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Abstract

The effects of crack shielding, finite thickness of the composite and fiber content

on fiber/matrix debond growth in thin unidirectional composites are investi-

gated analyzing Representative Volume Elements (RVEs) of different ordered

microstructures. Debond growth is characterized by estimation of the Energy

Release Rates (ERRs) in Mode I and Mode II using the Virtual Crack Closure

Technique (VCCT) and the J-integral. It is found that increasing fiber content,

a larger distance between debonds in the loading direction and the presence of a

free surface close to the debond have all a strong enhancing effect on the ERR.

The presence of fully bonded fibers in the composite thickness direction has in-

stead a constraining effect, and it is shown to be very localized. An explanation

of these observations is proposed based on mechanical considerations.

Keywords: Polymer-matrix Composites (PMCs), Thin-ply, Energy Release

Rate, Debonding, Finite Element Analysis (FEA)

1. Introduction

Stimulated by the ever more stringent requirements in terms of weight and

mechanical performances of the aerospace industry, in recent years the com-
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posite community has returned its attention to the mechanisms of intralam-

inar crack initiation with a focus on thin-ply laminates. Alternative design5

approaches are now considered based on this non-conventional laminate in ap-

plications ranging from cryogenic pressure vessels [1], to airplanes’ wings [2],

and even reusable space launchers [3].

Thin-ply laminates are the result of a technological innovation, the spread tow

technology, which consists in opening or spreading the tows, in which fibers10

(carbon, glass, aramid, basalt among others) are usually shipped in, into very

thin tapes used for laminate production. Ply thicknesses of less than 50 µm

can nowadays be mass-produced, and record thicknesses of around 20− 25 µm,

or ∼ 4 − 5 times the average fiber’s diameter, have been achieved. In its cur-

rent form the technique, sometimes referred to as “FUKUI method”, was firstly15

proposed towards the end of the 1990s [4] and perfected in the subsequent

decade [5, 6].

Several experimental investigations on thin ply laminates have highlighted their

main properties [7, 8, 9, 10, 11, 12, 13]: increased fiber content; more uniform

packing of fibers; delay and even suppression of intralaminar cracking (called20

also transverse-, matrix- or micro-cracking) and delamination. A very insight-

ful work documenting how these phenomena are affected by the morphology of

thin-ply laminates is the microscopic study of Saito & al. [14], which focuses on

the effect of ply thickness on the onset and propagation of intralaminar crack-

ing. In their investigation, tensile tests were performed on carbon fiber/epoxy25

[02, 90n, 02] thin-ply laminates for n = 1, 2, 4 and the crack density was mea-

sured with a digital microscope at several levels of applied tensile strain in the

range between 0% and 1.5%. Furthermore, they performed microscopic obser-

vations on the specimen’s edge at each level of strain. They observed the onset

of fiber/matrix interface cracks (referred to as debonds in the following) at lower30

levels of strain in thinner plies, while at the same time coalescence of debonds

and through-the-thickness propagation of transverse cracks in thin plies were

delayed and even suppressed as ply thickness decreased. In particular, they

reported the first onset of debonds at 0.4% for n = 1, 2 and 0.7% for n = 4. For
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n = 1, however, at ε = 1.5% coalescence of debonds had started to take place35

but the crack had not completely propagated through the thickness, while for

n = 2 and n = 4 the latter alreay happened at a value of strain respectively

of 1.3% and 1%. Our inability to explain these observations with the currently

accumulated knowledge demonstrates the necessity of further investigation of

interactions between debonds and studies of the constraining (or accelerating)40

effect of presence of bonded fibers, free and constrained boundaries in the vicin-

ity of a partially debonded fiber.

Early studies on the effect of ply thickness on the onset and propagation of

transverse cracks were conducted on glass fiber/epoxy cross-ply laminates by

Bailey, Parvizi and collaborators [15, 16, 17], who firstly observed the beneficial45

effect of thickness reduction on the delay of transverse cracking. They further-

more pointed the attention to the appearance of debonds at the fiber/matrix

interface and their subsequent coalescence as the mechanism at the origin of

transverse cracks [18]. Moreover, they identified the main mechanical driver of

the damage process in the mismatch of elastic properties, and particularly of50

Poisson’s ratios, between fibers and matrix [19]. A full understanding of dam-

age onset and propagation in thin-ply laminates thus requires comprehension

of the mechanisms governing its very first stage, i.e. the fiber/matrix interface

crack. First results were obtained through analytical models in the case of a

single fiber with an arc crack (debond) in an infinite matrix under transverse55

tension by England [20] and Perlman & Sih [21], who obtained the stresses at

the interface and calculated the stress intensity factors at the crack tip, and

by Toya [22], who evaluated the Energy Release Rate (ERR). Drawing upon

the results for the straight bi-material interface crack by Comninou [23], the ef-

fect of crack face contact in fiber-matrix debonding was investigated in [24, 25].60

