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Abstract

The bi-material interface arc crack has been the focus of interest in the com-

posite community, where it is usually referred to as the fiber-matrix interface

crack. In this work, we investigate the convergence properties of the Virtual

Crack Closure Technique (VCCT) when applied to the evaluation of the Mode

I, Mode II and total Energy Release Rate of the fiber-matrix interface crack in

the context of the Finite Element Method (FEM). We first propose a synthetic

vectorial formulation of the VCCT. Thanks to this formulation, we study the

convergence properties of the method, both analytically and numerically. It is

found that Mode I and Mode II Energy Release Rate (ERR) possess a loga-

rithmic dependency with respect to the size of the elements in the crack tip

neighborhood, while the total ERR is independent of element size.

Keywords: Fiber/matrix interface crack, Bi-material interface arc crack,

Linear Elastic Fracture Mechanics (LEFM), Virtual Crack Closure Technique

(VCCT), Mode separation, Convergence

1. Introduction

Bi-material interfaces represent the basic load transfer mechanism at the

heart of Fiber Reinforced Polymer Composite (FRPC) materials. They are

present at the macroscale, in the form of adhesive joints; at the mesoscale, as

interfaces between layers with different orientations; at the microscale, as fiber-5
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matrix interfaces. Bi-material interfaces have for long attracted the attention

of researchers in Fracture Mechanics [1, 2], due to their hidden complexity.

The problem was first addressed in the 1950’s by Williams [3], who derived

through a linear elastic asymptotic analysis the stress distribution around an

open crack (i.e. with crack faces nowhere in contact for any size of the crack)10

between two infinite half-planes of dissimilar materials. He found the existence

of a strong oscillatory behavior in the stress singularity at the crack tip of the

form

r−
1
2 sin (ε log r) with ε =

1

2π
log

(
1− β
1 + β

)
, (1)

in both Mode I and Mode II. In Eq. 1, β is one of the two parameters

introduced by Dundurs [4] to characterize bi-material interfaces:15

β =
µ2 (κ1 − 1)− µ1 (κ2 − 1)

µ2 (κ1 + 1) + µ1 (κ2 + 1)
(2)

where κ = 3 − 4ν in plane strain and κ = 3−4ν
1+ν in plane stress, µ is the

shear modulus, ν Poisson’s coefficient, and indexes 1, 2 refer to the two bulk

materials joined at the interface. Defining a as the length of the crack, it was

found that the size of the oscillatory region is in the order of 10−6a [5]. Given

the oscillatory behaviour of the crack tip singularity of Eq. 1, the definition of20

Stress Intensity Factor (SIF) limr→0

√
2πrσ diverges and ceases to be valid [1].

It implies that the Mode mixity problem at the crack tip is ill-posed.

It was furthermore observed, always in the context of Linear Elastic Fracture

Mechanics (LEFM), that an interpenetration zone exists close to the crack tip [6,

7] with a length in the order of 10−4a [6]. Following conclusions firstly proposed25

in [7], the presence of a contact zone in the crack tip neighborhood, of a length

to be determined from the solution of the elastic problem, was introduced in [8]

and shown to provide a physically consistent solution to the straight bi-material

interface crack problem.

The curved bi-material interface crack, more often refered to as the fiber-matrix30

interface crack (or debond) due to its relevance in FRPCs, was first treated by

2



D
RA
FT

England [9] and by Perlman and Sih [10], who provided the analytical solution

of stress and displacement fields for a circular inclusion with respectively a single

debond and an arbitrary number of debonds. Building on their work, Toya [11]

particularized the solution and provided the expression of the Energy Release35

Rate (ERR) at the crack tip. The same problems exposed previously for the

open straight bi-material crack were shown to exist also for the open fiber-matrix

interface crack: the presence of strong oscillations in the crack tip singularity

and onset of crack face interpenetration at a critical flaw size.1

In order to treat cases more complex than the single partially debonded fiber40

in an infinite matrix of [9, 10, 11], numerical studies followed. In the 1990’s,

Paŕıs and collaborators [12] developed a Boundary Element Method (BEM)

with the use of discontinuous singular elements at the crack tip and the Virtual

Crack Closure Integral (VCCI) [13] for the evaluation of the Energy Release

Rate (ERR). They validated their results [12] with respect to Toya’s analytical45

solution [11] and analyzed the effect of BEM interface discretization on the

stress field in the neighborhood of the crack tip [14]. Following Comninou’s

work on the straight crack [8], they furthermore recognized the importance of

contact to retrieve a physical solution avoiding interpenetration [12] and studied

the effect of the contact zone on debond ERR [15]. Their algorithm was then50

applied to investigate the fiber-matrix interface crack under different geometrical

configurations and mechanical loadings [16, 17, 18, 19, 20, 21, 22].

Recently the Finite Element Method (FEM) was also applied to the solution

of the fiber-matrix interface crack problem [23, 24, 25], in conjunction with

the Virtual Crack Closure Technique (VCCT) [26, 27] for the evaluation of the55

ERR at the crack tip. In [23], the authors validated their model with respect

to the BEM results of [12], but no analysis of the effect of the discretization in

the crack tip neighborhood comparable to [14] was proposed. Thanks to the

interest in evaluating the ERR of interlaminar delamination, different studies

1For the fiber-matrix interface crack, flaw size is measured in terms of the angle ∆θ sub-

tended by half of the arc-crack, i.e. a = 2∆θ.
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exist in the literature on the effect of mesh discretization on Mode I and Mode60

II ERR of the bi-material interface crack when evaluated with the VCCT in the

context of the FEM [28, 29, 30]. However, no comparable analysis can be found

in the literature on mode separation and convergence analysis of the VCCT

when applied to the fiber-matrix interface crack (circular bi-material interface

crack) problem in the context of a linear elastic FEM solution. In the present65

article, we first present the FEM formulation of the problem, together with the

main geometrical characteristics, material properties, boundary conditions and

loading. We then propose a vectorial formulation of the VCCT and express

Mode I and Mode II ERR in terms of FEM natural variables. With this tool,

we derive an analytical estimate of the ERR convergence and compare it with70

numerical results.

2. FEM formulation of the fiber-matrix interface crack problem

In order to investigate the fiber-matrix interface crack problem, a 2-dimensional

model of a single fiber inserted in a rectangular matrix element is considered (see

Figure 1). Total element length and height are respectively 2L and L, where L75

is determined by the fiber radius Rf and the fiber volume fraction Vf by

L =
Rf
2

√
π

Vf
. (3)

The fiber radius Rf is assumed to be equal to 1 µm. This choice is not

dictated by physical considerations but for simplicity. It is thus useful to re-

mark that, in a linear elastic solution as the one considered in the present

work, the ERR is proportional to the geometrical dimensions of the model and,80

consequently, recalculation of the ERR for fibers of any size requires a simple

multiplication.

As shown in Fig. 1, the debond is placed symmetrically with respect to

the x axis and its size is characterized by the angle ∆θ (which makes the full

debond size equal to 2∆θ and the full crack length equal to Rf2∆θ). A region85

∆Φ of unknown size appears at the crack tip for large debond sizes (at least

4
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Figure 1: Schematic of the model with its main parameters.

