'OL et l'ONL, ce qui peut avoir un intérêt pratique pour la réduction des vibrations. L'objectif de ce papier est l'étude expérimentale et théorique de la réponse d'un système non linéaire à 2ddl en régime établi.

Dans la section suivante, le dispositif expérimental est présenté. La troisième section est dévouée au traitement analytique des équations du mouvement. Enfin dans la dernière section, les courbes de résonance expérimentale sont présentées et comparées aux résultats théoriques.

Présentation du dispositif expérimental

Le dispositif expérimental est présenté en Fig. 1. Le système est composé d'une masse principale (OL) liée au bâti par l'intermédiaire d'un ressort linéaire, et directement connectée au pot vibrant. Le système auxiliaire (ONL) est embarqué sur la masse principale, ces deux systèmes sont liés par l'intermédiaire d'une raideur essentiellement non linéaire. Les guidages sont assurés par des glissières à billes. Les déplacements des deux systèmes sont mesurés à l'aide de capteurs de déplacement laser. La raideur non linéaire a été implémentée géométriquement à l'aide de deux ressorts de traction qui sont libres de pivoter en leur base (voir Fig. 2). Comme le montre la relation force-déplacement (Eq. ( 1)) obtenue à l'aide d'une décomposition en série de Taylor, la force de rappel peut être considérée de nature cubique.

k l u l Figure 2 -Création de la non-linéarité cubique f = 2k l u + 2u (P -k l l) √ l 2 + u 2 ≈ 2P l u + k l -P l 3 u 3 + O ( u 5 ) (1) 
Où u représente le déplacement, k l la raideur des ressorts linéaire, l la longueur initiale des ressorts, et P , la force de précharge. Sur le dispositif, l'entraxe de l'attache des ressorts est réglable afin de réduire la partie linéaire 2P/l de l'Eq. ( 1) au minimum.

La courbe force-déplacement expérimentale est présentée en Fig. 3. La valeur de la raideur non linéaire utilisée dans la modélisation a été obtenue par une approximation cubique de la courbe expérimentale. 

m 1 0, 761 kg m 2 0, 098 kg k 1 5690 N/m k 2 1, 473 * 10 6 N/m 3 c 1 2, 4 N s/m c 2 0, 1 N s/m
m 1 ẍ + c 1 ẋ + k 1 x + c 2 ( ẋ -ẏ) + k 2 (x -y) 3 = F cos(Ωt) m 2 ÿ + c 2 ( ẏ -ẋ) + k 2 (y -x) 3 = 0, (2) 
x et y représentent respectivement le déplacement de l'OL et de l'ONL, m 1 est la somme de la masse principale et de la partie mobile du pot vibrant, m 2 est la masse du système auxiliaire, k 1 représente la somme de la raideur du ressort linéaire et du pot vibrant. c 1 et c 2 sont respectivement l'amortissement de l'OL et de l'ONL, k 2 est la raideur non-linéaire, F et Ω sont l'amplitude et la fréquence d'excitation.

Points fixes

Le traitement des équations du mouvement (2) suit la procédure proposée par Starosvetsky [START_REF] Starosvetsky | Response regimes of linear oscillator coupled to nonlinear energy sink with harmonic forcing and frequency detuning[END_REF] basée sur la complexification [START_REF] Manevitch | The description of localized normal modes in a chain of nonlinear coupled oscillators using complex variables[END_REF]. Le changement de variable suivant est introduit :

v = x + εy w = x -y. ( 3 
)
Le système d'Eq. ( 2) est réduit sous la forme adimensionnée suivante :

v + ελ 1 1 + ε v + ε 2 λ 1 1 + ε ẇ + ω 2 1 1 + ε v + εω 2 1 1 + ε w = εA cos (Ωt) ẅ + ελ 1 1 + ε v + ε 2 λ 1 1 + ε ẇ + ω 2 1 1 + ε v + εω 2 1 1 + ε w + λ 2 (1 + ε) ẇ + ω 2 2 (1 + ε) w 3 = εA cos (Ωt) , ( 4 
) avec ε = m2 m1 , ω 2 1 = k1 m1 , λ 1 = c1 m2 , λ 2 = c2 m2 , ω 2 2 = k2 m2 , A = F m2 .
Ce changement de variable correspond physiquement au passage en coordonnées barycentriques. Le comportement dynamique est ensuite décomposé en une partie à variation rapide et lente en introduisant les variables complexes suivantes :

ϕ 1 e iΩt = v + iΩv ϕ 2 e iΩt = ẇ + iΩw, (5) 
où ϕ 1 représente l'enveloppe des oscillations à la fréquence d'excitation e iΩt . En introduisant le changement de variable (5) dans l'Eq. ( 4), et en gardant uniquement les termes en e iΩt , les équations de modulation suivantes sont obtenues :