In [26], it was showed in terms of ERR why the case of a single asymmetric

debond is more likely to be observed under remote transverse tension than two

symmetric debonds on the same fiber. The effect of different types and com-

binations of loads on debonding have been studied for the single fiber model:

compression [27], residual thermal stresses [28], and biaxial configurations with65
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different combinations of tension and compression [29, 30]. The effect of the

presence of nearby bonded fibers on the debonding of a fiber embedded in an

infinite matrix has been studied under uniaxial transverse tension [31], biaxial

tension [32] and uniaxial transverse compression [33]. The effect of inter-fiber

distance on debond growth has been studied for a partially debonded fiber at70

the center of a hexagonal cluster inside a homogenized UD composite in the case

of fully bonded neighbouring fibers [34] and of two partially debonded fibers out

of the surrounding six [35]. An understanding of crack shielding and finite ply

thickness effects on debond growth in non-homogenized microstructural models

of UDs seems thus to be lacking: this is the problem that we want to address75

in the present work. Mode I and Mode II energy release rates will be analyzed

using stress fields calculated with the FEM for a variety of Repeating Unit Cell

(RUC) of the composite with square packing of fibers under transverse tensile

loading. The choice of a square packing configuration for the fibers is moti-

vated by its simplicity, as it allows to easily separate the effect of fibers (fully80

bonded and/or partially debonded) placed along the loading direction from that

of fibers placed in the through-the-ply-thickness direction. These RUCs repre-

sent composites with different distances between partially debonded fibers and

a varying number of bonded fibers between them, which allows to study the

effect of crack shielding on the ERR. In the ply thickness direction, the varying85

number of perfectly bonded fiber rows exposes the effect of the proximity of

the free boundary of the composite on debond growth. Finally, using coupling

of thickness direction displacements on horizontal boundaries of the RUC, the

accelerating effect of the interaction between debonds of fibers located on the

same vertical line is studied.90

2. RVE models & FE discretization

2.1. Introduction & Nomenclature

In this paper, we analyze debond development in unidirectional (UD) com-

posites subjected to in-plane transverse tensile loading. The interaction between
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debonds in UD composites is studied developing models of different Repeating95

Unit Cells (RUC) of laminates (see Fig. 1 to Fig. 3) where only the central

fiber in the cell has a damage in the form of a fiber/matrix interface crack

(debond). The composite RUC may be repeating in the in-plane transverse

direction only (representing an ultra-thin composite) or repeating also in the

composite thickness direction, representing an infinite composite in a limiting100

case. Thus, the conditions at the UD composite’s upper and lower bound-

aries are one of the parameters for the investigation. The used RUCs allow

for considering the composite with debonds as a sequence of stacked damaged

and undamaged fiber rows, each row with only one fiber in the thickness direc-

tion. Since all of these RUCs feature regular microstructures with fibers placed105

according to a square-packing configuration, they are Representative Volume

Elements (RVE) of composites with a certain distribution of debonds. Intro-

ducing in-plane coordinates x and y, where x is in the transverse direction of

the UD composite under consideration, the strain in the y-direction due to a

load in the x-direction is small, caused in turn by the very small minor Pois-110

son’s ratio of the UD composite. Additionally, debonds are considered to be

significantly longer in the fiber direction than in the arc direction. Therefore,

we use 2D models under the assumption of plane strain, defined in the x − z

section of the composite. Thus, the analysis presented applies to long debonds,

with a focus on understanding the mechanisms of growth along their arc di-115

rection. The composites are subjected to transverse tensile strain, applied as

a constant displacement in the x-direction along the vertical boundary of the

RUC as shown in Figures 1 to 4. As the models are differentiated by the num-

ber of rows of fibers and by the spacing between debonds along the vertical and

horizontal directions, the corresponding RUCs can be distinguished from each120

other based on the number n of fibers in the horizontal direction and k in the

vertical direction. Furthermore, the horizontal surfaces can be either free or

vertical displacement coupling can be applied. We thus introduce a common

notation n× k − free and n× k − coupling to denote a RUC with n× k fibers

and, respectively, a free upper surface or with kinematic coupling applied to it.125
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The specific combinations of particular choices of n, k, and boundary conditions

are detailed in Section 2.2, together with the description of the corresponding

models of damaged composite they are representing.

2.2. Models of Representative Volume Element (RVE)

The first two models feature, as shown in Fig. 1, an ultra-thin UD lami-130

nate with only one row of fibers across its thickness, k = 1. This is quite an

extreme model from the microstructural point of view; however, it allows to

focus the analysis on the interaction between debonded fibers placed along the

x-direction. Furthermore, as the horizontal surfaces are considered free, the in-

teraction is stronger in this case than in any other, making the trends very clear135

and the predictions of this model rather conservative. In retrospective, if only

20 years ago such a model would have been considered too abstracted from the

physical reality, the recent advancements in the spread tow technology make

this approach appealing also as a limiting case for practical considerations.

x

z

n = 3

k
=
1

(a) Single row of fibers with a debond appearing every n fibers: model n × 1 − free

(n = 3 in the figure).

x

z

n = 1

k
=
1

(b) Single row of fibers with debonds appearing on each fiber: model 1 × 1 − free .

Figure 1: Models of ultra-thin UD composites with a single “row” of fibers and debonds

repeating at different distances.
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In the sub-model of Fig. 1a, every nth fiber in the composite is partially140

debonded on alternating sides of the fiber. The symmetries of the model allow

the use of the upper part of the RUC, as highlighted in Fig. 1 to 3. Following the

notation introduced in Section 2.1, we will refer to this model as n× 1 − free.