≥ 60◦−80◦), in which the crack faces are in contact with each other and free to

slide. Frictionless contact is thus considered between the two crack faces to allow

free sliding and avoid interpenetration. Symmetry with respect to the x axis is

applied on the lower boundary while the upper surface is left free. Kinematic90

coupling on the x-displacement is applied along the left and right sides of the

model in the form of a constant x-displacement ±ε̄xL, which corresponds to

transverse strain ε̄x equal to 1% in the results here presented.

Table 1: Summary of the mechanical properties of fiber and matrix. E stands for Young’s

modulus, µ for shear modulus and ν for Poisson’s ratio.

Material E [GPa] µ [GPa] ν [−]

Glass fiber 70.0 29.2 0.2

Epoxy 3.5 1.25 0.4

The model problem is solved with the Finite Element Method (FEM) within

the Abaqus environment, a commercial FEM software [31]. The model is meshed95

with second order, 2D, plane strain triangular (CPE6) and rectangular (CPE8)

elements. A regular mesh of rectangular elements with almost unitary aspect

ratio is used at the crack tip. The angular size δ of an element in the crack

5
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tip neighborhood represents the main parameter of the numerical analysis. The

crack faces are modeled as element-based surfaces and a small-sliding contact100

pair interaction with no friction is imposed between them. The Mode I, Mode II

and total Energy Release Rates (ERRs) (respectively referred to as GI , GII and

GTOT ) are evaluated using the VCCT [27], implemented in a in-house Python

routine. A glass fiber-epoxy system is considered in the present work, and it is

assumed that their response lies always in the linear elastic domain. The elastic105

properties of glass fiber and epoxy are reported in Table 1.

3. Vectorial formulation of the Virtual Crack Closure Technique (VCCT)

In order to express the VCCT formulation of the ERR in terms of FEM

variables, we need to introduce a few rotation matrices in order to represent the

discretized representation (FE mesh) of a crack along a circular interface. The110

position of the crack tip is characterized by the angular size of the crack (see

Sec. 2 and Fig. 1 for reference) and the rotation corresponding to the crack tip

reference frame is represented by the matrix R
∆θ

defined as

R
∆θ

=


 cos (∆θ) sin (∆θ)

− sin (∆θ) cos (∆θ)


 . (4)

Nodes belonging to the elements sharing the crack tip are involved in the

VCCT estimation of the ERR and it is assumed that, given a sufficiently fine115

discretization, they are aligned with the crack propagation direction defined at

the crack tip. However, irrespectively of how small the elements in the crack

tip neighborhood are, a misalignment always exists with respect to the assumed

crack propagation direction (in the crack tip reference frame). This is measured

by the matrices P
δ

(p), defined as120

P
δ

(p) =


 cos

((
1 + 1−p

m

)
δ
)

sin
((

1 + 1−p
m

)
δ
)

− sin
((

1 + 1−p
m

)
δ
)

cos
((

1 + 1−p
m

)
δ
)


 (5)
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and Q
δ

(q), equal to

Q
δ

(q) =


 cos

(
q−1
m δ

)
sin
(
q−1
m δ

)

− sin
(
q−1
m δ

)
cos
(
q−1
m δ

)


 , (6)

respectively for the free and bonded nodes involved in the VCCT estimation.

In Eqs. 5 and 6, δ is the angular size of an element in the crack tip neighborhood

(see Sec. 2 and Fig. 1), m is the order of the element shape functions and p, q are

indices referring to the nodes belonging respectively to free and bonded elements125

sharing the crack tip. Introducing the permutation matrix

P
π

=


 0 1

−1 0


 , (7)

it is possible to express the derivatives of rotation matrices R
∆θ

, P
δ

and Q
δ

with respect to their argument:

∂R
∆θ

∂∆θ
= D ·R

∆θ
,

∂P
δ

∂δ
=

(
1 +

1− p
m

)
D · P

δ
,

∂Q
δ

∂δ
=
q − 1

m
D ·Q

δ
. (8)

By means of Eqs. 5 and 6, we can express the crack tip forces F xy =


Fx
Fy




and crack displacements uxy =


ux
uy


 in the crack tip reference frame (where the130

tangential direction θ correspond to the direction of crack propagation) while

taking into account the misalignment to the finite discretization as

F rθ = Q
δ
R

∆θ
F xy urθ = P

δ
R

∆θ
uxy (9)

where F rθ =


Fr
Fθ


 and urθ =


ur
uθ


.

The crack tip forces can be expressed as a function of the crack opening

displacement as135

F xy = K
xy
uxy + F̃ xy, (10)

7
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where K
xy

is in general a full matrix of the form K
xy

=


KxxKxy

KyxKyy


 and F̃ xy

represents the effect of the rest of the FE solution through the remaining nodes of

the elements attached to the crack tip. As such, the term F̃ xy can be expressed

as a linear combination of the solution vector uN of nodal displacements of the

form K̃
N
uN . Equation 10 thus become140

F xy = K
xy
uxy + K̃

N
uN . (11)

An exemplifying derivation of the relationships expressed in Equations 10

and 11 can be found in Appendix A. It is worthwhile to observe that another

author [32] proposed a relationship of the form F xy = K
xy
uxy. However, in [32],

this relationship is assumed a priori and manipulated to propose a revised ver-

sion of the VCCT, based on the assumption that the matrix K
xy

should be145

diagonal to provide physically-consistent fracture mode partitioning. On the

other hand, in the present work we derive the relationships of Eqs. 10 and 11

from the formulation of the Finite Element Method. According to our deriva-

tion, it seems correct that the matrix K
xy

should not in general be diagonal

in order to take into account Poisson’s effect. In fact, a positive crack opening150

displacement would cause a transverse displacement in the neighborhood of the

crack tip. Given that material properties are different on the two sides of a

bi-material interface, a net shear would be applied to the crack tip which would

correspond to a net contribution to the crack tip force related to crack shear dis-

placement. The analytical derivations presented in Appendix A confirm these155

physical considerations.

Based upon the work of Raju [33], we introduce the matrix T
pq

to represent the

weights needed in the VCCT to account for the use of singular elements. As

already done previously, indices p and q refer to nodes placed respectively on

the free (crack face) and bonded side of the crack tip. Nodes are enumerated160

so that the crack tip has always index 1, i.e. the higher the index the further

the node is from the crack tip. Matrix T
pq

has always a size of d × d, where

8
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d = 2 for a 2D problem and d = 3 for a 3D problem. An element T
pq

(i, j)

with i, j = 1, . . . , d represents the weight to be assigned to the product of com-

ponent i of the displacement extracted at node p with component j of the force165

extracted at node q. The expression of T
pq

for quadrilateral elements with or

without singularity is reported in Appendix B. Notice that, given m is the

order of the element shape functions, the element side has m+ 1 nodes and this

represents the upper limit of indices p and q.