φ1 + iΩϕ 1 2 + ελ 1 ϕ 1 2 (1 + ε) + ε 2 λ 1 ϕ 2 2 (1 + ε) - iω 2 1 ϕ 1 2Ω (1 + ε) - iεω 2 1 ϕ 2 2Ω (1 + ε) - εA 2 = 0 φ2 + iΩϕ 2 2 + ελ 1 ϕ 1 2 (1 + ε) + ε 2 λ 1 ϕ 2 2 (1 + ε) - iω 2 1 ϕ 1 2Ω (1 + ε) - iεω 2 1 ϕ 2 2Ω (1 + ε) + λ 2 (1 + ε) ϕ 2 2 - 3iω 2 2 (1 + ε) |ϕ 2 | 2 ϕ 2 8Ω 3 - εA 2 = 0. ( 6 
)
Les solutions périodiques du système correspondent aux points fixes de l'Eq. ( 6). Ces points fixes sont calculés en posant φ1 = φ2 = 0. Le système ainsi obtenue peut être exprimé sous forme polynomiale, et les points d'équilibres sont ensuite calculés pour chaque fréquence d'excitation. La réponse des deux oscillateurs est obtenue en effectuant un changement de variable inverse.

Stabilité des points fixes

Dans cette partie, la stabilité des points fixes (ϕ 1e et ϕ 2e ) est étudiée. Pour ce faire, des perturbations complexes sont introduites :

ϕ 1 = ϕ 1e + δ 1 ϕ 2 = ϕ 2e + δ 2 . ( 7 
)
En remplacant l'Eq. ( 7) dans l'Eq. ( 6), et en ne gardant que les termes linéaires en δ i , un système différentiel du premier ordre est obtenu. En écrivant ce système sous forme matricielle, la stabilité des points fixes est obtenue en observant les valeurs propres de cette matrice. Si toutes les valeurs propres sont à partie réelle négative, le point fixe est stable. Si et seulement si une valeurs propre est à partie réelle positive, le point fixe est instable. Si un point fixe possède une paire de valeurs propres purement imaginaires conjuguées, alors il s'agit d'un point de bifurcation de Hopf, qui conduit à une réponse quasi-periodique. Si les valeurs propres sont réelles en changeant du signe négatif à positif, le point fixe est un point selle.

La Fig. 5 montre une comparaison entre l'enveloppe des oscillations relatives de l'ONL obtenues en intégrant pas-à-pas les équations de modulation ( 6), et les équations du mouvement [START_REF] Kerschen | Irreversible passive energy transfer in coupled oscillators with essential nonlinearity[END_REF]. Le point a (voir Fig. 5a) a été choisi dans une région stable, ce qui est confirmé par l'intégration pas-à-pas. Au contraire, le point b choisi après le point de bifurcation de Hopf montre clairement un comportement quasi-periodique.

Résultats expérimentaux et comparaisons

L'objectif des essais est d'obtenir la Fonction de Réponse en Fréquence (FRF) du système autour de la résonance de l'OL. Dans ce but, les déplacements du système linéaire et de l'ONL ont été enregistrés en faisant varier la fréquence d'excitation de façon croissante et décroissante de 5 à 20 Hz par pas de 0, 5 Hz. Les essais présentés ont été effectués pour un niveau d'excitation de 2, 7 N . Les valeurs 

Conclusions

L'objectif de ce papier était l'étude du comportement d'un système non linéaire sous excitation harmonique, autour de la résonance principale. Ces genres de systèmes font apparaître des comportements dynamiques complexes, tels que des sauts et des bifurcations conduisant à des régimes quasi-périodiques. 
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 1 Figure 1 -Dispositif expérimental étudié
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 3 Figure 3 -Relation force-déplacement

  Réponse quasi-périodique stable à 14, 3 Hz
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 4 Figure 4 -Comparaison du déplacement relatif de l'ONL obtenu avec les équations de modulations et celles du mouvement (F = 2, 7 N )
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 5 Figure5-FRF analytiques et expérimentales pour F = 2, 7 N ("o" : régime périodique expérimental, " * " : régime quasi-périodique expérimental, traits fins : points fixe stable, traits épais : point fixe instable)
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 6 Figure 6 -Mesure temporelle d'un régime quasi-périodique (F = 2, 7 N f = 14, 5 Hz)
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Dans cette section, l'étude des points d'équilibres, et leur stabilité est dévellopée. L'objectif est d'obtenir la réponse en fréquence du système au voisinage de la résonance principale pour expliquer les comportements rencontrés expérimentalement. D'après la Fig.

1

, les équations du mouvement sont données ci-dessous :