In the sub-model n = 1, Fig. 1b, a debond appears on each fiber on alternating

sides and the corresponding RUC contains only one fiber. We will refer to this145

model as 1 × 1 − free.

The second set of models in Fig. 2 and Fig. 3 considers laminates with

multiple rows of fibers across the thickness: a finite number of rows in the first

two sub-models in Fig. 2; an infinite number in the model of Fig. 3. In Fig. 2a,

the RUC contains n = 1 fiber in the x-direction, k fibers across the thickness150

and the central fiber is debonded. This model will be referred to in the following

as 1× k− free. Thinking in terms of rows, in this model we have a central row

where each fiber is debonded. This row is surrounded from each side by (k−1)/2

rows with perfectly bonded fibers. In the sub-model in Fig. 2b, each nth fiber

in the central row is debonded and this row is surrounded by (k−1)/2 rows of155

undamaged fibers from each side. We will refer to this model as n × k − free

(because the horizontal boundary of the RUC is free of any constraint).

Finally, the model in Fig. 3 represents an UD composite with an infinite

number of rows; all of them with partially debonded fibers. As all fibers have

debonds, the corresponding RUC is made of a single partially debonded fiber160

with kinematic coupling conditions applied to the upper boundary to assure

periodicity. This model is referred to as 1 × 1 − coupling.

2.3. Finite Element (FE) discretization

Each RUC is discretized using the Finite Element Method (FEM) within

the Abaqus environment, a commercial FEM package [36]. The length l and165

height h of the model are determined by the number of fibers n in the horizontal

direction and k across the thickness (see 2.2) according to Eq. 1:

l = 2nL h = kL; (1)
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x

z

n = 1

k
=
3

(a) Multiple rows of fibers with debonds appearing on each fiber beloging to the central

row: model 1 × k − free (k = 3 in the figure).

x

z

n = 3

k
=
3

(b) Mutiple rows of fibers with a debond appearing every n fibers within the central

row: model n× k − free (n = 3 and k = 3 in the figure).

Figure 2: Models of UD composites with different “rows” of fibers and debonds repeating at

different distances.

where 2L is the length of a one-fiber unit, see Fig. 4, defined as a function

of the fiber volume fraction Vf and the fiber radius according to

L =
Rf

2

√
π

Vf
. (2)
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x

z

n = 1

k
=
1

Figure 3: Model of UD composites with an infinite number of “rows” of fibers and debonds

appearing on each fiber: model 1 × 1 − coupling .

The fiber radius Rf is assumed to be the same for each fiber in the model170

and equal to 1 µm. The latter value is not physical and it has been chosen for

simplicity. It is worth to note at this point that, in a linear elastic solution as

the one presented here, the ERR is proportional to the geometrical dimensions

and recalculation of the ERR for fibers of any size, thus, requires a simple

multiplication. Furthermore, notice that the relationships in Eqs. 1 and 2 ensure175

that the local and global Vf are everywhere equal.

The debond is placed symmetrically with respect to the x axis (see Fig. 4)

and we characterize it with an angular size of ∆θ (the full debond size is thus

2∆θ). For large debond sizes (≥ 60◦−80◦), a region of variable size ∆Φ appears

at the crack tip in which the crack faces are in contact and slide on each other.180

Due to its appearance, frictionless contact is considered between the two crack

faces to allow free sliding and avoid interpenetration. The presence of friction

at the interface is considered in [37], where the authors model the contact inter-

action between crack faces using Coulomb’s friction with a coefficient µ = 0.25
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x

z

∆θ

L

LL

ūx = ε̄xlūx = −ε̄xl

Ωf

Ωm

Rf

O

∆Φ

Figure 4: Schematic of the model with its main parameters.

and show that, for a debond with ∆θ = 80◦, the crack sliding displacement is185

always different from zero in every point of the crack and only slightly lower

than that of the frictionless case. This in turn means that the estimation of GII

in the case of frictionless contact provide an upper bound and thus the results

presented here represent a conservative estimation (a higher ERR corresponds

to higher likelihood of crack propagation). Symmetry with respect to the x190

axis is applied on the lower boundary. The upper boundary is in general free,

except for the model 1×1−coupling (Fig. 3) which requires kinematic coupling

of vertical displacements also on the upper side. Kinematic coupling on the

x-displacement is applied along the left and right sides of the model in the form

of a constant x-displacement ±ε̄xl, corresponding to transverse strain ε̄x equal195

to 1%.

Table 1: Summary of the mechanical properties of fiber and matrix. E stands for Young’s

modulus, µ for shear modulus and ν for Poisson’s ratio.