By using matrix T
pq

, it is possible to express the total ERR G evaluated with170

the VCCT as

GTOT =
1

2Rfδ

m+1∑

p=1

m+1∑

q=1

Tr
(
uTrθ,pT

T

pq
F rθ,q

)
. (12)

Introducing the vector G =


GI
GII


 of fracture mode ERRs, Mode I and

Mode II ERR evaluated with the VCCT can be expressed as

G =
1

2Rfδ

m+1∑

p=1

m+1∑

q=1

Diag
(
F rθ,qu

T
rθ,pT

T

pq

)
, (13)

where Diag () is the function that extracts the main diagonal of the input

matrix as a column vector. Substituting Equations 9 and 11 in Equations 12175

and 13, we can express the Mode I, Mode II and total Energy Release Rate

as a function of the crack displacements and the FE solution (more details in

Appendix A) as

GTOT =
1

2Rfδ

m+1∑

p=1

m+1∑

q=1

Tr
(
Q
δ
R

∆θ
K
xy,q

uxy,qu
T
xy,pR

T

∆θ
PT
δ
TT
pq

)
+

+
1

2Rfδ

m+1∑

p=1

m+1∑

q=1

Tr
(
Q
δ
R

∆θ
F̃ xy,qu

T
xy,pR

T

∆θ
PT
δ
TT
pq

) (14)

9
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and

G =


GI
GII


 =

1

2Rfδ

m+1∑

p=1

m+1∑

q=1

Diag
(
Q
δ
R

∆θ
K
xy,q

uxy,qu
T
xy,pR

T

∆θ
PT
δ
TT
pq

)
+

+
1

2Rfδ

m+1∑

p=1

m+1∑

q=1

Diag
(
Q
δ
R

∆θ
K̃
N,q

uNu
T
xy,pR

T

∆θ
PT
δ
TT
pq

)

(15)

4. Rotational invariance of GTOT180

Recalling Equation 14 and observing that matrix T
pq

is always equal to

the identity matrix pre-multiplied by a suitable real constant (see Eq. B.1 in

Appendix B), the total Energy Release Rate can be rewritten as

GTOT =
1

2Rfδ

m+1∑

p=1

m+1∑

q=1

Tr
(
Q
δ
R

∆θ

(
K
xy,q

uxy,q + F̃ xy,q

)
uTxy,pT

T

pq
RT

∆θ
PT
δ

)
=

=
1

2Rfδ

m+1∑

p=1

m+1∑

q=1

Tr
(
Q
δ
R

∆θ
F xy,qu

T
xy,pT

T

pq
RT

∆θ
PT
δ

)
,

(16)

where F xy and uxy are the vectors of respectively the crack tip forces and

crack displacements in the global (x − y) reference frame. Given that Q
δ
, P

δ
185

and R
∆θ

all represent a linear transformation (a rigid rotation in particular),

the invariance of the trace to linear transformations ensures that

GTOT =
1

2Rfδ

m+1∑

p=1

m+1∑

q=1

Tr
(
Q
δ
R

∆θ
F xy,qu

T
xy,pT

T

pq
RT

∆θ
PT
δ

)
=

=
1

2Rfδ

m+1∑

p=1

m+1∑

q=1

Tr
(
F xy,qu

T
xy,pT

T

pq

)
.

(17)

As GTOT was defined according to Equation 12 and given that Tr (AB) =

10
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Tr (BA), it holds that

GTOT =
1

2Rfδ

m+1∑

p=1

m+1∑

q=1

uTrθ,pT
T

pq
F rθ,q =

1

2Rfδ

m+1∑

p=1

m+1∑

q=1

Tr
(
F rθ,qu

T
rθ,pT

T

pq

)
=

=
1

2Rfδ

m+1∑

p=1

m+1∑

q=1

Tr
(
F xy,qu

T
xy,pT

T

pq

)
=

1

2Rfδ

m+1∑

p=1

m+1∑

q=1

uTxy,pT
T

pq
F xy,q

(18)

which shows that the total Energy Release Rate is invariant to rigid rotations190

and can be calculated equivalently with forces and displacements expressed in

the local crack tip reference frame or the global reference frame. The analytical

result is confirmed by the numerical solution of the fiber-matrix interface crack

with different element orders and model fiber volume fractions, as shown in

Figure 2.195

The result of Equation 18 has also physical implications:

– given that stress and displacement fields at the crack tip are the same, two

cracks with different crack paths are energetically equivalent with respect

to the total Energy Release Rate;

– given that laws of the type GTOT ≥ Gc govern crack propagation, if Gc200

do not depend on mode ratio, crack orientation will not affect its growth.

11



D
RA
FT

0 10 30 50 70 90 110 130 150
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

∆θ
[◦]

G
T
O
T

  J
/m

2 

J-integral

VCCT, rotated

VCCT, unrotated

(a) Vf = 0.1%, 1st order elements, δ =
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(b) Vf = 0.1%, 2nd order elements, δ =

0.05◦.
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(c) Vf = 40%, 1st order elements, δ =

0.05◦.
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(d) Vf = 40%, 2nd order elements, δ =

0.05◦ .

Figure 2: Numerical invariance of the total Energy Release Rate: GTOT computed with the

VCCT with rotated forces and displacements (label rotated), with the VCCT with forces

and displacements in the global reference frame (label unrotated) and with J-integral method

(label J-integral).

5. Convergence analysis

5.1. Analytical considerations

Substituting Equations 8 in the derivative of Equation 13, we can investigate

the dependency of Mode I and Mode II ERR with respect to the size δ of an205

12
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element in the crack tip neighborhood through

∂G

∂δ
=−

1

2Rfδ2

m+1∑
p=1

m+1∑
q=1

Diag

(
Q
δ
R

∆θ
K
xy
uxyu

T
xyR

T

∆θ
P
T

δ
T
T

pq

)
−

1

2Rfδ2

m+1∑
p=1

m+1∑
q=1

Diag

(
Q
δ
R

∆θ
K̃
N
uNu

T
xyR

T

∆θ
P
T

δ
T
T

pq

)
+

+
1

2Rfδ

m+1∑
p=1

m+1∑
q=1

Diag

(
Q
δ
R

∆θ
K
xy
uxyu

T
xyR

T

∆θ
P
T

δ
D
T
T
T

pq

)
+

1

2Rf δ

m+1∑
p=1

m+1∑
q=1

Diag

(
Q
δ
R

∆θ
K̃
N
uNu

T
xyR

T

∆θ
P
T

δ
D
T
T
T

pq

)
+

+
1

2Rfδ

m+1∑
p=1

m+1∑
q=1

Diag

(
DQ

δ
R

∆θ
K
xy
uxyu

T
xyR

T

∆θ
P
T

δ
T
T

pq

)
+

1

2Rf δ

m+1∑
p=1

m+1∑
q=1

Diag

(
DQ

δ
R

∆θ
K̃
N
uNu

T
xyR

T

∆θ
P
T

δ
T
T

pq

)
+

+
1

2Rfδ

m+1∑
p=1

m+1∑
q=1

Diag

(
Q
δ
R

∆θ
K
xy

∂uxy

∂δ
u
T
xyR

T

∆θ
P
T

δ
T
T

pq

)
+

1

2Rf δ

m+1∑
p=1

m+1∑
q=1
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)
;

(19)

which, after refactoring, provides

∂G

∂δ
=

1

δ
G+

1

2Rf δ

m+1∑
p=1

m+1∑
q=1

Diag
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(
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xy
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N
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xyR
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pq

)
+

+
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+

+
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pq

)
+
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p=1

m+1∑
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δ
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pq

)
+

+
1

2Rfδ
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∆θ
P
T

δ
T
T

pq

)
.