Material E [GPa] µ [GPa] ν [−]

Glass fiber 70.0 29.2 0.2

Epoxy 3.5 1.25 0.4
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The model is meshed using second order, 2D, plane strain triangular (CPE6)

and rectangular (CPE8) elements, which have respectively 6 and 8 nodes per

element. Each node has 2 degrees of freedom, i.e. the horizontal displacement

ux and the vertical displacement uz. A regular mesh of quadrilateral elements200

with an almost unitary aspect ratio is required at the crack tip. The angular

size δ of an element in the crack tip region is always equal to 0.05◦. The overall

number of elements needed to discretize the model depends on the debond size

∆θ (larger debonds have larger contact zones which require more elements for

their correct resolution), the fiber volume fraction (which determines the size of205

the RVE) and the number of fully bonded fibers present in the model. As an

example, the discretization of the 1×1−free model at Vf = 60% requires a total

of 132507 elements for ∆θ = 10◦ and of 296606 elements for ∆θ = 140◦, which

corresponds to a minimum required RAM respectively of 445 MB and 1014 MB

and to a minimum RAM needed to minimize I/O operations respectively of210

1.63 GB and 3.87 GB. To put it into perspective, the wallclock time required

for their solution is respectively 1.3 [min] and 14.95 [min] on a laptop with

a 2.5 GHz Intel Core i5 processor and 6 GB of installed RAM. The crack

faces are modeled as element-based surfaces and a small-sliding contact pair

interaction with no friction is established between them. The Mode I, Mode215

II and total Energy Release Rates (ERRs) (respectively referred to as GI , GII

and GTOT ) represent the main output of the FEM analysis; they are evaluated

using the VCCT [38] implemented in a custom Python routine and, for the

total ERR, the J-integral [39] is obtained by application of the Abaqus built-in

functionality. A glass fiber-epoxy system is considered throughout this paper,220

and it is assumed that their response lies always in the linear elastic domain.

The latter assumption lies on the work of Asp and co-workers, who show that

epoxy subjected to a tri-axial stress state as the one observable in the inter-fibers

region fails at very low strains (∼ 0.5%−0.8%) [40] and in a brittle manner [41],

and that the magnitude of deviatoric stresses (evaluated in terms of equivalent225

Von Mises stress) in the fiber/matrix interface neighborhood does not justify

the occurrence of plastic deformations in the case of debond propagation [41].
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The properties used are listed in Table 1.

2.4. Validation of the model

The model is validated in Fig. 5 against the results reported in [42, 31],230

obtained with the Boundary Element Method (BEM) for a single fiber with a

symmetric debond placed in an infinite matrix. This situation is modeled using

the 1×1− free RVE with Vf = 0.0079%, which corresponds to a RUC’s length

and height of respectively ∼ 200Rf and ∼ 100Rf .

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
0

5 · 10−2

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

∆θ
[◦]

G
/G

0
[ −

]

GI , BEM

GII , BEM

GTOT , BEM

GI , FEM

GII , FEM

GTOT , FEM

Figure 5: Validation of the single fiber model for the infinite matrix case with respect to the

BEM solution in [31].

To allow for a comparison, the results are normalized following [31] with235

respect to a reference Energy Release Rate G0 defined as

G0 =
1 + km

8µm
σ2
0πRf (3)

12



where µ is the shear modulus, k is the Kolosov’s constant defined as 3 − 4ν

for plane strain conditions, Rf is the fiber radius and the index m refers to

the properties of the matrix. σ0 is the stress at the boundary, computed as

the average of the stress extracted at each boundary node along the right side240

(arithmetic average as nodes are equispaced by design along both the left and

right sides). The agreement is good: the difference between the BEM solution,

which is considered more accurate, and the FEM solution does not exceed 5%.

The ERRs’ maxima are in the same positions and the size of the contact zone

is the same. Nevertheless, an analysis of phenomena leading to less than 5%245

differences in ERR would not be reliable and, therefore, it is not recommended.

3. Results & Discussion

3.1. Effect of Fiber Volume Fraction

As shown in Figs. 6 and 7, respectively for Mode I and Mode II, the fiber con-

tent has a drastic effect on the Energy Release Rate at the tip of the fiber/matrix250

interface crack. The effect of four levels of fiber volume fraction are compared,

30%, 50%, 60% and 65%, on two microstructural models: a 11×11−free (every

11th fiber in the central fiber row is partially debonded and, on the top of this

row, we have 5 undamaged fiber rows), Figs. 6a and 7a, and a 21 × 21 − free

(every 21th fiber in the central fiber row is partially debonded and, on the top255

of this row, we have 10 undamaged fiber rows), Figs. 6b and 7b.

Comparing Fig. 6a with 6b, and Fig. 7a with 7b, we can observe that the

ERRs’ values are very similar for RUCs with 11× 11 and 21× 21 fibers, though

they are slightly higher for the larger RUC where the next debonded fiber and

the free surface are further away from the debonded fiber. From these results we260

conclude that both RUCs are large enough to represent a single debonded fiber

in an infinite array of bonded fibers. Obviously, there exists a specific effect of

the fiber content. For Mode I, Fig. 6, the maximum value of the ERR increases

by ∼ 5.2 times when Vf changes from 30% to 65%. The debond’s angular size

for which the peak value occurs remains unchanged at 20◦, but for Vf = 60%265
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(a) Model 11 × 11 − free.
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(b) Model 21 × 21 − free.