(20)

Following the asymptotic analysis of [3, 1], in the case of an open crack the

displacement in the crack tip neighborhood will have a functional form of the

type210

u (δ) ∼
√
δ (sin, cos) (ε log δ) with ε =

1

2π
log

(
1− β
1 + β

)
(21)

and β is Dundurs’ parameter introduced in Section 1. Application of Equa-

tion 21 to the terms on the right hand side of Eq. 20 provides:

uxy, uN ∼ u (δ) ∼
√
δ (sin, cos) (ε log δ)

δ→0−−−→ 0; (22)

uxyu
T
xy, uNu

T
xy ∼ u2 (δ) ∼ δ

(
sin2, cos2, sin · cos

)
(ε log δ)

δ→0−−−→ 0; (23)
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∂uxy
∂δ

uTxy,
∂uN
∂δ

uTxy ∼ −
1

2

(
sin2, cos2, sin · cos

)
(ε log δ)+

(
− sin2, cos2,± sin · cos

)
(ε log δ)

δ→0−−−→ finite;

(24)

G ∼ 1

δ
uxyu

T
xy ∼

1

δ
u2 (δ) ∼

(
sin2, cos2, sin · cos

)
(ε log δ)

δ→0−−−→ finite. (25)

In Equations 22-25, the multiplication by a trigonometric function of the type
(
sin, cos, sin2, cos2, sin · cos

)
prevents the divergence of the asymptote. Recalling

Eqs. 5 and 6, in the limit of δ → 0 the rotation matrices become equal to the215

identity matrix:

P
δ
, Q

δ

δ→0−−−→


1 0

0 1


 . (26)

Applying the results of Equations 22-26 to Eq. 20, it can be shown that the

derivative of G can be split in a factor that goes to 0 in the limit of δ → 0 and

in a factor independent of δ:

lim
δ→0

∂G

∂δ
∼ 1

δ

(

�
��*

0
F (δ) + C

)
. (27)

Thus, asymptotically, the Mode I and Mode II Energy Release Rate be-220

have like the logarithm of the angular size δ of the elements in the crack tip

neighborhood:

lim
δ→0

∂G

∂δ
∼ 1

δ

∫
dδ−−−→ lim

δ→0
G ∼ A log(δ) +B. (28)

5.2. Numerical results

Evaluations of the Mode I, Mode II and total Energy Release Rate using

the VCCT applied to the FE solution of the fiber-matrix interface crack in the225

single fiber model of Sec. 2 are reported respectively in Fig. 3, Fig. 4 and Fig. 5.

Results for Mode I ERR in Fig. 3 show clearly the transition from the open

crack regime, where Mode I ERR is different from zero, to the closed crack
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(c) Vf = 40%, 1st order elements.
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(d) Vf = 40%, 2nd order elements.

Figure 3: Effect of the size δ of an element at the crack tip on Mode I ERR.

regime of the debond, where GI = 0. Looking at Fig. 3, the crack is open for

∆θ ≤ 60◦ and it is closed, i.e. a contact zone is present, for ∆θ ≥ 70◦. As230

expected from the analysis of the previous section, and given that Mode I ERR

is different from zero only in the open crack regime, a significant dependence

on the element size δ can be observed in Fig. 3 when using both 1st and 2nd

order elements and with both an effectively infinite (Vf = 0.1%) and finite size

(Vf = 40%) matrix. At first sight, it is immediate to see from Fig. 3 that a235

decrease in δ leads to a decrease in GI . However, two further effects can be

observed due to the refinement of the mesh at the crack tip, i.e. the decrease of

the element size δ. First, the occurrence of the peak GI is shifted to lower angles

for very low volume fractions: it occurs at ∆θ = 30◦ with δ = 1.0◦, 0.5◦ and at
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∆θ = 20◦ with δ ≤ 0.25◦ for both 1st and 2nd order elements and Vf = 0.1%.240

Second, the apperance of the contact zone, i.e. the switch to the closed crack

regime, is anticipated to smaller debonds: it occurs at ∆θ = 70◦ with δ ≥ 0.2◦

and at ∆θ = 60◦ with δ < 0.2◦ for both 1st and 2nd order elements and both

Vf = 0.1% and Vf = 40%.
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(b) Vf = 0.1%, 2nd order elements.
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(c) Vf = 40%, 1st order elements.
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Figure 4: Effect of the size δ of an element at the crack tip on Mode II ERR.

Observing Figure 4, it possible to notice the existence of two distinct regimes245

in the behavior of GII with respect to the element size δ. For ∆θ ≤ 60◦ GII

depends on the value of δ, while ∆θ ≥ 70◦ it is effectively independent of the

element size at the crack tip for both 1st and 2nd order elements and both an

effectively infinite (Vf = 0.1%) and finite size (Vf = 40%) matrix. Comparing

the value of ∆θ at which the change from the δ-dependency regime to the δ-250
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independency regime occurs for GII with Mode I ERR in Fig. 3, it is possible

to observe that the δ-dependency regime change of Mode II ERR coincides with

the onset of the contact zone, i.e. the transition from open crack regime to the

closed crack regime. The result confirms the analytical considerations of the

previous section: for an open crack both Mode I and Mode II ERR depend on255

the element size δ at the crack tip.
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(b) Vf = 0.1%, 2nd order elements.
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(c) Vf = 40%, 1st order elements.
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Figure 5: Effect of the size δ of an element at the crack tip on total ERR.

Further observation of Figure 4 reveals that, in the open crack regime, de-

creasing the element size δ causes an increase of Mode II ERR. Similarly to

Mode I ERR, a shift of the peak GII can also observed for Vf = 0.1%: the

maximum value of GII occurs at ∆θ = 70◦ for δ > 0.25◦ for 1st order elements260

and for δ > 0.5◦ for 2nd order elements, while it is shifted to ∆θ = 60◦ for
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δ ≤ 0.25◦ for 1st order elements and for δ ≤ 0.5◦ for 2nd order elements.

Table 2: Summary of linear regression results and main statistical tests for Mode I ERR

Vf [%] Order ∆θ [◦] A
[

J
m2

]
B

[
J

m2

]
r [−] r2 [−] p(A) [−] p(B) [−]

0.1 1 10.0 0.0064 0.2113 0.9933 0.9866 7.48E-07 3.49E-14

20.0 0.0183 0.3331 0.9996 0.9992 1.44E-10 2.40E-16

30.0 0.0280 0.3392 1.0000 1.0000 2.25E-16 4.26E-21

40.0 0.0304 0.2524 0.9997 0.9995 4.38E-11 7.94E-15

50.0 0.0235 0.1278 0.9985 0.9970 8.61E-09 2.01E-11

60.0 0.0094 0.0284 0.9854 0.9709 7.75E-06 6.14E-07

0.1 2 10.0 0.0069 0.2103 0.9962 0.9924 1.36E-07 1.03E-14

20.0 0.0187 0.3277 0.9997 0.9994 7.85E-11 1.62E-16

30.0 0.0280 0.3296 1.0000 1.0000 3.28E-16 7.29E-21

40.0 0.0298 0.2408 0.9997 0.9995 4.82E-11 1.04E-14

50.0 0.0225 0.1177 0.9984 0.9967 1.10E-08 3.27E-11

60.0 0.0081 0.0228 0.9811 0.9626 1.66E-05 2.17E-06

40 1 10.0 0.0311 0.9196 0.9963 0.9927 1.03E-07 9.33E-15

20.0 0.0501 0.8882 1.0000 0.9999 1.21E-13 2.33E-19

30.0 0.0510 0.6374 0.9998 0.9996 1.66E-11 2.58E-16

40.0 0.0419 0.3760 0.9988 0.9976 4.56E-09 5.25E-13

50.0 0.0279 0.1713 0.9980 0.9961 2.22E-08 2.52E-11

60.0 0.0108 0.0391 0.9901 0.9804 3.44E-06 9.46E-08

40 2 10.0 0.0336 0.9148 0.9988 0.9977 3.45E-09 5.09E-16

20.0 0.0504 0.8719 1.0000 1.0000 3.70E-14 8.26E-20

30.0 0.0506 0.6191 0.9999 0.9997 7.63E-12 1.35E-16

40.0 0.0414 0.3608 0.9994 0.9989 4.95E-10 6.80E-14

50.0 0.0269 0.1593 0.9982 0.9964 1.66E-08 2.31E-11

60.0 0.0097 0.0329 0.9890 0.9781 4.96E-06 1.99E-07

Analysis of the total ERR in Figure 5 leads to an observation that was
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not predicted by the considerations of the previous section: GTOT is effectively

independent of the element size δ in both the open and the closed crack regimes,265

at least for reasonably small elements (δ ≤ 1.0◦). Given that GII = GTOT for

the closed crack, it explains the independency of GII from δ after the onset of

the contact zone.

Analysis of Fig. 3, Fig. 4 and Fig. 5 has shown the dependency of Mode I and

Mode II ERR on the element size δ. Following the derivations of the previous270

section, we model the dependency of GI and GII with respect to δ as

G(·) = A (∆θ) ln δ +B (∆θ) , (29)

whereA (∆θ) andB (∆θ) are parameters dependent on ∆θ estimated through

linear regression (with x = ln δ) of the numerical results.
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Figure 6: Logarithmic dependence on δ of Mode I ERR: interpolation of numerical results for

Vf = 0.1%.
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Table 3: Summary of linear regression results and main statistical tests for Mode II ERR

Vf [%] Order ∆θ [◦] A
[

J
m2

]
B

[
J

m2

]
r [−] r2 [−] p(A) [−] p(B) [−]

0.1 1.0 10.0 -0.0076 0.0228 -0.9996 0.9991 2.09E-10 1.64E-11

20.0 -0.0194 0.1211 -1.0000 1.0000 1.99E-15 2.02E-18

30.0 -0.0290 0.3007 -0.9999 0.9998 4.12E-12 1.97E-16

40.0 -0.0311 0.5270 -0.9995 0.9989 4.13E-10 1.05E-15

50.0 -0.0240 0.7375 -0.9979 0.9958 2.32E-08 1.66E-15

60.0 -0.0095 0.8685 -0.9835 0.9672 1.12E-05 1.22E-15

0.1 2.0 10.0 -0.0078 0.0249 -0.9996 0.9992 1.91E-10 1.06E-11

20.0 -0.0196 0.1272 -1.0000 1.0000 3.48E-15 2.78E-18

30.0 -0.0288 0.3108 -0.9999 0.9998 1.45E-12 5.47E-17

40.0 -0.0305 0.5387 -0.9995 0.9990 3.32E-10 6.55E-16

50.0 -0.0229 0.7478 -0.9979 0.9959 2.17E-08 1.09E-15

60.0 -0.0082 0.8744 -0.9806 0.9615 1.81E-05 8.26E-16

40.0 1.0 10.0 -0.0344 0.1055 -0.9997 0.9995 3.82E-11 2.73E-12

20.0 -0.0500 0.2977 -1.0000 0.9999 4.22E-14 5.66E-17

30.0 -0.0505 0.4866 -0.9999 0.9997 6.44E-12 4.82E-16

40.0 -0.0420 0.6454 -0.9996 0.9991 2.12E-10 9.66E-16

50.0 -0.0275 0.7386 -0.9985 0.9971 9.01E-09 1.44E-15

60.0 -0.0099 0.7402 -0.9926 0.9853 1.41E-06 5.13E-16

40.0 2.0 10.0 -0.0353 0.1145 -0.9998 0.9995 2.92E-11 1.50E-12

20.0 -0.0504 0.3130 -1.0000 0.9999 4.00E-14 4.17E-17

30.0 -0.0502 0.5039 -0.9999 0.9998 2.87E-12 1.69E-16

40.0 -0.0410 0.6615 -0.9996 0.9992 2.02E-10 6.89E-16

50.0 -0.0263 0.7502 -0.9987 0.9973 6.87E-09 7.76E-16

60.0 -0.0090 0.7458 -0.9921 0.9842 1.79E-06 3.37E-16

As shown in Fig. 6, Fig. 7, Fig. 8 and Fig. 9 both in linear and logarithmic

scales of δ, the result is remarkable: both the correlation coefficient r and the275
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Figure 7: Logarithmic dependence on δ of Mode I ERR: interpolation of numerical results for

Vf = 40%.

r2 ratio (of explained to total variance) are always greater than 0.95 and the

p-values of the coefficients A and B are at least < 1E − 6 and often < 1E − 11

(see Table 2 for GI and Table 3 for GII). The results of the linear regression

confirm the analytical derivations of the previous section, which showed the

logarithmic behavior of Mode I and Mode II ERR. Similar conclusions were280

reached in [28, 29] for a straight bi-material crack with respect to the parameter

∆a/a; however, no functional expression of G(·) was proposed.
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Figure 8: Logarithmic dependence on δ of Mode II ERR: interpolation of numerical results

for Vf = 0.1%.
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Figure 9: Logarithmic dependence on δ of Mode II ERR: interpolation of numerical results

for Vf = 40%.
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6. Conclusions & Outlook

The application of the Virtual Crack Closure Technique to the calculation

of Mode I, Mode II and total Energy Release Rate was analyzed in the context285

of the Finite Element solution of the bi-material circular arc crack, or fiber-

matrix interface crack. A synthetic vectorial formulation of the VCCT has been

proposed and its usefulness exemplified in the analysis of the mesh dependency.