Figure 6: A view of the effect of fiber volume fraction on Mode I ERR in two exemplificative

models, subject to an applied transverse strain εx of 1%.

and 65% the values of Mode I ERR are rather similar when measured at 10◦

and at 20◦, approximately creating a plateau. Furthermore, increasing the fiber

volume fraction delays the onset of the contact zone, which corresponds in Fig. 6

to the first value of ∆θ for which GI is equal to zero. For Vf = 30%, the contact

zone first appears for a debond of 60◦, similarly to what happens in the single270

fiber in infinite matrix model (Fig. 5). For higher fiber contents, the contact

zone’s onset is delayed to a debond’s size approximately equal to 70◦.
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(a) Model 11 × 11 − free.
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(b) Model 21 × 21 − free.

Figure 7: A view of the effect of fiber volume fraction on Mode II ERR in two exemplificative

models, subject to an applied transverse strain εx of 1%.
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For Mode II, Fig. 7, there is a distinct maximum in the curve and its shape

does not depend on the fiber content. The maximum value of the ERR increases

by ∼ 2.1 times when Vf changes from 30% to 65%. The effect is thus similar275

to Mode I, but with a significantly lower magnitude. Similar to Mode I, the

debond’s size for which the peak value of Mode II occurs remains unchanged, at

60◦. It is worthwhile to notice that the ratio of Mode II to Mode I peak values

is max(GII)
max(GI)

∼ 2.2
0.9 ∼ 2.4 for Vf = 30%, while it is ∼ 4.7

4.7 ∼ 1 for Vf = 65%.

The general increasing trends observed in Figs. 6 and 7 are related to the fact280

that, given that the global and local Vf are everywhere identical in the models

presented, an increase in fiber content corresponds to a decrease in the average

distance between fibers. Thus, the distances for the decay of the local stress and

strain fields in the matrix domain become shorter, leading to higher stresses in

general and causing higher values at the crack tip. The difference in relative285

magnitude between Mode I and Mode II and the delay in the contact zone’s

onset are instead due to the interplay between two different mechanisms, both

caused by the ordered microstructural arrangement of the model. In the models

considered, a fully bonded fiber is always placed along the horizontal direction,

aligned with the partially debonded fiber and exactly in front of the debond.290

By increasing Vf , the former moves closer to the latter and for small debonds

this causes a magnification of the x-strain at the crack tip. For small debonds

(≤ 20◦ − 30◦) in fact, the crack tip is approximately normal to the x-direction

and thus an increase in εx causes an increase in GI . On the other hand, for large

debonds (≥ 70◦ − 80◦) the crack growth direction is almost aligned with the295

x-axis, thus a magnification in the x-strain translates into an increase of Mode

II ERR. However, this increasing effect on GII is partially counteracted by the

presence of a fully bonded fiber on top of the debonded fiber and aligned with it.

As fibers are more rigid than the surrounding matrix, the presence of the former

will restrain horizontal displacements, thus hampering strong increases in GII300

for large debonds. Furthermore, due to the mismatch in the Poisson’s ratios,

the fully bonded fiber placed above generates an upward-directed component of

the vertical displacement field in the matrix, which tends to open the debond
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and causes the delay in the contact zone’s onset. The interplay between these

mechanisms is governed by the average inter-fiber distance and, in turn, by the305

fiber volume fraction.

These observations are in agreement with the results reported in [31], where

the effect on the ERR of a partially debonded fiber of two fully bonded nearby

fibers, placed symmetrically with respect to the loading direction, is studied for

different angular positions (denoted as θ2) and radial distances in a model with310

an effectively infinite matrix (Vf ∼ 0.09%). The effect of the former is studied

for a constant value of the radial distance between the debonded and bonded

fibers, which corresponds to a local V local
f of ∼ 62% assuming hexagonal pack-

ing. They report an increase in both Mode I and Mode II ERR with respect to

the single fiber case when the two fibers are placed at an angle of respectively315

±25◦,±30◦,±140◦,±150◦,±155◦, i.e. closest to the loading direction. Notice

that for ±25◦ and ±155◦ the two fully bonded fibers are almost in contact, with

an inter-fiber distance of ∼ 0.04 times their radius. This result confirms the

considerations made in the previous paragraph about the x-strain magnifica-

tion caused by the presence of fully bonded fibers along the loading direction.320

The effect is further analyzed and discussed in Sec. 3.2 and Sec. 3.4. In the

range ±40◦ −±130◦ instead, the presence of the other fibers causes a reduction

of the ERR and, particularly in the range 80◦ − 120◦, results are very close and

almost insensitive to variations in θ2, which supports the previous conclusion

about the effect of a fully bonded fiber on top the partially debonded one. This325

effect is treated in more detail in Sec. 3.3.

Comparing the results from [31] with those presented in this paper, an hypoth-

esis can be furthermore formulated about the robustness of the results of the

present article with respect to deviations in fiber position: it seems reasonable

to assume a tolerance to deviations of max. ±30◦ with respect to the loading330

direction and of max. ±20◦ with respect to the through-the-thickness direction.