By both analytical considerations and numerical simulations, it has been shown

that:290

• the total ERR is invariant to rotations of the reference frame (and more in

general to linear transformations), which implies that rotation of crack tip

forces and displacement is actually not required in the use of the VCCT

for the calculation of GTOT ;

• the total ERR does not depend on the size δ of the elements at the crack295

tip, at least for reasonably small elements (δ ≤ 1.0◦) ;

• as a consequence, Mode II ERR for the closed interface crack does not

depend on δ, as GII = GTOT after the onset of the contact zone;

• for the open interface crack, Mode I and Mode II ERR depend on the

element size δ through a logarithmic law of the type A (∆θ) ln δ+B (∆θ);300

• the sign of the logarithm is always positive for GI , i.e. it decreases when

δ decreases, and negative for GII , i.e. it increases when δ decreases.

The conclusion is significant: as the behavior of Mode I and Mode II is loga-

rithmic with respect to mesh size, there exists no asymptotic limit and thus no

convergence of the values. A convergence analysis based on the reduction of the305

error between successive iterations would not provide a reliable assessment of the

accuracy of the FE solution of Mode I and Mode II Energy Release Rate of the

fiber-matrix interface crack. A validation is thus required with respect to data

obtained through a different method, be it analytical, numerical or experimen-

tal. Moreover, it has been shown that: first, the same behavior appears when310
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using 1st as well as 2nd order elements; second, no improvement is expected with

the use of singular elements, as the logarithmic dependency of GI and GII is

governed by the definition of ERR itself together with the asymptotic behavior

of the displacement field at the crack tip. These two conclusions run contrary

to the suggestions provided in the manuals of many commercial FEM packages,315

such as Abaqus [31] which suggests that (Section 11.4.2 of the Abaqus Analysis

User’s Guide): “Sharp cracks (where the crack faces lie on top of one another in

the undeformed configuration) are usually modeled using small-strain assump-

tions. Focused meshes, [...], should normally be used for small-strain fracture

mechanics evaluations. However, for a sharp crack the strain field becomes sin-320

gular at the crack tip. [...] In most cases the singularity at the crack tip should be

considered in small-strain analysis (when geometric nonlinearities are ignored).

Including the singularity often improves the accuracy of the J-integral, the stress

intensity factors, and the stress and strain calculations because the stresses and

strains in the region close to the crack tip are more accurate.”. We have shown325

that, in the context of the fiber/matrix interface crack, the convergence of the

Energy Release Rate is determined by the asymptotic behavior of the elastic

solution and only marginally by the choice of element order and type, thus

contradicting the statements in [31].
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Appendix A. Derivation of the relationship between crack tip forces

and displacements for first order quadrilateral elements

Appendix A.1. Foundational relations445

In the isoparametric formulation of the Finite Element Method, the element

Jacobian J and its inverse J−1 can be expressed in general as

J =
[
eξ|eη

]
=



∂x
∂ξ

∂x
∂η

∂y
∂ξ

∂y
∂η


 J−1 =

[
ex|ey

]
=



∂ξ
∂x

∂ξ
∂y

∂η
∂x

∂η
∂y


 (A.1)

where {eξ, eη} and {ex, ey} are respectively the covariant and contravariant

basis vectors of the mapping between global {x, y} and local element {ξ, η}
coordinates:450

eξ =



∂x
∂ξ

∂y
∂ξ


 eη =



∂x
∂η

∂y
∂η


 , (A.2)

ex =



∂ξ
∂x

∂η
∂x


 ey =



∂ξ
∂y

∂η
∂y


 . (A.3)

Denoting by d the number of geometrical dimensions of the problem (d = 2

in the present work) and by p the d×1 position vector in global coordinates, we

can formally introduce the 3 (d− 1)×d matrix operator of partial differentiation

B̃ such that

ε
(
p
)

= B̃ · u
(
p
)
, (A.4)

where u and ε are respectively the d×1 displacement vector and the 3 (d− 1)×455

1 strain vector in Voigt notation. Denoting by n the number of nodes of a generic

element (n = s×m where s represents the number of sides of the element and

m the order of the shape functions), we can furthermore introduce the d× d · n
matrix N of shape functions such that

u = N · uN , (A.5)
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where uN is the d·n×1 vector of element nodal variables. Having introduced460

B̃ and N in Equations A.4 and A.5 respectively, it is possible to define the

3 (d− 1)× d · n matrix B of derivatives (with respect to global coordinates) of

shape functions as

B = B̃ ·N. (A.6)

We introduce the linear elastic material behavior in the form of the 3 (d− 1)×
3 (d− 1) rigidity matrix D such that465

σ = D · ε, (A.7)

where σ the 3 (d− 1)×1 stress vector in Voigt notation. It is finally possible

to define the n× n element stiffness matrix ke as

ke =

∫

Ve(x,y)

(
BTD ·B

)
dVe (x, . . . , y) =

∫

Ve(ξ,η)

(
BTD ·B

)√
gdVe (ξ, . . . , η) ,

(A.8)

where g = det
(
JTJ

)
and Ve is the element volume. Given that isoparametric

elements are always defined between −1 and 1 in each dimension, Equation A.8

can simplified to470

ke =

∫ 1

−1

· · ·
∫ 1

−1

(
BTD ·B

)√
gdξ, . . . , dη, (A.9)

which is amenable to numerical integration by means of a Gaussian quadra-

ture of the form

ke ≈
N∑

i=1

· · ·
N∑

j=1

wi . . . wj
(
BT (ξi, . . . , ηj) ·D ·B (ξi, . . . , ηj)

√
g
)
, (A.10)

where (ξi, . . . , ηj) are the coordinates of the N Gaussian quadrature points.

The element stiffness matrix as evaluated in Eq. A.10 is in general a full sym-
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metric (in the case of linear elasticity) matrix of the form475

ke =




ke|11 ke|12 ke|13 ke|14 ke|15 ke|16 ke|17 ke|18

ke|12 ke|22 ke|23 ke|24 ke|25 ke|26 ke|27 ke|28

ke|13 ke|23 ke|33 ke|34 ke|35 ke|36 ke|37 ke|38

ke|14 ke|24 ke|34 ke|44 ke|45 ke|46 ke|47 ke|48

ke|15 ke|25 ke|35 ke|45 ke|55 ke|56 ke|57 ke|58

ke|16 ke|26 ke|36 ke|46 ke|56 ke|66 ke|67 ke|68

ke|17 ke|27 ke|37 ke|47 ke|57 ke|67 ke|77 ke|78

ke|18 ke|28 ke|38 ke|48 ke|58 ke|68 ke|78 ke|88




. (A.11)

Appendix A.2. Calculation of displacements and reaction forces

With reference to Fig. A.10, we define:

ux,M , ux,F the x-displacement of the nodes belonging to the free side of the

first element belonging to the crack, respectively on the matrix (bulk) and

fiber (inclusion) side;480

uy,M , uy,F the y-displacement of the nodes belonging to the free side of the

first element belonging to the crack, respectively on the matrix (bulk) and

fiber (inclusion) side;

ur,M , ur,F the x-displacement of the nodes belonging to the free side of the

first element belonging to the crack, respectively on the matrix (bulk) and485

fiber (inclusion) side;

uθ,M , uθ,F the y-displacement of the nodes belonging to the free side of the

first element belonging to the crack, respectively on the matrix (bulk) and

fiber (inclusion) side;

Fx,CT , Fy,CT respectively the x- and y-component of the reaction force at the490

crack tip;

Fr,CT , Fθ,CT respectively the r- and θ-component of the reaction force at the

crack tip.
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The x − y reference frame is the global reference frame, while the r − θ

reference frame is such that the θ direction coincides with the crack propagation495

direction at the crack tip and r the in-plane normal to the propagation direction.

For an arc-crack as the present one, the r-direction coincides with the radial

direction of the inclusion.

x, i

y, j

O

∆θ

δ a = Rf∆θ

∆a = Rfδ
r, r̂

θ, θ̂

CT

F M

Figure A.10: Schematic representation of the discretized crack tip geometry for 1st order

quadrilateral elements.

The crack opening displacement ur and the crack shear displacement uθ at

the crack tip can thus be written as500

ur = cos (∆θ)ux + sin (∆θ)uy uθ = − sin (∆θ)ux + cos (∆θ)uy, (A.12)
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where ux and uy are defined as

ux = ux,M − ux,F uy = uy,M − uy,F (A.13)

and 2∆θ is total angular size of the debond. The corresponding forces at

the crack tip are

Fr = cos (∆θ)Fx,CT+sin (∆θ)Fy,CT Fθ = − sin (∆θ)Fx,CT+cos (∆θ)Fy,CT .

(A.14)

At the crack tip, the FE mesh possesses two coincident points, labeled FCT

and MCT . Continuity of the displacements at the crack tip must be ensured.505

Furthermore, in order to measure the force at the crack tip, a fully-constraint

dummy node needs to be created and formally linked to the two nodes at the

crack tip by the conditions





ux,FCT − ux,MCT − ux,DUMMY = 0

uy,FCT − uy,MCT − uy,DUMMY = 0

ux,DUMMY = 0

uy,DUMMY = 0

, (A.15)

which can be simplified to





ux,FCT = ux,MCT

uy,FCT = uy,MCT

Rx,DUMMY = Rx,FCT = −Rx,MCT = Fx,CT

Ry,DUMMY = Ry,FCT = −Ry,MCT = Fy,CT

. (A.16)

Making use of Eq. A.11, four equations can be written in the four displace-510
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ment ux,FCT , ux,MCT , uy,FCT and uy,MCT :





(
ke,M |11 + ke,M |33

)
ux,MCT +

(
ke,M |12 + ke,M |34

)
uy,MCT+

+ke,M |13ux,M + ke,M |14uy,M +
(
kM |17 + kM |35

)
uN,MC|7 +

(
kM |18 + kM |36

)
uN,MC|8+

+
∑6
i=5 kM |1iuN,MC|i +

∑8
i=7 kM |3iuN,MB|i + kM |31ux,NCOI + kM |32uy,NCOI = 0

(
ke,M |21 + ke,M |43

)
ux,MCT +

(
ke,M |22 + ke,M |44

)
uy,MCT+

+ke,M |23ux,M + ke,M |24uy,M +
(
kM |27 + kM |45

)
uN,MC|7 +

(
kM |28 + kM |46

)
uN,MC|8+

+
∑6
i=5 kM |2iuN,MC|i +

∑8
i=7 kM |4iuN,MB|i + kM |41ux,NCOI + kM |42uy,NCOI = 0

(
ke,F |77 + ke,F |55

)
ux,FCT +

(
ke,F |78 + ke,F |56

)
uy,FCT+

+ke,F |75ux,F + ke,F |76uy,F +
(
kF |71 + kF |53

)
uN,FC|1 +

(
kF |72 + kF |54

)
uN,FC|2+

+
∑3
i=2 kF |7iuN,FC|i +

∑2
i=1 kF |5iuN,FB|i + kF |57ux,NCOI + kF |58uy,NCOI = 0

(
ke,F |87 + ke,F |65

)
ux,FCT +

(
ke,F |88 + ke,F |66

)
uy,FCT+

+ke,F |85ux,F + ke,F |86uy,F +
(
kF |81 + kF |63

)
uN,FC|1 +

(
kF |82 + kF |64

)
uN,FC|2+

+
∑3
i=2 kF |8iuN,FC|i +

∑2
i=1 kF |6iuN,FB|i + kF |67ux,NCOI + kF |68uy,NCOI = 0

.

(A.17)

Solving for uy,FCT and uy,MCT the third and fourth relations in Eq. A.17
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and substituting in the first two expressions of Eq. A.17, we get



(
ke,M|11 + ke,M|33 + ke,F |77 + ke,F |55

)
ux,MCT +

(
ke,M|12 + ke,M|34 + ke,F |78 + ke,F |56

)
uy,MCT +

+ke,M|13ux,M + ke,M|14uy,M + ke,F |75ux,F + ke,F |76uy,F +

+
(
kM|31 + kF |57

)
ux,NCOI +

(
kM|32 + kF |58

)
uy,NCOI+

+
(
kM|17 + kM|35

)
uN,MC|7 +

(
kM|18 + kM|36

)
uN,MC|8 +

(
kF |71 + kF |53

)
uN,FC|1 +

(
kF |72 + kF |54

)
uN,FC|2+

+
∑6

i=5 kM|1iuN,MC|i +
∑8

i=7 kM|3iuN,MB|i +
∑3

i=2 kF |7iuN,FC|i +
∑2

i=1 kF |5iuN,FB|i = 0

(
ke,M|21 + ke,M|43 + ke,F |87 + ke,F |65

)
ux,MCT +

(
ke,M|22 + ke,M|44 + ke,F |88 + ke,F |66

)
uy,MCT +

+ke,M|23ux,M + ke,M|24uy,M + ke,F |85ux,F + ke,F |86uy,F +

+
(
kM|41 + kF |67

)
ux,NCOI +

(
kM|42 + kF |68

)
uy,NCOI+

+
(
kM|27 + kM|45

)
uN,MC|7 +

(
kM|28 + kM|46

)
uN,MC|8 +

(
kF |81 + kF |63

)
uN,FC|1 +

(
kF |82 + kF |64

)
uN,FC|2+

+
∑3

i=2 kF |8iuN,FC|i +
∑2

i=1 kF |6iuN,FB|i +
∑6

i=5 kM|2iuN,MC|i +
∑8

i=7 kM|4iuN,MB|i = 0

(A.18)

Solving the system of two equations and observing that ux,F , uy,F ∼ 0 for a

stiffer inclusion as a fiber in a polymeric composite, we can express ux,MCT as515
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a function of ux and uy (see Eq. A.13) as