The effect of the local fiber content is also investigated in [31], by changing

the radial distance between the partially debonded fiber and the fully bonded

ones. They observe that the further the fully bonded fibers are placed from the
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central one, i.e. the lower the local Vf , the lower is their effect on the ERR.335

The magnitude of the effect is however small: the maximum increase of the

total ERR is of ∼ 1.15 times for θ2 = 30◦ and 150◦ when increasing V local
f

from 28% to 62%; the total ERR decreases by a factor of ∼ 0.62 for θ2 = 60◦,

∼ 0.74 for θ2 = 90◦ and ∼ 0.5 for θ2 = 120◦ when increasing V local
f from 28%

to 62%. Analogous results can be found in [34], where the authors consider340

a centrally-placed partially debonded fiber sorrounded by an hexagonal cluster

inside an homogenized UD composite. They observe a reduction in the ERR

when the local fiber volume fraction is increased, i.e. when the spacing between

fibers is reduced. The strongest change is reported for Mode II, which decreases

by a factor of ∼ 0.73 when the local fiber volume fraction is decreased from345

66% to 78%. Thus, the trends presented in [31, 34] are in agreement with our

results on the effect of Vf and support the considerations made so far. The

stark difference in magnitude however highlights the contrast between the ef-

fect of the local fiber volume fraction of a cluster of fibers inside an infinite

medium and of the global Vf of long-range microstructural arrangements, such350

the ones considered in this article. The similarity in trends with the concurrent

difference in magnitudes can be explained in relation to the characteristics of

the elastic solution computed. In the first case the local fiber volume fraction

controls the distance, with respect to the central partially debonded fiber, at

which a localized perturbation zone appears in the far-field elastic solution; in355

the second case the global Vf determines the characteristic lengths of a global

periodic solution.

3.2. Interaction between debonds in UD composites with a single row of fibers

The interaction of debonds appearing at regular intervals in an ultra-thin

UD composite with a single row of fibers is studied for Mode I (Fig. 8) and Mode360

II (Fig. 9) and fiber content equal to 30% (Figs. 8a and 9a) and 60% (Figs. 8b

and 9b). The models treated are 3 × 1 − free, 5 × 1 − free, 7 × 1 − free,

11× 1− free, 21× 1− free, 101× 1− free and 201× 1− free, corresponding

respectively to a debond every 3rd, 5th, 7th, 11th, 21st, 101st and 201st fiber
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(Fig. 1a). Given that the upper surface of the UD row is left free, the interaction365

with the debonded fiber in the next RUC is stronger than in any other case and

the results of this section are thus the most conservative in terms of debond’s

growth: the ERRs should be the largest. The effect is enhanced in composites

with high Vf and especially for GII : at Vf = 60% the highest GII value for the

201 × 1 − free composite in Fig. 9b is more than 3 times higher than the GII370

value value for the 21 × 21 − free composite in Fig. 7b. Even the maximum is

shifted to larger angles. The GI value is for some cases only 30% higher.

From both Fig. 8 and Fig. 9, it can be seen that the presence of a debond close

to the analyzed debond decreases the strain magnification effect discussed in

Sec. 3.1 and thus reduces the value of the ERR. This phenomenon is called375

“crack shielding” [26].
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Figure 8: Effect of the interaction between debonds appearing at regular intervals on Mode

I ERR in an UD with a single row of fibers at different levels of fiber volume fraction Vf ,

subject to an applied transverse strain εx of 1%.

For Mode I, the presence of a free surface, and inversely the absence of

a fully bonded fiber along the vertical direction, implies the absence of the

counteracting upward-oriented vertical component of the displacement field due

to the mismatch in Poisson’s ratios. This in turn translates into the constancy380

of the value of ∆θ corresponding to contact zone’s onset, always equal to 60◦.

For Vf = 30%, Mode I is reduced when the spacing between debonds (in terms
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of number of fully bonded fibers between them in our models) decreases, but

the magnitude of change is significant only in the range when the spacing is

reduced from a debond every 5th fiber to one every 3rd. For comparison, the385

difference of peak GI values for Vf = 30% between 5×1−free and 3×1−free
is ∼ 0.2 J

m2 (around 30% of the lower value), while between 201× 1− free and

5×1−free is ∼ 0.05 J
m2 (around 7% of the lower value). A similar observation

can be made for Vf = 60%, but for larger spacings: no difference can be seen

between the case of a debond placed every 101st and every 201st fiber. These390

observations suggest the existence of characteristic distance dependent on the

fiber volume fraction which governs the interaction between debonds: in low Vf

composites (Vf = 30%) the convergence to a non-interactive solution is faster

(less interaction between debonded fibers in neighboring RUCs).
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Figure 9: Effect of the interaction between debonds appearing at regular intervals on Mode

II ERR in an UD with a single row of fibers at different levels of fiber volume fraction Vf ,

subject to an applied transverse strain εx of 1%.

Without costraint on the upper surface, the strain magnification effect cre-395

ates a larger displacement gap in the x-direction, which increases Mode II for

larger debonds. When debonds are far apart, the series of rigid elements in

the ultra-thin composite row (constituted by fully bonded fibers and their sur-

rounding matrix) creates higher x-strains than in average in the element with the

debonded fiber, which in turn generates higher tangential displacements at the400
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crack tip for larger debonds. Conversely, when debonds are closer (smaller num-

ber of rigid elements between them), the strain concentration in the debonded

element is more similar to the applied strain (the magnification is reduced) and

the tangential displacement component at the crack tip decreases for large ∆θ.