[(
ke,M|21 + ke,M|43 + ke,F |87 + ke,F |65

)
+
ke,M|11 + ke,M|33 + ke,F |77 + ke,F |55

ke,M|12 + ke,M|34 + ke,F |78 + ke,F |56

(
ke,M|22 + ke,M|44 + ke,F |88 + ke,F |66

)]
ux,MCT+

+

(
ke,M|23 −

ke,M|22 + ke,M|44 + ke,F |88 + ke,F |66

ke,M|12 + ke,M|34 + ke,F |78 + ke,F |56

ke,M|13

)
ux+

+

(
ke,M|24 −

ke,M|22 + ke,M|44 + ke,F |88 + ke,F |66

ke,M|12 + ke,M|34 + ke,F |78 + ke,F |56

ke,M|14

)
uy+

+

(
ke,M|23 + ke,F |85 −

ke,M|22 + ke,M|44 + ke,F |88 + ke,F |66

ke,M|12 + ke,M|34 + ke,F |78 + ke,F |56

(
ke,M|13 + ke,M|75

))
���:

≈ 0
ux,F +

+

(
ke,M|24 + ke,F |86 −

ke,M|22 + ke,M|44 + ke,F |88 + ke,F |66

ke,M|12 + ke,M|34 + ke,F |78 + ke,F |56

(
ke,M|14 + ke,M|76

))
���:

≈ 0
uy,F +

+

[(
kM|41 + kF |67

)
−
ke,M|22 + ke,M|44 + ke,F |88 + ke,F |66

ke,M|12 + ke,M|34 + ke,F |78 + ke,F |56

(
kM|31 + kF |57

)]
ux,NCOI+

+

[(
kM|42 + kF |68

)
−
ke,M|22 + ke,M|44 + ke,F |88 + ke,F |66

ke,M|12 + ke,M|34 + ke,F |78 + ke,F |56

(
kM|32 + kF |58

)]
uy,NCOI+

+
(
kM|27 + kM|45

)
uN,MC|7 +

(
kM|28 + kM|46

)
uN,MC|8 +

(
kF |81 + kF |63

)
uN,FC|1 +

(
kF |82 + kF |64

)
uN,FC|2+

−
ke,M|22 + ke,M|44 + ke,F |88 + ke,F |66

ke,M|12 + ke,M|34 + ke,F |78 + ke,F |56

[(
kM|17 + kM|35

)
uN,MC|7 +

(
kM|18 + kM|36

)
uN,MC|8

]
+

−
ke,M|22 + ke,M|44 + ke,F |88 + ke,F |66

ke,M|12 + ke,M|34 + ke,F |78 + ke,F |56

[(
kF |71 + kF |53

)
uN,FC|1 +

(
kF |72 + kF |54

)
uN,FC|2

]
+

3∑
i=2

kF |8iuN,FC|i +

2∑
i=1

kF |6iuN,FB|i +

6∑
i=5

kM|2iuN,MC|i +

8∑
i=7

kM|4iuN,MB|i+

−
∑6
i=5 kM|1iuN,MC|i +

∑8
i=7 kM|3iuN,MB|i +

∑3
i=2 kF |7iuN,FC|i +

∑2
i=1 kF |5iuN,FB|i

ke,M|12 + ke,M|34 + ke,F |78 + ke,F |56

= 0,

(A.19)

while the reaction forces at the crack tip can be expressed as





Fx,CT = Rx,FCT =

=
(
ke,F |77 + ke,F |55

)
ux,FCT +

(
ke,F |78 + ke,F |56

)
uy,FCT+

+ke,F |75���:
≈0ux,F + ke,F |76���:

≈0uy,F +

+
∑4
i=1 ke,F |7iuN,FC|i +

∑8
i=1,i6=(5,6) ke,F |5iuN,FB|i

Fy,CT = Ry,FCT =

=
(
ke,F |87 + ke,F |65

)
ux,FCT +

(
ke,F |88 + ke,F |66

)
uy,FCT+

+ke,F |85���:
≈0ux,F + ke,F |86���:

≈0uy,F +

+
∑4
i=1 ke,F |8iuN,FC|i +

∑8
i=1,i6=(5,6) ke,F |6iuN,FB|i

. (A.20)
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Substituting Eq. A.17 in Eq. A.18, Eq. A.19 and Eq. A.20 and solving, we

obtain an expression of the form





Fx,CT = Kxxux +Kxyuy+

+
∑4
i=1KFC,x|iuN,FC|i +

∑8
i=1,i6=(3,4,5,6)KFB,x|iuN,FB|i+

+
∑8
i=5KFC,x|iuN,MC|i +

∑8
i=7KMB,x|iuN,FB|i

Fy,CT = Kyxux +Kyyuy+

+
∑4
i=1KFC,y|iuN,FC|i +

∑8
i=1,i6=(3,4,5,6)KFB,y|iuN,FB|i+

+
∑8
i=5KFC,y|iuN,MC|i +

∑8
i=7KMB,y|iuN,FB|i

, (A.21)

which can be reformulated synthetically as520




Fx,CT = Kxxux +Kxyuy + F̃x

Fy,CT = Kyxux +Kyyuy + F̃y

, (A.22)

where F̃x and F̃y represent the influence of the FE solution through the

nodes of the elements sharing the crack tip that do not belong to any of the

phase interfaces, i.e. the nodes of the elements sharing the crack tip that belong

to the bulk of each phase.
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Appendix B. Expression of T
pq

for quadrilateral elements with or525

without singularity

The expression of T
pq

for quadrilateral elements with or without singularity

is

T
pq

=

I for p = q < 2

0 otherwise
for 1

st
order quadrilateral elements

=

I for p = q < 3

0 otherwise
for 2

nd
order quadrilateral elements

=

I for p = q < 4

0 otherwise
for 3

rd
order quadrilateral elements

=



(
14− 33π

8

)
I for p = 1, q = 1(

−52 + 33π
2

)
I for p = 1, q = 2(

17− 21π
4

)
I for p = 2, q = 1(

− 7
2 + 21π

16

)
I for p = 2, q = 2(

8− 21π
8

)
I for p = 1, q = 3(

−32 + 21π
2

)
I for p = 2, q = 3

0 otherwise

for 2
nd

order quarter-point quadrilateral elements

=



(
−11187 + 7155π

2

)
I for p = 1, q = 1(

38556− 24543π
2

)
I for p = 1, q = 2(

−53055 + 33777π
2

)
I for p = 1, q = 3(

11396
3 − 9575π

8

)
I for p = 2, q = 1(

−12936 + 33003π
8

)
I for p = 2, q = 2(

17988− 45837π
8

)
I for p = 2, q = 3(

− 8453
3 + 3595π

4

)
I for p = 3, q = 1(

9804− 12411π
4

)
I for p = 3, q = 2(

−13587 + 17289π
4

)
I for p = 3, q = 3(

6948− 17685π
8

)
I for p = 1, q = 4(

−23976 + 60993π
8

)
I for p = 2, q = 4(

33372− 84807π
8

)
I for p = 3, q = 4

0 otherwise

for 3
rd

order quarter-point quadrilateral elements

(B.1)

where I is the identity matrix.
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