This is the mechanism behind the change in the value of ∆θ for which the peak405

of GII occurs: from 70◦ to 50◦ at 30%, and from 80◦ to 40◦ at 60% going

from the higher to the smaller spacing of debonds. Differently from Mode I,

the presence of a characteristic distance is harder to establish. For Vf = 30%

(Fig. 9a), it seems reasonable to establish it at around 100 fully bonded fibers

between each debond. For Vf = 60% (Fig. 9b), the difference between models410

101 × 1 − free and 201 × 1 − free is still sizable, thus preventing the estab-

lishment of such characteristic distance. It is possible to observe, however, that

the change between 101 × 1 − free and 201 × 1 − free is significantly smaller

than between 21 × 1 − free and 101 × 1 − free (2
[

J
m2

]
vs 11

[
J
m2

]
), thus sug-

gesting the existence of the characteristic distance outside the range studied.415

Nevertheless, one should question whether the single row composite with free

surface is an appropriate RUC for defining the upper bound for GII : GII may

be more affected by the free surface than by the effect of the interaction between

debonds in the row.

3.3. Influence of rows of fully bonded fibers on debond’s ERR in the middle row420

The effect of the presence of rows of fully bonded fibers on debond’s growth in

the central row with all fibers partially debonded is studied for Mode I (Fig. 10)

and Mode II (Fig. 11) and fiber content equal to 30% (Figs. 10a and 11a) and

60% (Figs. 10b and 11b). The models treated are 1 × 3 − free, 1 × 5 − free,

1 × 7 − free, 1 × 11 − free, 1 × 21 − free, 1 × 101 − free and 1 × 201 − free,425

corresponding to a UD composite with respectively 3, 5, 7, 11, 21, 101 and 201

rows of fibers (Fig. 2a).

The results shown strengthen the arguments made in Sec. 3.1 and Sec. 3.2.

It can, in fact, be seen in Fig. 10 that an increasing number of bonded fiber rows

across the thickness delays the onset of the contact zone to a debond of 70◦ in430
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Figure 10: Influence of rows of fully bonded fibers on debond’s growth in Mode I ERR in a

centrally located row of debonded fibers at different levels of fiber volume fraction Vf , subject

to an applied transverse strain εx of 1%.

size, due to the introduction of an additional positive component of the vertical

displacement which translates into an opening displacement at the debond’s tip.

Comparing Fig. 9b with Fig. 11b, we observe that the presence of bonded fiber

rows significantly reduce the GII and its maximum is shifted back to 60◦, thus

confirming the hypothesis in Section 3.2 that the absence of GII convergence435

with the increasing distance in a single-row composite is caused more by the

free surface than by the interaction between debonds.

The results of both Mode I and Mode II show that the introduction of an

increasing number of fully bonded fiber rows doesn’t change the ERR calculated

at the crack tip after adding more than one row (the convergence is very fast).440

A small effect, mostly on Mode I, of the number of bonded fiber rows can be

observed at low fiber content (Figs. 10a and 11a), while for high fiber content

the smaller model with only one fiber row above the partially debonded one is

already representative.

3.4. Effect of multiple rows of bonded fibers on debonding in the central row of445

a UD composite with different distances between debonded fibers

The ERR of debonds appearing at regular intervals in the central row of

fibers in UD composites is affected by the number of rows with bonded fibers.
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Figure 11: Influence of rows of fully bonded fibers on debond’s growth in Mode II ERR in a

centrally located row of debonded fibers at different levels of fiber volume fraction Vf , subject

to an applied transverse strain εx of 1%.

The effect is investigated using different combinations of horizontal debond spac-

ing, controlled by the number of bonded fibers in the central row of the RUC,450

and the number of rows of bonded fibers on top of it. The following models have

been studied: 3×3−free, 5×3−free, 5×5−free, 7×3−free, 7×5−free,
7 × 7 − free, 11 × 3 − free, 11 × 5 − free, 11 × 7 − free, 11 × 11 − free,

21 × 3 − free, 21 × 5 − free, 21 × 7 − free, 21 × 11 − free, 21 × 21 − free,

101× 3− free, 101× 5− free, 101× 7− free, 101× 11− free, 201× 3− free,455

201 × 5 − free, 201 × 7 − free, 201 × 11 − free (Fig. 2b).

The results shown in Fig. 12 confirm the observations discussed in Sec. 3.2

and Sec. 3.3: the presence of fully bonded fiber rows on top of the central row

with debonded fibers reduces the interaction with the free surface and thus

has a restraining effect on the ERR, that counteracts the magnification due to460

an increasing number of fully bonded fibers in the horizontal direction. The

interplay is further modulated by the fiber content. Observing Fig. 12, it is

possibe to note how the free surface interaction decays fast: the presence of 5

fiber rows across the thickness is already sufficient to prevent any significant

effect of additional fiber rows on the ERR of a debond in the central row.465

The results in Fig. 13 show instead the effect of increasing the distance
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Figure 12: Effect on Mode I and Mode II ERR of the presence of an increasing number of

rows of fully bonded fibers in UD composites with debonds appearing every 10th fiber (model

21 × k − free). Vf = 60% and εx = 1%.
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Figure 13: Effect on Mode I and Mode II ERR of increasing the spacing between debonds

appearing in the central row of fibers in a UD composite with a fixed number of rows across

the thickness. Vf = 60%, k = 5 and εx = 1%.

between two consecutive debonds in the central row of a UD composite of given

thickness. In agreement with the observations of Section 3.2, increasing the

distance between debonds (measured in terms of fully bonded fibers between

them) causes an increase in the ERR in both Mode I and Mode II. For both470

Mode I and Mode II, it is possible to observe the existence of a characteristic

distance which defines the limit between the interactive and the non-interactive
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solution. Furthermore, comparing Figure 13a and 13b, it is possible to notice

that Mode I is less sensitive than Mode II to the horizontal spacing of debonds.

3.5. Comparison with the single fiber model with equivalent boundary conditions475

The single fiber RUC (1×1−free or 1×1−coupling) corresponds to the most

damaged state of the composite, i.e. the state in which all fibers have debonds.

The 1×1−free model represents an ultra-thin UD composite with a single row

of partially debonded fibers. The 1×1−coupling model, where the displacement

coupling is used to enforce periodic boundary conditions, represents an infinite480

composite.

The comparison of the 1 × 1 − free model with one row multi-fiber models

n× 1 − free in Figure 8 and Figure 9 show that the former provides in general

the lowest value of the ERR (the highest crack shielding case).

The 1×1−coupling model is compared with 1×3−free and 1×201−free485

models in Fig. 14. In all three models the distance between debonds in the

x-direction is the same and the difference is in the vertical direction. The

1 × 1 − coupling model describes the interaction between debonds in different

rows of debonded fibers whereas the 1×k−free models describe the effect of the

proximity of the composite’s free surface. The Mode I ERR in the 1× 3− free490

and 1 × 201 − free model is very similar to the 1 × 1 − coupling model, which

leads to a rather surprising conclusion. In both models we have, on the top of

the central one, a large amount of fibers (bonded in two cases and debonded in

the third case). It appears that the effect of bonded and debonded fibers on the

central debond is the same. This implies that, for Mode I ERR, the interaction495

between debonds in elements placed on top of each other is small.

The same comparison for Mode II shows a sizeable difference in the range

50◦ − 90◦, while the results almost coincide for smaller values of ∆θ. The lower

values of GII of the 1×1−coupling model in the range 50◦−90◦ are due to the

shielding effect of a debond of the same size in the fiber just above the central500

one (modeled by the coupling boundary condition), which leaves the strip of

matrix between the two fibers free to deform away from both of them due to
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Figure 14: Comparison of the ERR between the single fiber model with coupling conditions

along the upper boundary and the 1 × k − free model. Vf = 60% and εx = 1%.

the Poissons effect and thus favors Mode I and reduces Mode II. This translates

into the delay in the appearance of the contact zone, particularly evident in

Fig. 14a.505

4. Conclusions & Outlook

Several models of Repeating Unit Cell, representative of different microstruc-

tural arrangements of a unidirectional (UD) composite, have been studied in

order to investigate the effect on fiber/matrix interface crack growth of the pres-

ence of partially debonded and/or fully bonded fibers. Regular microstructures510

based on square-packing arrangements of fibers have been loaded in transverse

tension, with debonds appearing in the central row of fibers at regular intervals

measured in terms of number of fully bonded fibers between them. This central

row is embedded in-between a varying number of rows with perfectly bonded

fibers. The surface of the composite is either traction-free or with imposed515

vertical displacement constraint imitating a periodic structure in the composite

thickness direction.

In each RUC, the fiber volume fraction is spatially homogeneous (no fiber clus-

tering is considered) and the fiber distribution is uniform by design, which
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establishes a direct relationship between fiber content and inter-fiber distance.520

The main conclusions of this work are summarized here.

1. With a decreasing number of fully bonded fibers between two partially

debonded fibers in the central row, the ERR decreases. It seems to exist

a characteristic distance between debonds which defines the transition to

a non-interactive solution. However, this distance depends on the number525

of perfectly bonded fiber rows surrounding the central row and on the

fiber volume fraction. This distance can be estimated to be around 100

fully bonded fibers for a 1-fiber-row thick UD with Vf = 30% and 200 for

a 1-fiber-row thick UD with Vf = 60%, while it is expected to be around

100 fibers for a 5-fibers-row thick UD with Vf = 60%.530

2. The presence of a free surface close to the debond leads to higher Mode I

and Mode II ERRs and a shift of the peak G values to larger debonds.

3. The presence of fibers (fully or partially bonded) in the composite thick-

ness direction, along the same vertical line as the analyzed central fiber,

appears to have a restraining effect on both GI and GII . The free compos-535

ite surface effect on the ERR decays very fast: adding more than 2 fully

bonded fibers below and above the central row leads to stable constant

values of ERR.

4. The presence of a debond in the fiber above the central partially debonded

one only delays the appearance of the contact zone, while no significant540

effect on the ERR has been observed.

5. Increasing the fiber content (decreasing the inter-fiber distance), magnifies

in general the effects described in the previous points.

6. The results and conclusions presented agree well with previous observa-

tions reported in the literature [31, 34]. A mechanical explanation of545

the observed trends has been presented based on the mismatch in elastic

properties, particularly Poisson’s ratios, and the positions of fibers and

debonds with respect to the loading direction.
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